
HAL Id: hal-00487760
https://hal.science/hal-00487760

Preprint submitted on 31 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Algorithms for Singleton Arc Consistency
Christian Bessiere, Stéphane Cardon, Romuald Debruyne, Christophe

Lecoutre

To cite this version:
Christian Bessiere, Stéphane Cardon, Romuald Debruyne, Christophe Lecoutre. Efficient Algorithms
for Singleton Arc Consistency. 2010. �hal-00487760�

https://hal.science/hal-00487760
https://hal.archives-ouvertes.fr

Efficient Algorithms

for Singleton Arc Consistency∗

Christian Bessiere

LIRMM–CNRS

Université de Montpellier, France

bessiere@lirmm.fr

Stéphane Cardon

CRIL–CNRS

Université d’artois, France

cardon@cril.fr

Romuald Debruyne

LINA–CNRS

Ecole des Mines de Nantes, France

romuald.debruyne@emn.fr

Christophe Lecoutre

CRIL–CNRS

Université d’artois, France

lecoutre@cril.fr

Abstract

In this paper, we propose two original and efficient approaches for enforcing

singleton arc consistency. In the first one, the data structures used to enforce arc

consistency are shared between all subproblems where a domain is reduced to a

singleton. This new algorithm is not optimal but it requires far less space and

is often more efficient in practice than the optimal algorithm SAC-Opt. In the

second approach, we perform several runs of a greedy search (where at each step,

arc consistency is maintained), possibly detecting the singleton arc consistency of

several values in one run. It is an original illustration of applying inference (i.e.,

establishing singleton arc consistency) by search. Using a greedy search allows

benefiting from the incrementality of arc consistency, learning relevant information

from conflicts and, potentially finding solution(s) during the inference process. We

present extensive experiments that show the benefit of our two approaches.

1 Introduction

Inference and search are two categories of techniques for processing constraints [14,

17]. On the one hand, inference is used to transform a problem into an equivalent

form which is either directly used to show the satisfiability or unsatisfiability of the

problem, or simpler to be handled by a search algorithm. Inference aims at modifying

a constraint network by employing structural methods such as variable elimination,

or filtering methods based on properties such as arc consistency and path consistency.

∗This paper is a compilation and an extension of [5] and [18].

1

On the other hand, search is used to traverse the space delimited by the domains of

all variables of the problem. For example, search can be systematic and complete by

relying on breadth-first or depth-first exploration with backtracking, or stochastic and

incomplete by relying on greedy exploration and randomized heuristics.

One of the most popular systematic search algorithms to solve instances of the

constraint satisfaction problem (CSP) is called MAC [27]. MAC interleaves inference

and search since at each step of a depth-first exploration with backtracking, a local

consistency called arc consistency (AC) is maintained. However, since the introduction

of stronger consistencies such as max-restricted path consistency (Max-RPC) [11, 13]

and singleton arc consistency (SAC) [12, 13], one issue has been the practical interest

of utilizing such consistencies, instead of arc consistency, before or during search.

There is a recent focus on singleton consistencies, and more particularly on sin-

gleton arc consistency, as illustrated by recent works [12, 26, 2, 4, 6]. A constraint

network P is (singleton) arc-consistent if and only if each value of P is (singleton)

arc-consistent. A value is singleton arc-consistent if assigning it to its variable does not

produce an arc inconsistent network.

In this paper, we propose some original algorithms to establish singleton arc con-

sistency. First, we note that to reach time optimality we have to fully exploit the in-

crementality of arc consistency, i.e., the fact that iteratively establishing AC on a more

and more reduced search space is cheaper than repeatedly establishing it on the origi-

nal problem. This requires for each value the duplication of the data structures used to

enforce arc consistency. The time optimality can therefore be reached but at the cost

of a prohibitive space complexity. With the algorithm SAC-SDS, we propose a good

trade-off consisting, for each pair (xi, a) composed of a variable xi and a value a in the

domain of xi, in storing only the domains obtained by enforcing AC after the assign-

ment of the value a to xi. Storing these domains allows us both to know which values

may no longer be singleton arc-consistent after a value removal, and not to check their

singleton arc consistency from scratch. The other data structures used to enforce AC

are shared. So the space required is far less important than with a duplication of these

data structures. The resulting algorithm can be used on large constraint networks and

shows very good time performances compared to previous SAC algorithms.

Second, we show how it is possible to establish singleton arc consistency by per-

forming several runs of a greedy search (where at each step, arc consistency is main-

tained). This contrasts with the classical breadth-first search up to a depth equal to 1
performed by SAC algorithms introduced so far. We introduce two algorithms, denoted

by SAC3 and SAC3-SDS: SAC3 does not record the context of runs already performed,

whereas SAC3-SDS does record them in the same vein as SAC-SDS. Although this ap-

proach has a high worst-case time complexity, it has several advantages:

• extra space requirement is limited,

• both algorithms benefit from the incrementality of arc consistency,

• using a greedy search enables learning relevant information from conflicts,

• it is possible to find solution(s) while establishing singleton arc consistency,

2

More precisely, the good space complexity of both algorithms allows to use them on

large constraint networks. In particular, SAC3 admits the same space complexity as the

underlying arc consistency algorithm. Furthermore, when a greedy search maintaining

arc consistency is used, we naturally benefit from the incrementality of arc consistency

since variables are instantiated in sequence on each branch. Besides, when a dead-end

is encountered during a greedy search, a nogood can be recorded and/or the origin of

the failure taken into account. Also, some solutions may be opportunistically found by

the algorithm. Finally, if the instance contains a large under-constrained part, a very

efficient practical time complexity can be expected.

The paper is organized as follows. Section 2 introduces technical background and

Section 3 briefly presents AC algorithms. Section 4 provides an overview of existing

SAC algorithms. The new algorithms, namely SAC-SDS, SAC3 and SAC3-SDS, are

respectively developed in Sections 5, 6 and 7. An illustration of these new algorithms

is proposed in Section 8. The results of a vast experimentation concerning both random

and structured problems are presented in Section 9.

2 Background

A constraint network P consists of a finite set of n variables X = {x1, ..., xn}, a set of

domains D = {D(x1), ..., D(xn)}, where the domain D(xi) is the finite set of at most

d values that variable xi can take, and a set of e constraints C = {c1, ..., ce}. Each

constraint ck is defined by the ordered set var(ck) of at most r variables it involves,

and the set sol(ck) of combinations of values satisfying it. We will note (xi, a) ∈ D
(respectively, (xi, a) /∈ D) if and only if xi ∈ X and a ∈ D(xi) (respectively, a 6∈
D(xi)). Given a set Y ⊆ X of variables, an assignment A on Y assigns each variable

xi ∈ Y a value in D(xi). A[xi] denotes the value assigned to xi in A. When a subset

Y ⊆ X of variables are assigned and all constraints c with var(c) ⊆ Y are satisfied,

we say that the assignment is locally consistent. A solution to a constraint network is

an assignment on X that is locally consistent. When var(c) = (xi, xj), we use cij to

denote sol(c) and we say that c is binary.

The constraint satisfaction problem (CSP) consists in finding whether or not a given

constraint network has solutions. It is NP-complete. To solve a CSP instance, a

depth-first search algorithm with backtracking can be applied, where at each step of

the search, a variable assignment is performed followed by a filtering process called

constraint propagation. Constraint propagation algorithms usually enforce properties,

such as arc consistency, that remove values that cannot occur in any solution.

Arc consistency (AC) is defined as follows. Given a value a in the domain of a vari-

able xi and a constraint ck involving xi, a support for (xi, a) on ck is an assignment

A on the variables in var(ck) such that A[xi] = a and A satisfies ck. If there exists a

constraint on which (xi, a) has no support, (xi, a) is said arc-inconsistent; otherwise,

(xi, a) is arc-consistent. A constraint network P = (X, D,C) is arc-consistent if and

only if D does not contain any arc-inconsistent value. AC(P) denotes the network

where all arc-inconsistent values have been removed from P . If the domain of a vari-

able becomes empty when enforcing arc consistency, we call this a domain wipe-out.

It is denoted by AC(P) = ⊥ and we say that P is arc-inconsistent.

3

Singleton arc consistency (SAC) is defined as follows. Given a constraint net-

work P = (X, D,C), a value a in D(xi) for some variable xi ∈ X is singleton arc-

consistent if and only if the network P |xi=a = (X, D|xi=a, C) is not arc-inconsistent,

i.e., if and only if AC(P |xi=a) 6= ⊥, where D|xi=a is obtained by replacing D(xi)
by the singleton set {a}. If P |xi=a is arc-inconsistent, we say that (xi, a) is single-

ton arc-inconsistent. Checking whether a value is singleton arc-consistent is called a

singleton check. A constraint network P = (X, D,C) is singleton arc-consistent if

and only if D does not contain any singleton arc-inconsistent value. SAC(P) denotes

the network where all singleton arc-inconsistent values have been removed from P . If

there is a variable with an empty domain in SAC(P), we say that P is singleton arc-

inconsistent. Given an assignment A on a subset of X , P |A is the constraint network

obtained from P by restricting the domain of each variable xi involved in A to the

singleton {A[xi]}.
For any two constraint networks P and P ′, we note P ′ � P if and only if P =

(X, D,C), P ′ = (X, D′, C) and D′ ⊆ D. Here, D′ ⊆ D means that for any variable

xi ∈ X , we have D′(xi) ⊆ D(xi). Informally, we have P ′ � P if P ′ can be obtained

from P just by removing values from domains.

We can observe that all the definitions given in this section apply to binary or non-

binary constraints indifferently. Hence, what is often called generalized arc consistency

(GAC) in the literature, is referred here as arc consistency. In the rest of the paper,

when no restriction is specified, the results hold for any constraint arity. When we

focus on binary constraints, we consider that the network is connected (i.e., n− 1 ≤ e)

and normalized [1], that is, at most one constraint exists between two given variables

(i.e., e < n2). These restrictions will be assumed when giving complexities for binary

constraint networks.

3 Enforcing Arc Consistency

Many general-purpose algorithms have been proposed so far to enforce arc consis-

tency. They are classically classified as coarse-grained and fine-grained arc consistency

algorithms. Propagation is guided by events concerning variables in coarse-grained

algorithms whereas propagation is guided by deleted values in fine-grained ones. Ex-

amples of coarse-grained algorithms are (G)AC3 [21, 22], (G)AC2001 [7, 30, 8] and

(G)AC3rm [19] whereas examples of fine-grained algorithms are (G)AC4 [23, 24] and

AC6 [3]. AC2001, AC4 and AC6 are time-optimal algorithms for binary constraints.

To enforce SAC, we need to use an arc consistency algorithm since SAC is built

on top of AC. However, in this paper we do not want to attach the presentation of SAC

algorithms to a particular underlying arc consistency algorithm because we can adopt

any generic AC algorithm or even any kind of propagators dedicated to specific con-

straints. So, to enforce AC in our algorithms, we will just call a function propagateAC

without precisely describing its content.

The function propagateAC, Algorithm 1, is called with three parameters D, Q
and UPD (plus an optional one). D is the domain of the (sub)problem that must be

made AC. Q is a variable-based propagation list, that is, it contains the variables xj

for which the domain D(xj) has changed. Such a type of propagation list is well

4

adapted to coarse-grained algorithms. Fine-grained algorithms, such as AC6 require

the complete list of values (xj , b) removed from D(xj). But this is essentially a matter

of presentation.

Algorithm 1: The underlying AC algorithm

function propagateAC(inout D; in Q; in UPD; inout Deleted): Boolean

// Deleted : optional parameter

if UPD then

propagate AC on D from the set Q of modified variables and update the data1

structure of the AC algorithm

else2

propagate AC on D from the set Q of modified variables and do not update3

the data structure of the AC algorithm

if ∃xi | D(xi) = ∅ then4

return false

if optional parameter Deleted is present then5

Deleted← Deleted ∪ {all values pruned from D}

return true6

In our presentation, we are interested in the data structure employed by the underly-

ing AC algorithm. For example, this data structure corresponds to the Last pointers for

AC2001 and to residual supports for AC3rm. Because one priority is to save space, for

all SAC algorithms presented later, the data structure of the underlying AC algorithm

is not duplicated. However, when calling propagateAC, it must be decided whether

this data structure must be updated or not. Hence the function propagateAC performs

two types of propagation depending on whether its Boolean parameter UPD is set to

true or not. When UPD is true, propagateAC uses and updates the data structure to

propagate deletions in D. When UPD is false, propagateAC uses the data structure to

propagate deletions in D but does not modify it. When enforcing SAC, we distinguish

the main problem P from subproblems P |xi=a corresponding to singleton checks of

values (xi, a). Typically, when AC is applied on P , UPD is true and when AC is ap-

plied on a subproblem, UPD is false (however, we shall see that for greedy runs, this

is different). Consequently, in the case of an AC2001 implementation, subproblems

can benefit from the knowledge of Last supports computed in the main problem P ,

but not from computations already performed inside the subproblem itself.

Function propagateAC has another parameter, Deleted, which is optional. That

extra parameter Deleted is used when propagateAC is called to enforce AC in the main

problem. In that case, in addition to enforcing AC, propagateAC stores in Deleted

the values removed from D during the propagation. As we shall see, those removals

performed in the main problem can directly be exploited in the subproblems.

When analyzing complexities, we will have the optimal algorithm AC2001 in mind.

Of course, if a non-optimal AC algorithm is used in propagateAC, the global time

complexity of SAC algorithms can be higher than our claims.

5

4 Overview of SAC Algorithms

Table 1 shows the complexities of existing SAC algorithms that we briefly describe

in this section. In the rest of this paper, we will denote by T and S the time and

space complexities of the AC algorithm used to enforce arc consistency inside a SAC

algorithm.

Non-binary CN Binary CN

Algorithm Time Space Time Space

SAC1 [12] O(n2d2T) O(S) O(en2d4) O(ed)

SAC2 [2] O(n2d2T) O(n2d2 + S) O(en2d4) O(n2d2)

SAC-Opt [5] O(ndT) O(nd(nd + S)) O(end3) O(end2)

Table 1: Complexities of existing SAC algorithms. T and S are the time and space

complexities of the underlying (G)AC algorithm. For binary constraints, we consider

an optimal AC algorithm, such as AC2001, with time in O(ed2) and space in O(ed).

The first algorithm that has been proposed to establish singleton arc consistency

is called SAC1 [12]. Requiring no specific data structure, its space complexity is the

same as the underlying arc consistency algorithm. The counterpart of having no data

structures to store the reason why a value was found singleton arc-consistent is that

after every value removal, SAC1 must check again the singleton arc consistency of all

remaining values. This leads to a worst case time complexity in O(n2d2T), where T
is the cost of enforcing arc consistency on the network with the underlying arc consis-

tency algorithm. On binary constraints, this gives a time complexity in O(en2d4) if the

arc consistency algorithm used is optimal.

The second algorithm, SAC2 [2], uses the fact that if AC(P |xi=a) 6= ⊥ then the

singleton arc consistency of (xi, a) holds as long as all the values in AC(P |xi=a)
are in the domain. For each value (xj , b), SAC2 records the set Support[j, b] of val-

ues (xi, a) such that (xj , b) ∈ AC(P |xi=a). This algorithm avoids useless singleton

checks because the singleton arc consistency of a value (xi, a) has to be checked after

the removal of a value (xj , b) only if (xi, a) belongs to Support[j, b]. As shown by the

experiments in [2], SAC2 is faster than SAC1. However, SAC2 has the same worst-case

time complexity as SAC1 because whenever the singleton arc consistency of a value

(xi, a) must be checked again, one has to perform the arc consistency enforcement on

P |xi=a from scratch.

To avoid doing and redoing arc consistency from scratch (potentially nd times for

each subproblem P |xi=a), SAC-Opt [5] creates nd copies of the domains and data

structures of the AC algorithm (one copy for each subproblem P |xi=a). Simply, when-

ever the singleton arc consistency of a value (xi, a) must be checked, the dedicated

domains and data structures are used. Hence, as opposed to SAC1 and SAC2, SAC-

Opt benefits from the fact that arc consistency is incremental (namely, time complexity

on a problem P is the same for a single call of arc consistency or for up to nd calls,

where two consecutive calls differ only by the deletion of some values from P). This

allows SAC-Opt to enforce SAC in O(ndT). This has been shown to be the optimal

6

time complexity for binary constraints when an optimal arc consistency algorithm is

used (see [5, 6]). But the worst-case space complexity of SAC-Opt prevents its use on

large constraint networks.

It seems difficult to reach the same time complexity as SAC-Opt with smaller space

requirements because a SAC algorithm has to maintain AC on nd subproblems P |xi=a.

To guarantee optimal total time on such subproblems in spite of the nd possible re-

strictions we need to use an optimal time AC algorithm. Since there does not exist

any optimal AC algorithm requiring less than O(erd) space, we obtain nd · erd for

the whole SAC algorithm (recall that r is the greatest constraint arity). In the next sec-

tion, we show how we can relax time optimality to save some space and still obtain an

algorithm with better time complexity than SAC1 and SAC2.

5 SAC-SDS

We propose a new algorithm that relaxes time optimality to reach a satisfactory trade-

off between space and time. Like SAC-Opt, our new algorithm, SAC-SDS (Sharing

Data Structures), duplicates the domains for each value. But unlike SAC-Opt, it does

not duplicate the data structures of the AC algorithm.

For every value (xi, a), SAC-SDS stores a propagation list Qia and the current do-

main Dia of the subproblem P |xi=a. The subproblem having Dia as domain is denoted

by Pia. Qia contains variables whose domain has changed in Pia and for which the

change has not yet been propagated. It is needed to ensure optimal (G)AC propagation

on each subproblem. Dia is used to avoid restarting each new AC propagation phase

from scratch in Pia when some values have been removed from P . The data struc-

ture of the AC algorithm (Last pointers for AC2001) is built and updated only in the

main problem P (no duplication). Nevertheless, it can be used by all subproblems Pia

to avoid repeating constraint checks already done in P . Parameter UPD of function

propagateAC allows this distinction. (See Section 4.)

SAC-SDS (see Algorithm 2) works as follows. After some initializations (lines

1–5), SAC-SDS repeatedly pops a value (xi, a) from PendingList and enforces AC

in Pia (lines 7–10). Note that ’Dia=nil’ means that this is the first enforcement of

AC in Pia, so Dia must be initialized (line 9). Each enforcement of AC in Pia starts

the propagation from the variables in Qia, which are the variables whose domain has

changed since the previous enforcement of AC in Pia. If enforcing AC in Pia leads to

an empty domain in Dia (line 11), (xi, a) is singleton arc-inconsistent. It is therefore

removed from D (line 12) and this deletion is propagated to P using propagateAC

(line 13). Any value removed from P , including (xi, a), is put in the set Deleted

(lines 12 and 13). This set is used by updateSubProblems (line 14) to remove from

the subproblem the values removed from P (line 19), and to update the lists Qjb and

PendingList for further propagation in these modified subproblems (lines 18 and 20).

The advantage of propagating immediately in P (line 13) the singleton arc-inconsistent

values detected in line 10 is twofold. First, if a value (xk, c) is removed in line 13 before

its subdomain Dkc is created, Dkc will never be generated. Second, the subdomains

Djb created after the removal of (xk, c) will benefit from this propagation because

they are created by duplication of D (line 9). For each already created subproblem

7

Algorithm 2: SAC-SDS

function SAC-SDS(inout P = (X, D,C)): Boolean

initialize the data structure of the AC algorithm used in propagateAC1

if ¬propagateAC(D,X, true) then return false2

PendingList← {(xi, a) | xi ∈ X, a ∈ D(xi)}3

foreach (xi, a) ∈ PendingList do4

Dia ← nil ; Qia ← {xi}5

while PendingList 6= ∅ do6

select and remove a value (xi, a) from PendingList7

if a ∈ D(xi) then8

if Dia = nil then Dia ← (D \D(xi)) ∪ {(xi, a)}9

if propagateAC(Dia, Qia, false) then Qia ← ∅10

else11

D(xi)← D(xi) \ {a} ; Deleted← {(xi, a)}12

if propagateAC(D, {xi}, true, Deleted) then13

updateSubProblems(Deleted)14

else return false15

return true16

procedure updateSubProblems(in Deleted: set)

foreach (xj , b) ∈ D | Djb ∩ Deleted 6= ∅ do17

Qjb ← Qjb ∪ {xi ∈ X | Djb(xi) ∩ Deleted 6= ∅}18

Djb ← Djb \ Deleted19

PendingList← PendingList ∪ {(xj , b)}20

Pjb with c ∈ Djb(xk), xk is put in Qjb and (xj , b) is put in PendingList for future

propagation (line 14). Because the AC algorithm embedded in SAC-SDS does not

store its data structures (which prevents it from being optimal), we refer to its worst-

case time complexity by T ′.1

Theorem 1 SAC-SDS is a correct SAC algorithm with O(ndT ′) time complexity, where

T ′ is the cost of enforcing arc consistency on the network with an AC algorithm that

does not store any special data structure between two calls. This gives O(end4) on

binary constraint. The space complexity of SAC-SDS is in O(n2d2 + S), where S is

the space complexity of the AC algorithm used.

Proof. We instantiate the proof in the case where propagateAC uses AC2001 to en-

force arc consistency. The data structure of AC2001 is the Last structure which main-

tains in Last(xi, a, ck) the smallest support for (xi, a) on ck. The smallest support

1For instance, standard AC2001 has T = O(ed2) optimal time complexity on binary constraint networks

whatever the number of times we call it after some value deletions in the network. When we do not store its

data structure between two calls, its complexity becomes T ′ = O(ed3).

8

is defined according to any total ordering o on the tuples on var(ck). Any other AC

algorithm can be used.

Soundness. Note first that the structure Last is updated only when achieving AC

in P so that any support for (xi, a) is greater than or equal to Last(xi, a, ck). The

domains of the subproblems being subdomains of D, any support for a value (xi, a)
on ck in a subproblem is also greater than or equal to Last(xi, a, ck). This explains

that propagateAC(Dia, Qia, false) can benefit from the structure Last without los-

ing any support. Thus, the tests of arc consistency on subproblems are sound. Sup-

pose now that some singleton arc-consistent values are removed by SAC-SDS. Let

(xi, a) be the first singleton arc-consistent value removed. It is necessarily removed

in line 12, thus Pia was found arc-inconsistent in line 10. Pia was initially arc-

consistent because we suppose that (xi, a) is singleton arc-consistent. Furthermore,

propagateAC(Dia, Qia, false) is sound. So, the arc inconsistency of (xi, a) comes

from values removed from Pia in line 19. Those values were removed from P in lines

12 or 13 and are singleton arc-inconsistent by our assumption that (xi, a) is the first

singleton arc-consistent value removed. So, (xi, a) is singleton arc-inconsistent too,

which contradicts our assumption. Therefore, SAC-SDS is sound.

Completeness. Completeness comes from the fact that any deletion is propagated.

After initialization, PendingList = D (line 3) and so, the main loop of SAC-SDS

processes all subproblems P |xi=a at least once. Each time a value (xi, a) is found

singleton arc-inconsistent in P because P |xi=a is arc-inconsistent (line 10) or because

the deletion of some singleton arc-inconsistent value makes it arc-inconsistent in P
(detected by propagateAC in line 13), (xi, a) is removed from the subproblems (line

19). PendingList and the local propagation lists are updated for future propagation

(lines 18 and 20). At the end of the main loop, PendingList is empty, so all the removals

have been propagated and for any value (xi, a) ∈ D, Dia is a non empty arc-consistent

subdomain of P |xi=a.

Complexity. Each of the nd domains Dia can contain nd values so they require

a space in O(n2d2). There are at most n variables in the nd local propagation lists

Qia, which requires a total space in O(n2d). As a result, the space complexity of

SAC-SDS is in O(n2d2 + S) if S is the space required by the AC algorithm used.

It gives O(n2d2 + erd) with AC2001, or O(n2d2) with AC3. So, considering space

requirements, SAC-SDS is similar to SAC2 as long as we use AC3 or if er < n2d,

which is true in most practical cases. On binary networks, space complexity becomes

O(n2d2) even with AC2001.

Regarding time complexity, SAC-SDS first duplicates the domains (line 9), which

is in nd · nd. Each value found singleton arc-inconsistent in line 10 is removed and

this removal is propagated to all subproblems P |xi=a via an update of PendingList,

Qia and Dia (lines 17–20). This update requires nd operations per removal, so nd ·nd
operations in total. Each subproblem can in the worst case be called nd times for arc

consistency in line 10, and there are nd subproblems. The domain of each subproblem

P |xi=a is stored in Dia so that the AC propagation is launched with the domain in the

state in which it was at the end of the previous AC propagation in the subproblem. In

addition, the variables of P |xi=a that have lost values since the last call to AC are stored

in Qia so that AC is incrementally propagated from the modified variables and not on

the whole network from scratch. Thus, in spite of the several AC propagations on a

9

subproblem, the propagation of all the value removals costs O(T ′) in a subproblem.2

(Note that we cannot reach the optimal O(T) time complexity for arc consistency on

these subproblems because we do not duplicate the data structures necessary for AC

optimality.) Therefore, the total cost of arc consistency propagations in all subprob-

lems is in O(nd · T ′) (i.e., O(end4) on binary constraints). �

Like SAC2, SAC-SDS performs a less brute-force propagation than SAC1 because

after the removal of a value (xi, a) from D, SAC-SDS checks the arc consistency of the

subproblems P |j=b only if they have (xi, a) in their domains (and not all the subprob-

lems as SAC1). But this is not sufficient to have a better worst-case time complexity

than SAC1. SAC2 has indeed the same time complexity as SAC1. SAC-SDS improves

this complexity because it stores the current domain of each subproblem, and so, it

does not propagate in the subproblems each time from scratch. This is independent

on the AC algorithm: using AC3 gives the same time complexity. However, we can

expect a better average time complexity with an algorithm like AC2001 because the

shared data structure reduces the number of constraint checks required, even if it does

not permit to obtain optimal worst-case time complexity. Finally, in SAC1 and SAC2,

each AC enforcement in a subproblem must be done on a new copy of D built at run-

time (potentially nd · nd times) whereas such duplication is performed only once for

each value in SAC-SDS (by creating subdomains Dia).

6 SAC3

All algorithms previously mentioned involve performing a breadth-first search up to a

depth equal to 1. Each branch (of size 1) of this search corresponds to check the sin-

gleton arc consistency of a value, and allows removing this value if an inconsistency is

found (after establishing arc consistency). One alternative is to check the singleton arc

consistency of a value in the continuity of previous singleton checks. In other words,

we can try to build less branches of greater size using a greedy search (where at each

step, arc consistency is maintained). As long as, for a current branch, no inconsistency

is found, we try to extend it. When an inconsistency is found, either the branch is of

size 1 and that single value is detected singleton arc-inconsistent, or all but last variable

assignments correspond to singleton arc-consistent values. This last statement relies on

Proposition 1.

Proposition 1 Let P = (X, D,C) be a constraint network, S be an assignment on a

subset Y ⊆ X of variables, and P ′ = (X, D′, C) = AC(P |S). If P ′ 6= ⊥, then for

any xi ∈ X such that |D′(xi)| = 1, the pair (xi, a), where a is the unique value in

D′(xi), is singleton arc-consistent in P .

Proof. Arc consistency is contracting for �, that is, for any constraint network P , we

have AC(P) � P . Hence, AC(P |S) � P |S , and we deduce that P ′ � P because

2As an example, nd calls to the propagation phase of AC2001 on a binary network Pia are in O(ed3)
–the same as AC3– instead of O(nd · ed2) if domains Dia were re-initialized at each call or if the local

propagation list Qia was not maintained.

10

P ′ = AC(P |S) and P |S � P . We also know from [1] that arc consistency is mono-

tonic, that is, for any constraint networks P1 and P2 with P1 � P2, we have AC(P1) �
AC(P2). Furthermore, for any xi ∈ X such that |D′(xi)| = 1 and a is the unique value

in D′(xi), we have P ′|xi=a = P ′. Since P ′ � P , we know that P ′|xi=a � P |xi=a,

from which we deduce that AC(P ′|xi=a) � AC(P |xi=a). By assumption we have

P ′ 6= ⊥ and P ′ = AC(P ′). As a result, AC(P ′|xi=a) = AC(P ′) = P ′ 6= ⊥, which

implies that AC(P |xi=a) 6= ⊥. Therefore, (xi, a) is singleton arc-consistent in P . �

As mentioned in the proposition above, some values can be detected singleton arc-

consistent while checking the singleton arc consistency of others. Proposition 1 can

then be seen as a generalization of Property 2 in [10], and is also related to the ex-

ploitation of singleton-valued variables in [28].

Below, we give the description of SAC3 (see Algorithm 3), a first algorithm that

uses a greedy search in order to establish singleton arc consistency. As for SAC-SDS,

PendingList is used to store the set of values whose singleton arc consistency must be

checked, and Deleted the set of values removed after a call to function propagateAC.

Algorithm 3 starts by enforcing arc consistency on the network (line 2). Then, as in

SAC-SDS, all values are put in PendingList for checking their singleton arc consistency

(line 4). In order to check the singleton arc consistency of the values in PendingList,

successive branches are built. We start by picking a value (xi, a) in PendingList (line

6) that will be the first assignment of the branch to be built. Note that a heuristic can be

employed to select this value (as well as the next ones along the branch being built). To

build a branch, the function buildBranch is called with the value (xi, a) as parameter

(line 8). Function buildBranch returns false if Dxi=a is arc-inconsistent, true other-

wise. In the first case, (xi, a) has been detected singleton arc-inconsistent. As in SAC-

SDS, this value must be removed and arc consistency must be re-established (lines 9–

10). We also need to set the flag CHANGE to true to know that some changes have

occurred since the initialization of PendingList (line 11). When the set PendingList

becomes empty, this flag is used to determine whether we have to test again the single-

ton arc consistency of all values (lines 12–14). Observe that, as opposed to SAC-SDS,

SAC3 cannot update PendingList incrementally because it does not store the subdo-

mains Dia. These subdomains allowed SAC-SDS to know which values have to be

retested for singleton arc consistency.

Function buildBranch works as follows. First, it saves the data structure of the

AC algorithm used (line 16). This is necessary if we want to ensure optimal time

complexity on each branch. Then, the assignment (xi, a) passed as a parameter is

performed (line 17). If arc consistency on the subproblem obtained leads to a wipe-

out, we know that (xi, a) is singleton arc-inconsistent and the function returns false

after having restored the data structure as they were before entering the function (lines

18–20). If the assignment xi = a has not provoked a wipe-out, the function tries to

continue that branch (rooted on xi = a) as long as arc consistency does not lead to a

wipe-out (lines 21–26). The values that are selected to continue the branch are removed

from PendingList (line 22). This is only when a wipe-out is detected that the last value

of the branch is put back in PendingList (line 25). All the other values of the branch are

necessarily singleton arc-consistent thanks to Proposition 1. Note that we can exit the

while loop of line 21 without going through the break in line 26. This happens when

11

Algorithm 3: SAC3

function SAC3(inout P = (X, D,C)): Boolean

initialize the data structure of the AC algorithm used in propagateAC1

if ¬propagateAC(D,X, true) then return false2

CHANGE ← false3

PendingList← {(xi, a) | xi ∈ X, a ∈ D(xi)}4

while PendingList 6= ∅ do5

select and remove a value (xi, a) from PendingList6

if a ∈ D(xi) then7

if ¬buildBranch((xi, a), D, PendingList) then8

D(xi)← D(xi) \ {a}9

if ¬propagateAC(D, {xi}, true) then return false10

CHANGE ← true11

if PendingList = ∅ ∧ CHANGE then12

PendingList← {(xi, a) | xi ∈ X, a ∈ D(xi)}13

CHANGE ← false14

return true15

function buildBranch(in (xi, a); in D; inout PendingList): Boolean

save the data structure of the AC algorithm16

D(xi)← {a}17

if ¬propagateAC(D, {xi}, true) then18

restore the data structure of the AC algorithm19

return false20

while (PendingList ∩D 6= ∅) do21

select a value (xj , b) from PendingList ∩D; remove it from PendingList22

D(xj)← {b}23

if ¬propagateAC(D, {xj}, true) then24

PendingList← PendingList ∪ {(xj , b)}25

break the while loop26

restore the data structure of the AC algorithm27

return true28

12

PendingList∩D = ∅, that is, there is no more way of extending the current branch with

values in PendingList because all values remaining in PendingList have been removed

from the domain of the subproblem obtained on this branch. A new branch will have

to be started by the main procedure. But in the extreme case, the current branch is of

length n, which means that a solution has been found (an explicit use of this case has

been omitted in the pseudo-code presented in Algorithm 3.)

We can observe that in lines 18 and 24, propagateAC is called without the set

Deleted because we are in a subproblem and removing a value from the subproblem

does not mean that this value is globally inconsistent. But we call propagateAC with

the parameter UPD set to true if we want to keep optimality of AC on the branch.

This is why in lines 16, 19 and 27, we save and restore the original data structure. A

simpler version of SAC3 can be obtained by setting UPD to false and removing lines

16, 19 and 27. For example, by using residual supports [19], one can expect to obtain

a good behavior in practice. This is the version that will be used in some experiments

of Section 9.

Theorem 2 SAC3 is a correct SAC algorithm with O(bT) time complexity where b
denotes the total number of branches built by SAC3. This gives O(bed2) on binary

constraints. The space complexity of SAC3 is O(nd + S) where S is the space com-

plexity of the AC algorithm used.

Proof. Correctness results from Proposition 1.

The data structure PendingList has size nd and S is the space complexity of the AC

algorithm used. Hence, SAC3 has an overall space complexity in O(nd + S). If SAC3

embeds an optimal arc consistency algorithm such as AC2001, then the overall space

complexity is in O(erd).
The cost of saving and restoring the data structure on a branch (see lines 16, 19

and 27) cannot be more than the time complexity T of the AC algorithm using them.

Furthermore, due to incrementality, the cost of AC on each branch built by SAC3 is in

O(T). Consequently, the overall time complexity of SAC3 is in O(bT) (i.e., O(bed2)
on binary constraints). �

Notice that b takes into account the branches of size 1 that correspond to the detec-

tion of singleton arc-inconsistent values. Thus, in the worst-case, we have b = n2d2
+nd

2

because we may have to build up to nd branches before removing a first value, up to

nd − 1 additional branches before removing a second value, etc. We then obtain a

worst-case time complexity (with AC2001 embedded) in O(n2d2T), that is, the same

complexity as SAC1. However, when a constraint network is already singleton arc-

consistent, we can make the following observation.

Observation 1 On a constraint network that is singleton arc-consistent, SAC3 builds

between d and nd branches.

The number of branches built by SAC3 is minimal when each branch (of size n)

leads to a solution and uses as much as possible values not yet used by other branches.

Each branch contains at most one value per variable. Hence, d branches are required

to cover all values of the largest domain (of size d). The maximal number of branches

13

is reached when all branches are of size 2 (one consistent assignment followed by an

inconsistent one). In this case, only the first value of each branch is proved singleton

arc-consistent, which requires nd branches to cover all of them.

As a consequence of this observation, on a constraint network that is already sin-

gleton arc-consistent, SAC3 embedding an optimal AC algorithm such as AC2001,

has a time complexity in O(ndT) (i.e., O(end3) on binary constraints) because it ex-

plores at most nd branches of size 2. Interestingly, this suggests that SAC3 may be

quite competitive with respect to SAC-SDS on structured (not necessarily singleton

arc-consistent) instances that contain large under-constrained parts as can be expected

in real-world applications.

SAC3 shows another interesting feature. Although the primary goal of the greedy

approach is to efficiently enforce singleton arc consistency by exploiting the incremen-

tality of arc consistency, one may opportunistically find solutions during one of the

greedy runs.

7 SAC3-SDS

It is possible to improve the behavior of the algorithm SAC3 by adapting the idea

of storing domains of subproblems as in SAC-SDS. As an extension of SAC3, we

can then decide to record the domain of the constraint networks obtained after each

greedy run, that is to say, for each branch. Consequently, as in SAC-SDS, when a

value is removed, it is possible to determine which previously built branches must be

reconsidered. Indeed, if a removed value does not belong to the domain associated

with a given branch, all values of this branch remain singleton arc-consistent. On the

other hand, if a removed value supports a branch, we have to verify that the branch still

remains valid by re-establishing arc consistency from the recorded domain. When a

branch is no more valid, we have to delete it. In summary, SAC3-SDS can (partially)

exploit incrementality as SAC-SDS does3.

A branch corresponds to a set Br of values that have been (explicitly) assigned. We

record all branches built by the algorithm in a set called Branches. In order to manage

domains and propagation of subproblems corresponding to branches, we also consider

two arrays denoted D[] and Q[]. For a given branch Br, D[Br] is the local domain

of the subproblem associated with the branch Br and Q[Br] is its local propagation

list. Q[Br] contains the variables that should be considered when re-establishing arc

consistency in the subproblem because they have lost values. Those D[Br] and Q[Br]
play the same role as Dia and Qia in SAC-SDS. More rigorously, we should associate

an integer with each branch to be used as index value for D[] and Q[]. But we omit it

to simplify the presentation.

SAC3-SDS (see Algorithm 4) works as follows. After some initializations (lines

1–4), SAC3-SDS enters the main loop (line 5) and repeatedly pops an object from

PendingList (line 6). Observe that PendingList may contain two types of objects: it

may contain values (xi, a) that have to be checked for singleton arc consistency, and

3SAC3-SDS is a refinement of the algorithm SAC3+ presented in [18]. The new algorithm is made

more flexible (since at each step either a branch or a value can be selected) and consequently more reactive.

Worst-case complexities remain the same.

14

Algorithm 4: SAC3-SDS

function SAC3-SDS(inout P = (X, D,C): problem): Boolean

initialize the data structure of the AC algorithm used in propagateAC1

if ¬propagateAC(D,X, true) then return false2

Branches← ∅3

PendingList← {(xi, a)} | xi ∈ X, a ∈ D(xi)}4

while PendingList 6= ∅ do5

select and remove an object from PendingList6

if object is a branch Br ∈ Branches then7

if ¬propagateAC(D[Br], Q[Br], false) then8

PendingList← PendingList ∪ {(xj , b) ∈ Br}9

Branches← Branches \ {Br}10

else /* object is a value (xi, a) */

if ¬buildBranch((xi, a), D, PendingList) then11

D ← D \ (xi, a) ; Deleted← {(xi, a)}12

if propagateAC(D, {xi}, true, Deleted) then13

updateBranches(Deleted)14

else return false15

function buildBranch(in (xi, a); in D; inout PendingList): Boolean

save the data structure of the AC algorithm16

D(xi)← {a}17

if ¬propagateAC(D, {xi}, true) then18

restore the data structure of the AC algorithm19

return false20

Br ← {(xi, a)}; Dpred ← D21

while (PendingList ∩D 6= ∅) do22

select a value (xj , b) from PendingList ∩D; remove it from PendingList23

D(xj)← {b}24

if propagateAC(D, {xj}, true) then25

Br ← Br ∪ {(xj , b)}; Dpred ← D26

else

PendingList← PendingList ∪ {(xj , b)}27

break the while loop28

D[Br]← Dpred ; Q[br]← ∅29

Branches← Branches ∪ {Br}30

restore the data structure of the AC algorithm31

return true32

function updateBranches(in Deleted : set)

foreach Br ∈ Branches | D[Br] ∩ Deleted 6= ∅ do33

Q[Br]← Q[Br] ∪ {xi ∈ X | D[Br](xi) ∩ Deleted 6= ∅}34

D[Br]← D[Br] \ Deleted35

PendingList← PendingList ∪ {Br}36

15

it may also contain branches Br that have lost values in their associated subdomain.

If the popped object is a branch Br (of the set of branches Branches), SAC3-SDS en-

forces arc consistency on its subdomain D[Br], knowing that the variables modified

since the last pass of AC are in the propagation list Q[Br] (line 8). A wipe-out when

enforcing AC on D[Br] means that the values in the branch Br are no longer guaran-

teed to be singleton arc-consistent, and we have to put them back in PendingList and

remove Br from the set of branches (lines 9–10). If the object popped in line 6 is a

value (xi, a), we have to check its singleton arc consistency. As in SAC3, this is done

by calling buildBranch with (xi, a) as a parameter (line 11). In addition to building

a branch, function buildBranch returns false if Dxi=a is arc-inconsistent, true other-

wise. If false is returned, (xi, a) has been detected singleton arc-inconsistent, it must be

removed from the main problem, and arc consistency must be re-established (lines 12–

15). All branches Br such that values from D[Br] have been removed from the main

problem by the arc consistency pass of line 13 have to be put back in PendingList for

revisiting them. This is done by function updateBranches (line 14). If the AC call of

line 13 has led to a wipe-out, the problem is proved to be inconsistent and SAC3-SDS

returns false (line 15).

Function buildBranch works on the same principle as in SAC3, except that it has

to store the branch Br and the domains D[Br] of the subproblem associated with the

branch Br. So lines 16 to 20 are the same. The first difference happens in line 21

where the branch Br is initialized with (xi, a) once it has been proved that P |xi=a is

not arc-inconsistent. The second difference is in line 26, when extending the branch

with value (xj , b) has not led to arc inconsistency: Br is extended to contain (xj , b) and

the current domain is stored in Dpred for future use in line 29. If a wipe-out is detected

when trying to extend Br, the last value of the branch is put back in PendingList and

the loop is broken (lines 27–28). At this point, domain D corresponds to the subdomain

which has failed because of the last value we tried to add to Br. We need to “backtrack”

to the previous state, that is, to the domain stored in Dpred. This is done in line 29, but

an implementation in a solver will use the backtracking facilities of the solver. Finally,

Br is added to the set Branches (line 30) and the data structures of the AC algorithm

are restored before returning true.

Function updateBranches (lines 33 to 36) is the same as updateSubProblems

from SAC-SDS except that it deals with branches instead of values.

Theorem 3 SAC3-SDS is a correct SAC algorithm with O(btotT
′) time complexity,

where T ′ is the cost of enforcing arc consistency on the network with an AC algorithm

that does not store any special data structure between two calls and btot is the total

number of times a branch is built by SAC3-SDS. This gives O(btoted
3) on binary con-

straints. The space complexity of SAC3-SDS is O(bmaxnd + S), where S is the space

complexity of the AC algorithm used and bmax is the maximum number of branches

recorded at the same time by SAC3-SDS.

Proof. Correctness. Soundness is obvious. As for completeness, each time the main

loop of SAC3-SDS starts, every value in D is ensured to belong either to PendingList

or to a branch in Branches. Any branch Br in Branches is ensured either to correspond

to an arc-consistent subdomain D[Br] or to be in PendingList. Since SAC3-SDS stops

16

on empty PendingList, we are guaranteed that all values remaining in D are in a branch

Br for which D[Br] is arc-consistent. By Proposition 1, we have that all values in D
are singleton arc-consistent.

Complexity. In addition to the space requirement in O(S) of the underlying arc

consistency algorithm, it is necessary to record the domain of the subproblems corre-

sponding to the valid branches that have been built. As recording a domain is in O(nd),
we obtain O(bmaxnd + S).

Concerning time complexity, the total cost is dominated by the cost of building and

updating branches. As in SAC3 the cost of building each branch in buildBranch is

in O(T). However, branches may need to be updated (line 8). The total cost on all

these updates is not O(ndT) because the domain of the subproblem is stored from one

call to another. On the other hand, the total cost for each branch (including both the

construction and the successive updates) is not O(T) because the data structures of

the AC algorithm are not saved from one call to another (UPD is false when calling

propagateAC at line 8). The total cost is O(T ′), the cost of arc consistency without

storing data structures. So, the total time complexity of SAC3-SDS is O(btotT
′) (i.e.,

O(btoted
3) on binary constraints). �

Note that bmax ≤ btot (= O(n2d2)) because bmax is the maximum number of

branches SAC3-SDS simultaneously stores in the set Branches whereas btot is the to-

tal number of branches SAC3-SDS will have stored at some point during its execu-

tion. bmax and btot are both smaller than the number b+ of times SAC3-SDS rechecks

arc consistency of one of its branches (line 8 of Algorithm 4). Note that b+ is not

necessarily equal to b (see SAC3) because SAC3 and SAC3-SDS do not propagate

PendingList in the same ordering. Nevertheless, as in Observation 1 for SAC3, we

obtain d ≤ b+ ≤ nd on constraint networks that are already singleton arc-consistent.

In addition, on such networks, each branch is built once and never rechecked, for a

total cost in O(T) instead of O(T ′). As a consequence, on a constraint network that

is already singleton arc-consistent, SAC3-SDS embedding an optimal AC algorithm

such as AC2001 has a time complexity in O(ndT) like SAC3 (i.e., O(end3) on bi-

nary constraints). Overall, one should be optimistic about the average time complexity

of SAC3-SDS because, as opposed to SAC3, it avoids building new branches when

unnecessary.

Table 2 shows the complexities of the new algorithms presented in this paper.

8 Illustrations

In this section, we propose a visual illustration of the different algorithms mentioned

in this paper. Here, we suppose a constraint network involving n variables x1, . . . , xn

with D(xi) = {a, b, c} ∀i ∈ 1..n.

Figure 1 provides an illustration of the algorithm SAC1. After having established

AC, all singleton checks are performed in turn; this is the first pass. Here, the value

(xn, b) is assumed to be proved inconsistent. It means that a second pass is necessary:

each remaining value (after propagating xn 6= b) has to be checked; see the dotted

arrow. Imagine that during the second pass, the value (xj , a) is shown singleton arc-

17

Non-binary CN Binary CN

Algorithm Time Space Time Space

SAC-SDS O(ndT ′) O(n2d2 + S) O(end4) O(n2d2)

SAC3 O(bT) O(nd + S) O(bed2) O(ed)

SAC3-SDS O(btotT
′) O(bmaxnd + S) O(btoted

3) O(bmaxn + e)d)

Table 2: Complexities of the new SAC algorithms. T and S are the time and space

complexities of the underlying (G)AC algorithm. T ′ is the cost of enforcing (G)AC

with an algorithm that does not store any special data structure between two calls. btot

is the total number of times a branch is built by SAC3-SDS and bmax is the maximum

number of branches recorded at the same time by SAC3-SDS. For binary constraints,

we consider an optimal AC algorithm, such as AC2001, with time in O(ed2) and space

in O(ed).

inconsistent (this is not depicted in the figure). Once again, all remaining values (after

propagating xj 6= a) will have to be checked. SAC2 avoids some useless singleton

checks. For example, if (x1, b) is the only value having (xn, b) in its associated sub-

domain D|x1=b, it is the only value to be checked again. However, as in SAC1, this is

done from scratch.

The algorithms SAC-Opt and SAC-SDS are illustrated in Figure 2. When the value

(xn, b) is proved inconsistent, only the values having (xn, b) in their associated sub-

domain are checked again. In our illustration, we imagine that only (x1, b) is in this

situation. Contrary to SAC2, this is performed from the state reached after the first AC

enforcement. With SAC-SDS we lose time optimality because the data structures of

the AC algorithm (e.g., Last pointers for AC2001) are not up to date.

Finally, the algorithms SAC3 and SAC3-SDS are illustrated in Figure 3. This time

we perform greedy runs. Suppose we assign first a to x1 and then c to x2. No inconsis-

tency is detected, meaning that both values are singleton arc-consistent. Next, assume

that the value (xn, b) is chosen (maybe, due to an heuristic as discussed in Section 9)

and a failure occurs. (xn, b) has still to be proved singleton arc-consistent. Suppose it is

chosen first when building the next branch and shown to be singleton arc-inconsistent.

With SAC3, we know that a second pass is necessary, starting from scratch. However,

for SAC3-SDS, only branches containing (xn, b) in their associated subdomain have to

be considered again. The opportunity of finding a solution during the inference process

is shown in the figure.

9 Experiments

In order to show the practical interest of the algorithms presented in this paper, we

have performed several experiments. For random problems, all algorithms have been

implemented in C++ and ran on a Pentium IV-1600 Mhz with 512 Mb of memory

under windows XP whereas for structured problems, we have used the constraint solver

18

AC ACAC AC AC

AC
P

AC

. . .
x

1
=

a

x
1

=
c

x
n

=
a

x
1

=
b

x
n

=
b

x
n

=
c

*

xn 6= b

⊥

Figure 1: Illustration of SAC1. After identifying (xn, b) as a singleton arc-inconsistent

value, xn 6= b is propagated and a second pass is performed.

AC ACAC AC AC

AC
P

AC

AC

. . .

x
1

=
a

x
1

=
c

x
n

=
a

x
1

=
b

x
n

=
b

x
n

=
c

xn 6= b

x
n
6=

b

⊥

Figure 2: Illustration of SAC-Opt and SAC-SDS. After identifying (xn, b) as a single-

ton arc-inconsistent value, xn 6= b is propagated and only values having (xn, b) in their

associated subdomain are checked again. Here, we only have (x1, b) in this situation.

ACAC AC

AC
P

AC

AC

AC

AC

x
n

=
a

Solution found

x
n

=
b

x
2

=
c

x
2

=
a

x
2

=
c

⊥

xn 6= b

. . .

.

. . .

x
n

=
b

⊥

. . .

Figure 3: Illustration of SAC3 and SAC3-SDS. The value (xn, b) provokes a failure at

the end of the first branch, and so is selected in priority for the second one.

19

Abscon and run it on a cluster of Xeon 3.0GHz with 1GiB of RAM under Linux.4

We have compared existing SAC algorithms, namely SAC1 and SAC2, with those

presented in this paper: SAC-SDS, SAC3 and SAC3-SDS. SAC-Opt was also tested,

but shown to be too space consuming in general.

9.1 Random Problems

We compared the performance of the SAC algorithms on random uniform constraint

networks of binary constraints generated with the generator in [15], which produces

instances according to Model B [25]. These instances are characterized by the four

parameters 〈n, d, p1, p2〉, where n is the number of variables, d the size of all domains,

p1 the density, i.e., the proportion of pairs of variables linked by a binary constraint

(among the n(n − 1)/2 possible pairs), and p2 the tightness, i.e., the proportion of

forbidden pairs of values inside a constraint (among the d2 possible pairs). The results

reported are for versions of the algorithms based on AC2001. Note that for SAC2 the

implementation of the propagation list has been done according to the recommenda-

tions made in [2]. The heuristic used for selecting values in PendingList is lifo5. For

each combination of parameters tested, we generated 50 instances for which we report

mean cpu times.

9.1.1 Experiments on Sparse Constraint Networks

Fig. 4 presents performance on constraint networks having 100 variables, 20 values in

each domain, and a density of .05. In these relatively sparse constraint networks the

variables have five neighbors on average.

For a tightness lower than .55, all the values are singleton arc-consistent. On these

under-constrained networks, the SAC algorithms check the arc consistency of each

subproblem at most once. Storing support lists (as in SAC2) or duplicating for each

value the data structures of the AC algorithm (as in SAC-Opt) is useless and prohibitive.

Storing only local subdomains (as in SAC-SDS) or using a greedy approach (as in

SAC3 and SAC3-SDS) is far less costly, but the brute-force algorithm SAC1 shows the

best performance.

On problems having tighter constraints, some singleton arc-inconsistent values are

removed and at tightness .72 we can see a peak of complexity. As mentioned in [2],

the improved propagation of SAC2 is useless on sparse constraint networks. SAC2 is

always more expensive than SAC1. Around the peak of complexity, SAC-SDS is the

clear winner. SAC-Opt and SAC1 are around 1.7 times slower, and all the others are

between 2.1 and 3 times slower.

4The use of two different computers is due to our two platforms, one limited to binary constraints in

which all algorithms were implemented, and the other one allowing any type of constraints, but in which

some algorithms were not available.
5Other heuristics have been tested but due to lack of structure in random instances, the difference of

behavior between heuristics is small.

20

��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� �	� �	� �
� �
� ���
���

���

���

����

����

����

����

������

������

���������

������ ��!�������"
�#���$�%#��$�&�%�%�����'#���

�		

()) �*����&��)��
+)�&,��� �����&+�

�	��	��	������	

�

�

�

�

��

��

��

��

�������

Figure 4: cpu time on random problems with n = 100, d = 20, and density= .05.

���
����

���

����

����

���	

���

��������

������������������
�������������������������������� ���������!��������"�!#��

$����"����������
 ��!���������� �

�	% �	� �
� �
� �
� �
	 �

 �
&

���

���

	��

��

&��

'��

��

��� ��& ��� ��& �	� �	& �
� �
& �&� �&& �'� �'& �(� �(& �%� �%&

)*+	

)*+�

)*+�

)*+�,��

)*+�)-)

)*+	�)-)

Figure 5: cpu time on random problems with n = 100, d = 20, and density= 1.

21

9.1.2 Experiments on Dense Constraint Networks

Fig. 5 presents performance on constraint networks having 100 variables, 20 values in

each domain and a complete graph of binary constraints.

SAC1 and SAC2 show very close performance. When all values are SAC (tight-

ness lower than .37) the additional data structure of SAC2 is useless because there is no

propagation. Nevertheless, the cost of building this data structure is not important com-

pared to the overall time and the time required by SAC2 is almost the same as SAC1.

Around the peak of complexity, SAC2 requires slightly less time than SAC1. The rea-

son is that SAC2 rechecks the arc consistency of less subproblems than SAC1. On very

tight constraints, SAC1 requires less time than SAC2 because the inconsistency of the

problem is found with almost no propagation and building the data structure of SAC2

is useless.

The best results are obtained with SAC-Opt and SAC-SDS which are between 1.41

and 3.74 times faster than the others at the peak. The smarter propagation mechanism

of these two algorithms pays off on these problems. However, the interest of SAC-Opt

can be seen only at the peak since it remains very costly elsewhere.

When constraints are not tight, SAC3 and SAC3-SDS build long branches and

clearly show the best performance. However, as on sparse problems, SAC3 is the

most costly at the peak. Without storing the branches on which rely the singleton con-

sistency of the values, SAC3 performs useless tests. The enhanced version SAC3-SDS

has not this drawback and highlights a better behavior at the peak.

9.2 Structured Problems

For structured problems, we have decided to focus on the most efficient algorithms

identified above, while keeping SAC1 as baseline algorithm. SAC2 was removed as a

clear loser in the previous experiments. SAC-Opt was tested on a few binary structured

problems, but it reached the space limit so often that we decided not to include it. For

algorithms based on greedy search, we have tested several heuristics to select values

when building branches. Two representative ones are lifo6 already used in our experi-

ments with random instances, and dom/wdeg. Let us call a value of PendingList ∩D a

valid choice. While lifo selects the youngest valid choice put in PendingList, dom/wdeg

selects first the variable with the best ratio “domain size” on “weighted degree” [9]

among variables for which at least a valid choice exists. For dom/wdeg, if x is the se-

lected variable, the youngest valid choice for x is considered. There is one case where

dom/wdeg is overridden: when we encounter a failure that does not correspond to an

identified singleton arc-inconsistent value (i.e., when a branch with more than one as-

signment terminates with a domain wipe-out), a new branch is systematically started

with the variable-value pair assignment that led to the wipe-out. Note that lifo auto-

matically behaves in a similar way after each encountered failure. The main benefit is

that the last variable assignment before the wipe-out is more likely to fail again.

The (G)AC algorithm embedded in the various SAC algorithms used for this ex-

periment (concerning structured problems) is (G)AC3rm. Although non-optimal in

6The heuristic fifo is rather close to lifo in terms of performance, but lifo has the advantage of checking

in priority the last value assigned when a branch ends with a failure.

22

theory, this algorithm is known to be quite efficient in practice, even for non-binary

problems [19]. For problem series, such as renault and crosswords, that involve con-

straints in extension of arity strictly greater than 3, we have used the algorithm STR to

enforce GAC. This algorithm [29, 16] belongs to state-of-the-art GAC algorithms for

constraints in extension (so called table constraints).

We have experimented on series of structured CSP instances that are available

from http://www.cril.fr/∼lecoutre. These series represent a large spectrum

of instances, and importantly, allow anyone to easily reproduce our experimentation.

Among the series, we find instances from the scheduling job-shop problem (instances

with prefix ewddr), graph-coloring problem (instances with prefix fpsol), all-interval

series problem (instances with prefix series), Langford problem, radio-link frequency

assignment problem (so-called RLFAP instances with prefix graph or scen), frequency

assignment problem with polarization (so-called FAPP instances with prefix fapp), Re-

nault configuration problem, crossword problem (instances with prefix cw), queen at-

tacking problem, Golomb ruler problem (instances with prefix ruler), and primes prob-

lem.

We have distinguished between three main categories of instances: those that are

already singleton arc-consistent, those that are singleton arc-inconsistent, and finally

those that are neither singleton arc-consistent nor singleton arc-inconsistent. Even if

the most interesting category is the last one, we briefly analyze some results concerning

the two other categories below. Results are given for representative structured instances

since contrary to random problems, computing mean results per series is almost always

irrelevant for SAC. Below the name of each instance, we give three numbers, i-j-k. i
is the number of initial values, j is the number of values removed by AC, and k is the

number of values removed by SAC (including values removed by AC, i.e., we have

k ≥ j). For example, for the instance graph3 in Table 5, we know that the number

of initial values is 7820, the number of removed arc-inconsistent values is 340 and

the total number of values removed after enforcing SAC is 1274. For each algorithm

tested, the cpu time (in seconds) as well as the number of singleton checks (#scks) are

given.

Table 3 shows the results obtained on some representative instances for which en-

forcing SAC has no impact: these instances are already singleton arc-consistent. Con-

sequently, applying a SAC algorithm on such instances is nothing more than a waste

of time. Nevertheless, it is interesting to see the relative behavior of the different algo-

rithms. First, note that SAC1 and SAC-SDS behave equivalently since never a value

has to be tested twice. The only difference between the two algorithms is the overhead

of managing the data structures that are specific to SAC-SDS. As it is quite negligi-

ble here, we present the results for both algorithms within a single column. Second,

for the greedy algorithms SAC3 and SAC3-SDS, using a “clever” heuristic to build

branches has a very limited impact. This is not surprising because these instances are

(highly) under-constrained. Whatever the heuristic is, the chance of building long sim-

ilar branches is important. Finally, in terms of results, if the greedy algorithms are

overall faster than SAC1/SAC-SDS, in some cases (see series-50) they can be penal-

ized. Indeed, on certain instances, whereas each isolated singleton check is cheap as

involving no propagation, building a branch leads to a point where propagation starts

to be effective, which is counter-productive. Nevertheless, note that the gain obtained

23

SAC1/ SAC3 SAC3-SDS

Instance SAC-SDS lifo dom/wdeg lifo dom/wdeg

ewddr2-1 cpu 2.52 1.16 1.51 1.25 1.52

(6720-0-0) #scks 6, 720 6, 868 6, 851 6, 868 6, 851

ewddr2-10 cpu 2.28 0.98 1.35 1.07 1.35

(6895-0-0) #scks 6, 895 6, 924 6, 934 6, 924 6, 934

fpsol2-i-1-15 cpu 21.3 10.7 14.1 10.7 13.5

(4035-0-0) #scks 4, 035 4, 378 4, 415 4, 378 4, 415

fpsol2-i-1-20 cpu 26.5 13.0 18.1 12.7 18.9

(5380-0-0) #scks 5, 380 5, 689 5, 755 5, 689 5, 755

series-40 cpu 9.42 12.5 10.2 12.7 10.1

(3121-0-0) #scks 3, 121 3, 205 3, 204 3, 205 3, 204

series-50 cpu 23.1 36.7 31.4 34.4 31.6

(4901-0-0) #scks 4, 901 5, 004 5, 010 5, 004 5, 010

langford-3-40 cpu 102 21.9 21.9 21.0 21.8

(9240-0-0) #scks 9, 240 9, 331 9, 327 9, 331 9, 327

langford-3-50 cpu 253 53.7 53.5 54.0 53.4

(14550-0-0) #scks 14, 550 14, 652 14, 648 14, 652 14, 648

Table 3: Results obtained on instances (already) singleton arc-consistent. SAC-SDS

has a behavior similar to SAC1 because a value never needs to be tested twice.

SAC1/ SAC3 SAC3-SDS

Instance SAC-SDS lifo dom/wdeg lifo dom/wdeg

graph8-f11 cpu 3.36 2.52 2.0 4.44 3.47

(19322-6306-19322) #scks 21, 996 19, 149 13, 898 18, 881 13, 878

scen7-w1-f5 cpu 0.24 0.25 0.06 0.32 0.06

(14176-4836-14176) #scks 3, 846 3, 442 135 3, 442 135

fapp5-350-9 cpu 149 23.2 2.54 21.6 2.66

(79311-15943-79311) #scks 5, 709 595 61 595 61

fapp5-350-10 cpu 221 50.1 1.81 50.6 1.79

(79311-9349-79311) #scks 9, 541 1, 886 35 1, 886 35

renault-mod-12 cpu 1.15 0.07 0.10 0.08 0.11

(562-24-562) #scks 474 131 214 131 214

renault-mod-15 cpu 1.13 0.05 0.12 0.05 0.14

(562-14-562) #scks 481 71 243 71 243

Table 4: Results obtained on instances singleton arc-inconsistent. SAC-SDS has a

behavior similar to SAC1 because only one pass is necessary to prove inconsistency

(except for instance graph8-f11).

24

by SAC3 and SAC3-SDS is sometimes substantial: on Langford instances, both algo-

rithms are five times faster than SAC1/SAC-SDS.

Table 4 presents the results obtained on some instances that are singleton arc-

inconsistent but not arc-inconsistent. Again, we merge the results obtained with SAC1

and SAC-SDS because on all these instances, except graph8-f11, only one pass is nec-

essary to prove that the instances are unsatisfiable (i.e., each values is tested at most

once). As a consequence, SAC-SDS is not given the opportunity to exploit the in-

crementality of arc consistency algorithms. On graph8-f11 the difference observed

between SAC1 and SAC-SDS is small. As a first general observation, it appears that

greedy SAC algorithms are almost always beneficial. It is partially due to the incremen-

tality exploited when building branches. Another explanation is the natural inclination

of greedy SAC algorithms to “explore” different portions of the search space. Indeed,

instead of focusing on values of the same variable, SAC3 and SAC3-SDS necessar-

ily test values for different variables. It allows them to quickly find the most con-

strained variables and potentially singleton arc-inconsistent values since both heuris-

tics lifo and dom/wdeg “reason” from the last conflict. By additionally learning from

conflicts through constraint weighting, dom/wdeg is capable of progressively focusing

on the hard region(s) of the constraint network, those where singleton arc-inconsistent

values are expected to appear. This is confirmed by the number of singleton checks

performed by the different algorithms. For example, on instance fapp5-350-10, only

35 singleton checks are necessary to SAC3 and SAC3-SDS to prove unsatisfiability

when using dom/wdeg. When using lifo, they require 1, 886 singleton checks. When a

classical approach is used, almost 10, 000 singleton checks are required. Obviously, it

has a dramatic impact in terms of cpu time.

Finally, we have selected representative instances that are neither singleton arc con-

sistent nor singleton arc inconsistent. First, we have tested instances originated from

real-world applications (see Table 5). On RLFAP instances, the best identified algo-

rithm is SAC3-SDS combined with dom/wdeg: it is from 3 to 10 times faster than

the basic SAC1. The interest of using dom/wdeg instead of lifo is clear as it permits

to be twice faster. SAC-SDS is not very effective here as it runs out of memory on

graph10. However, on FAPP instances, i.e., instances from the Frequency Assignment

Problem with Polarization, SAC-SDS has a good behavior. It is quite close to SAC3-

SDS-dom/wdeg and largely outperforms the other SAC algorithms. On non-binary

instances from renault and crossword series, the observed difference between using

lifo and dom/wdeg is rather small. In fact, these instances contain a more regular struc-

ture than the one present in frequency allocation problem instances. Consequently,

constraint weighting has a limited7 impact. Whereas SAC3-SDS is the most efficient

approach on renault instances, this is not so clear on crossword ones. Roughly speak-

ing, SAC-SDS and SAC3-SDS are the best algorithms for these instances but they are

“only” 50% faster than SAC1. SAC3 is even outperformed by SAC1 when dictionary

uk is used. Exploiting the incrementality of arc consistency on crossword instances

seems then little effective. Here, we have to mention that if STR is replaced by a generic

GAC algorithm such as GAC2001, the results obtained by SAC3 and SAC3-SDS are

damaged, compared to SAC1 and SAC-SDS. It illustrates the difficulty of experimen-

7Besides, the higher the arity, the lower the preciseness of constraint weighting.

25

SAC3 SAC3-SDS

Instance SAC1 SAC-SDS lifo dom/wdeg lifo dom/wdeg

Binary instances

graph3 cpu 22.2 11.0 8.51 5.02 5.04 2.82

(7820-340-1274) #scks 20, 075 15, 798 22, 164 21, 001 8, 375 7, 475

graph4 cpu 82.2 39.8 33.4 18.7 23.9 14.0

(15592-776-2876) #scks 51, 957 37, 394 44, 912 41, 996 16, 508 15, 370

graph10 cpu 141 Mem out 82.9 50.7 55.5 29.5

(26980-386-2572) #scks 74, 321 83, 046 78, 288 29, 093 27, 557

scen5 cpu 0.85 1.38 0.31 0.27 0.32 0.27

(15768-12046-13814) #scks 6, 261 3, 966 4, 215 4, 148 2, 487 2, 242

fapp1-200-4 cpu 77.3 39.2 108 102 56.9 33.8

(26963-13029-16038) #scks 33, 955 41, 832 53, 773 62, 839 17, 285 14, 373

fapp1-200-6 cpu 83.5 33.1 80.3 65.7 33.9 26.4

(26963-11039-12082) #scks 45, 200 41, 425 49, 846 48, 351 17, 491 16, 685

fapp1-200-8 cpu 85.4 32.6 71.2 52.8 27.3 20.4

(26963-9155-9523) #scks 52, 603 37, 061 56, 374 54, 882 19, 127 18, 576

fapp1-200-10 cpu 38.6 20.0 28.0 23.2 15.2 12.1

(26963-5976-6053) #scks 41, 889 38, 484 42, 762 42, 394 21, 440 21, 250

Non-binary instances

renault cpu 2.0 1.15 0.55 0.49 0.33 0.29

(462-13-14) #scks 754 409 781 781 392 392

renault-mod-18 cpu 2.11 1.51 0.71 0.74 0.47 0.4

(562-36-51) #scks 1, 013 962 1, 177 1, 167 596 591

renault-mod-44 cpu 3.85 2.14 1.42 1.0 0.63 0.5

(462-27-108) #scks 1, 739 1, 565 1, 893 1, 403 665 623

cw-lex-15-08 cpu 15.6 9.72 14.5 14.8 7.48 7.7

(4836-231-235) #scks 9, 206 7, 789 10, 211 10, 726 5, 105 5, 365

cw-lex-19-08 cpu 30.4 25.4 34.2 39.8 16.6 21.8

(7670-431-441) #scks 14, 468 14, 372 15, 895 16, 741 7, 953 8, 374

cw-lex-21-08 cpu 40.0 31.6 39.3 42.9 20.9 21.8

(9490-357-360) #scks 18, 263 12, 445 19, 907 21, 148 9, 951 10, 566

cw-lex-23-08 cpu 54.8 45.9 57.9 61.7 30.1 31.0

(11804-562-566) #scks 22, 480 22, 313 24, 624 26, 944 12, 316 13, 462

cw-uk-vg14-15 cpu 187 128 224 230 135 116

(5460-248-480) #scks 15, 174 13, 503 22, 634 21, 672 7, 819 7, 429

cw-uk-vg14-16 cpu 203 155 323 342 163 141

(5824-337-798) #scks 20, 586 15, 304 40, 134 39, 029 8, 690 8, 410

cw-uk-vg15-15 cpu 133 125 204 193 140 141

(5850-300-850) #scks 15, 567 15, 222 24, 440 23, 859 8, 840 8, 529

cw-uk-vg15-16 cpu 174 160 301 328 193 195

(6240-400-1444) #scks 30, 069 33, 733 58, 867 58, 170 10, 481 10, 390

Table 5: Results obtained on real-world instances.

26

SAC3 SAC3-SDS

Instance SAC1 SAC-SDS lifo dom/wdeg lifo dom/wdeg

Binary instances

queenAttacking-6 cpu 1.94 1.24 0.84 0.78 0.47 0.42

(1302-33-48) #scks 2, 523 1, 702 2, 752 2, 788 1, 388 1, 400

queenAttacking-7 cpu 6.12 4.07 2.33 2.39 1.24 1.25

(2411-45-65) #scks 4, 712 3, 255 4, 996 5, 052 2, 507 2, 536

queenAttacking-8 cpu 19.1 12.8 9.86 6.77 3.29 3.56

(4106-108-160) #scks 7, 942 5, 664 12, 661 8, 557 4, 269 4, 299

queenAttacking-9 cpu 53.1 30.3 24.5 17.3 8.79 9.43

(6576-132-197) #scks 12, 819 9, 045 20, 200 13, 598 6, 785 6, 828

Non-binary instances

ruler-34-8-a3 cpu 38.8 11.0 37.4 13.5 12.0 7.5

(1232-168-351) #scks 6, 335 3, 340 9, 726 3, 947 1, 755 1, 423

ruler-34-9-a3 cpu 50.8 15.7 55.6 36.9 18.6 14.2

(1539-240-513) #scks 8, 474 4, 720 13, 184 11, 135 2, 175 2, 101

ruler-44-9-a3 cpu 189 46.4 185 123 64.2 36.5

(1989-240-513) #scks 12, 074 6, 445 18, 340 15, 484 2, 934 2, 631

ruler-44-10-a3 cpu 257 64.9 241 181 78.1 53.1

(2430-330-718) #scks 15, 810 8, 829 21, 993 21, 000 3, 571 3, 436

primes-10-20-3-1 cpu 40.1 21.3 20.7 13.3 11.4 8.36

(2800-386-484) #scks 2, 139 1, 526 3, 421 2, 240 1, 348 1, 139

primes-10-20-3-3 cpu 140 91.3 202 205 123 104

(2800-180-225) #scks 2, 942 2, 787 3, 282 3, 292 1, 725 1, 677

primes-10-20-3-5 cpu 355 128 246 383 133 127

(2800-111-133) #scks 5, 503 5, 092 3, 982 5, 895 2, 086 2, 003

primes-20-60-3-1 cpu 5.5 6.96 3.75 4.2 4.04 4.55

(7000-3368-5938) #scks 3, 231 3, 171 3, 388 2, 983 2, 864 2, 651

primes-20-60-3-3 cpu 487 227 674 567 268 227

(7000-629-1877) #scks 25, 288 20, 585 34, 982 29, 909 9, 380 8, 540

primes-20-60-3-5 cpu 647 350 830 840 448 455

(7000-437-573) #scks 12, 850 11, 422 14, 305 14, 574 7, 255 7, 480

Table 6: Results obtained on academic instances.

27

tally comparing algorithms based on approaches that are significantly different. The

results obtained on academic instances (Table 6) confirm our previous observations.

On some series, SAC3-SDS is clearly the best approach (queenAttacking), but on some

other series (ruler and primes), SAC3-SDS and SAC-SDS have close performances.

For SAC1 and SAC-SDS, we have also tested heuristics such as dom/wdeg to select

values from PendingList. On a limited number of instances, we obtain an improvement

of the algorithm performance, but this remains unusual. The difference between SAC

algorithms based on a breadth-first approach and SAC algorithms based on a greedy

approach is that the latter have the possibility of quickly learning and diversifying

exploration. This renders the use of an adaptive heuristic such as dom/wdeg quite

relevant.

What general lessons can we draw from these experiments? Clearly, there is no

algorithm always dominating all the others. We can always find an instance, which,

because of its structure or because of its constrainedness, will be favorable to an algo-

rithm and not to another. Nevertheless, there are general trends that are quite visible.

When problems are not trivially under-constrained, the incrementality of SAC-SDS

and of SAC3-SDS pays off. When problems are structured, as real problems often are.

algorithms based on a greedy search show the best performance. All in all, SAC3-SDS

appears as an overall winner, benefiting from both incrementality and greedy search.

9.3 Enforcing SAC before and during Search

The previous subsections show a comparison of the performance of SAC algorithms

when enforcing SAC alone. However, each time new algorithms for a local consistency

are proposed, the natural questions that arises is whether or not these new algorithms

improve the search for solutions. In this Section we briefly address this question in two

ways. First, we compare MAC and SAC followed by MAC on a selection of instances

from subsections above. Second, we compare MAC and a brute force implementation

of maintaining SAC during search.

One may wonder about the impact of enforcing SAC at preprocessing time before

running MAC; what we will be denoted by SAC+MAC. Clearly, it will depend on the

number (or proportion) of singleton arc-inconsistent values in the original instance to

be solved. If there is none, enforcing SAC is just a waste of time (but sophisticated

SAC algorithms moderate this drawback). At the other extreme, enforcing SAC may

be sufficient to solve the instance either by proving its unsatisfiability (when the in-

stance is singleton arc-inconsistent) or by opportunistically finding one solution (when

greedy runs are performed). To illustrate the case where there are SAC inconsistent

values in the instance, let us consider some instances of the queensKnights problem

as described in [9]. Instances of the form queensKnights-n-5-mul are singleton arc-

inconsistent (n denotes the size of the chessboard), and so enforcing SAC allows us to

avoid exploring a search tree. Table 7 shows the cpu time required to solve some of

these instances (for n = 10, 20, 30 and 40) when MAC is used (using dom/wdeg as

variable ordering heuristic8 and lexico as value ordering heuristic) but also when SAC

8Results are even worse when classical non-adaptive variable ordering heuristics such as dom (choosing

at each step the variable with the smallest domain size) are used.

28

is enforced at preprocessing (using algorithm SAC3-dom/wdeg). The interest of SAC

at preprocessing is immediate here.

Instance MAC SAC3

queensKnights-10-5-mul 0.5 0.4

queensKnights-20-5-mul 3.2 0.7

queensKnights-30-5-mul 12.8 1.7

queensKnights-40-5-mul > 3600 46

Table 7: Solving singleton arc-inconsistent instances using MAC and SAC3.

The second question is about the cost of maintaining SAC during search; what we

will be denoted by MSAC. In Table 8 we compare MAC and MSAC both on satisfiable

and unsatisfiable instances. Results are given for MAC, MSAC1 and MSAC3 (where

MSACX maintains SACX during search). We chose SAC1 and SAC3 because they do

not involve complex data structures to maintain, so that we expect them not to be too

much penalized by our brute force implementation for maintaining SAC during search.

The top of Table 8 illustrates what happens on satisfiable instances. The instances

used are satisfiable instances of the n-queens problem. It is interesting to note that for

all these satisfiable instances, SAC3 visits a single node. This is because the solution

is found by one of the greedy runs of the first pass of SAC. This makes MSAC3 much

more efficient than MAC. However, MSAC1 is terribly inefficient. This confirms that

efficient (and opportunistic) algorithms for SAC are useful.

Maintaining

Instance MAC SAC1 SAC3

time (#nodes) time (#nodes) time (#nodes)

100-queens 4.2 (119) time-out 17.4 (1)

110-queens time-out time-out 37.9 (1)

120-queens 1,636 (323K) time-out 16.7 (1)

scen11-f12 3.6 (696) 1,072 (42) 418 (6)

scen11-f10 4.4 (863) 1,732 (53) 814 (9)

scen11-f8 67.8 (14K) time-out time-out

Table 8: CPU time in seconds (and number of visited nodes) for instances of the queens

and RLFAP problems, given a 30 minutes cutoff.

The bottom of Table 8 illustrates the behavior of the same algorithms on unsatisfi-

able instances. The instances used are some difficult (modified) unsatisfiable RLFAP

instances. The results show that maintaining SAC significantly reduces the number

of nodes that have to be visited. Compared to MAC, MSAC1 reduces the number of

nodes by one order of magnitude whereas MSAC3 reduces it by two orders of mag-

29

nitude. This means that one order of magnitude of reduction of the search tree comes

from the pruning power of SAC whereas the second order of magnitude comes from the

fact that SAC3 learns from failures (of greedy runs) via use of the dom/wdeg heuristic.

Unfortunately, this strong reduction of the size of the search space does not compensate

for the cost of applying SAC at each node. Time performance of MSAC algorithms are

much worse than those of MAC.

The high cost of applying SAC at each node has already been pointed out in [20].

The authors proposed relaxed versions of SAC that could be maintained during search

at a lower cost than full SAC. For instance, they proposed existential SAC, that stip-

ulates that at least one value in each domain is SAC-consistent. We have adapted

MSAC3 for maintaining existential SAC. We call it MESAC3. We ran it on the in-

stances of Table 8. It has approximately the same performance as MSAC3 on the

satisfiable instances. But on unsatisfiable ones, it is significantly faster than MSAC3.

For instance, on the scen11-f10 instance, it explores 26 nodes in 38.3 seconds for solv-

ing the problem. This is 20 times faster than MSAC3 for only three times more nodes.

It solves scen11-f8 in 290 seconds and 213 nodes.

Of course, the results given in this subsection are extremely preliminary. They

just give a first idea of the questions that will have to be tackled. This will deserve a

thorough study.

10 Conclusion

We have reviewed existing algorithms for singleton arc consistency and we have given

their complexities. Two of them have a high time complexity (SAC1, SAC2) and one

has a high space complexity (SAC-Opt). Our first contribution, SAC-SDS, is a trade-off

between these two extremes. Like SAC-Opt, SAC-SDS stores the domains of the sub-

problems created for checking singleton arc consistency of values. Unlike SAC-Opt,

it does not store all the data structures used by arc consistency in these subproblems.

This leads to a higher time complexity and a lower space complexity than SAC-Opt.

The data stored by SAC-SDS are enough to obtain a lower time complexity than SAC1

and SAC2. Our second contribution, SAC3, is an original approach that mixes infer-

ence and search to enforce singleton arc consistency. A side effect of building a branch

while maintaining arc consistency is that all its values except the last are guaranteed to

be singleton arc-consistent. Such an approach has several advantages. We can bene-

fit from the guidance of standard heuristics usually used during search, we can check

singleton arc consistency quickly when the network is already singleton arc-consistent,

and we can find a solution ’by chance’ while building a branch. The third algorithm

presented in this paper, SAC3-SDS, combines our two first contributions in a single

algorithm. SAC3-SDS builds branches, like SAC3, and SAC3-SDS stores the domains

of the subproblems built, like SAC-SDS. This paper also contains an extensive exper-

imental evaluation. This shows the benefit of our contributions compared to existing

algorithms for SAC. Overall, SAC3-SDS seems to be the more frequent winner thanks

to its combination of the good characteristics of SAC-SDS and SAC3.

30

Acknowledgments

The first author was supported by the ANR project ANR-06-BLAN-0383-02. The

second and fourth authors were supported by the CNRS and by the “IUT de Lens”.

References

[1] K.R. Apt. Principles of Constraint Programming. Cambridge University Press,

2003.

[2] R. Bartak and R. Erben. A new algorithm for singleton arc consistency. In Pro-

ceedings of FLAIRS’04, pages 257–262, 2004.

[3] C. Bessiere. Arc consistency and arc consistency again. Artificial Intelligence,

65:179–190, 1994.

[4] C. Bessiere and R. Debruyne. Theoretical analysis of singleton arc consistency.

In Proceedings of ECAI’04 workshop on modelling and solving problems with

constraints, pages 20–29, 2004.

[5] C. Bessiere and R. Debruyne. Optimal and suboptimal singleton arc consistency

algorithms. In Proceedings of IJCAI’05, pages 54–59, 2005.

[6] C. Bessiere and R. Debruyne. Theoretical analysis of singleton arc consistency

and its extensions. Artificial Intelligence, 172(1):29–41, 2008.

[7] C. Bessiere and J. Régin. Refining the basic constraint propagation algorithm. In

Proceedings of IJCAI’01, pages 309–315, 2001.

[8] C. Bessiere, J.C. Régin, R. Yap, and Y. Zhang. An optimal coarse-grained arc

consistency algorithm. Artificial Intelligence, 165(2):165–185, 2005.

[9] F. Boussemart, F. Hemery, C. Lecoutre, and L. Sais. Boosting systematic search

by weighting constraints. In Proceedings of ECAI’04, pages 146–150, 2004.

[10] A. Chmeiss and L. Sais. About the use of local consistency in solving CSPs. In

Proceedings of ICTAI’00, pages 104–107, 2000.

[11] R. Debruyne and C. Bessiere. From restricted path consistency to max-restricted

path consistency. In Proceedings of CP’97, pages 312–326, 1997.

[12] R. Debruyne and C. Bessiere. Some practical filtering techniques for the con-

straint satisfaction problem. In Proceedings of IJCAI’97, pages 412–417, 1997.

[13] R. Debruyne and C. Bessiere. Domain filtering consistencies. Journal of Artificial

Intelligence Research, 14:205–230, 2001.

[14] R. Dechter. Constraint processing. Morgan Kaufmann, 2003.

31

[15] D. Frost, R. Dechter, C. Bessiere, and J.C. Régin. Random uniform CSP genera-

tors. http://www.lirmm.fr/˜bessiere/generator.html, 1996.

[16] C. Lecoutre. Optimization of simple tabular reduction for table constraints. In

Proceedings of CP’08, pages 128–143, 2008.

[17] C. Lecoutre. Constraint networks: techniques and algorithms. ISTE/Wiley, 2009.

[18] C. Lecoutre and S. Cardon. A greedy approach to establish singleton arc consis-

tency. In Proceedings of IJCAI’05, pages 199–204, 2005.

[19] C. Lecoutre and F. Hemery. A study of residual supports in arc consistency. In

Proceedings of IJCAI’07, pages 125–130, 2007.

[20] C. Lecoutre and P. Prosser. Maintaining singleton arc consistency. In Proceedings

of CPAI’06 workshop held with CP’06, pages 47–61, 2006.

[21] A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,

8(1):99–118, 1977.

[22] A.K. Mackworth. On reading sketch maps. In Proceedings of IJCAI’77, pages

598–606, 1977.

[23] R. Mohr and T.C. Henderson. Arc and path consistency revisited. Artificial Intel-

ligence, 28:225–233, 1986.

[24] R. Mohr and G. Masini. Good old discrete relaxation. In Proceedings of ECAI’88,

pages 651–656, 1988.

[25] P. Prosser. An empirical study of phase transitions in binary constraint satisfaction

problems. Artificial Intelligence, 81:81–109, 1996.

[26] P. Prosser, K. Stergiou, and T. Walsh. Singleton consistencies. In Proceedings of

CP’00, pages 353–368, 2000.

[27] D. Sabin and E.C. Freuder. Contradicting conventional wisdom in constraint sat-

isfaction. In Proceedings of CP’94, pages 10–20, 1994.

[28] D. Sabin and E.C. Freuder. Understanding and improving the MAC algorithm. In

Proceedings of CP’97, pages 167–181, 1997.

[29] J.R. Ullmann. Partition search for non-binary constraint satisfaction. Information

Science, 177:3639–3678, 2007.

[30] Y. Zhang and R. Yap. Making AC3 an optimal algorithm. In Proceedings of

IJCAI’01, pages 316–321, 2001.

32

