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Abstract

In this work, we consider the problem of reconstructing a small anomaly
in a viscoelastic medium from wave-field measurements. We choose Szabo’s
model to describe the viscoelastic properties of the medium. Expressing the
ideal elastic field without any viscous effect in terms of the measured field in a
viscous medium, we generalize the imaging procedures, such as time reversal,
Kirchhoff Imaging and Back propagation, for an ideal medium to detect an
anomaly in a visco-elastic medium from wave-field measurements.

1 Introduction

We consider the problem of reconstructing a small anomaly in a viscoelastic medium
from wave-field measurements. The Voigt model is a common model to describe the
viscoelastic properties of tissues. Catheline et al. [E] have shown that this model
is well adapted to describe the viscoelastic response of tissues to low-frequency
excitations. We choose a more general model derived by Szabo et al. [E] that
describes observed power-law behavior of many viscoelastic materials. It is based
on a time-domain statement of causality . It reduces to the Voigt model for the
specific case of quadratic frequency loss. Expressing the ideal elastic field without
any viscous effect in terms of the measured field in a viscous medium, we generalize
the methods described in [E, E, E, E, E]; namely the time reversal, back-propagation
and Krichhoff Imaging, to recover the viscoelastic and geometric properties of an
anomaly from wave-field measurements.

The article is organized as follows. In section E we introduce a general visco-
elastic wave equation. section H is devoted to the derivation of the Green function
in a viscoelastic medium. In section E we present anomaly imaging procedures and
reconstruction methods in visco-elastic media. Numerical illustrations are provided
in section E

2 General Visco-Elastic Wave Equation

When a wave travels through a biological medium, its amplitude decreases with
time due to attenuation. The attenuation coefficient for biological tissue may be
approximated by a power-law over a wide range of frequencies. Measured attenua-
tion coefficients of soft tissue typically have linear or greater than linear dependence

on frequency , , .
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In an ideal medium; without attenuation, Hooke’s law gives the following rela-
tionship between stress and strain tensors:

T=C:§ (1)

where 7, C and S are respectively stress, stiffness and strain tensors of orders 2, 4
and 2 and : represents tensorial product.

Consider a dissipative medium. Suppose that the medium is homogeneous and
isotropic. We write

C = [Cijit) = [NijOnt + p(0irdji + 0itdjx)] , (2)
n = [Nijrt] = [Ms6ij0rk1 + np(dindji + 6udjn)] (3)

where 45 is the Kronecker delta function, j, A are the Lamé parameters, and 7,7,
are the shear and bulk viscosities, respectively. Here we have adopted the general-
ized summation convention over the repeated index.

Throughout this work we suppose that

Np, Ns << 1. (4)

For a medium obeying a power-law attenuation model and under the smallness
condition (), a generalized Hooke’s law reads [[Lf]

T(z,t) =C:S(x,t) +n: M(S)(z,t) (5)

where the convolution operator M is given by

—(—1)¥/? %i;f y is an even integer,
M(S) =1 2(y— 1)!(71)(9“)/2% xSy is an odd integer, (6)
—2T(y) sin(ym/2) lmz) ) y is a non integer.

Here H(t) is the Heaviside function and I' denotes the gamma function.
Note that for the common case, y = 2, the generalized Hooke’s law (E) reduces

to the Voigt model,

T:C:S+n:({;—f. (7)

Taking the divergence of (E) we get
VT =A+0) V(V-u)+ jiduy,
where
A=A+npM()  and  f=p+naM().
Next, considering the equation of motion for the system, i.e.,

0%u

pW—sz-T, (8)

with p being the constant density and F the applied force. Using the expression for
V - T, we obtain the generalized visco-elastic wave equation

0%u < _
pW—F:(AwLu)V(V-u)JruAu. (9)



3 Green’s Function

In this section we find the Green function of the viscoelastic wave equation (fJ). For
doing so, we first need a Helmholtz decomposition.

3.1 Helmholtz Decomposition
The following lemma holds.

Lemma 3.1 If the displacement field u(z,t) satisfies (@) au(m @) _ yA4+V xB
and u(x,0) = VC+V x D and if the body force F = Vo + V >< 1y then there exist
potentials p,, and 1, such that

e u=Vop, +V xXy; V-1h, =0;
o Gt = Tt Ay +rM(Bpy) & 2 — TED 4 BN+ EM(OPen);

o Tt =4 CAYy + v M(Ay) & U= D 4 A, + % M(OFY),

2
pc?

with

A+2 +2
CIQ):—M, c?zﬁ, VPZL 775, and VS:E.

P p P p
Proof.For ¢, and 1, defined as

u(2,t) / / {——i— c +up/\/l)(V-u)} dsdr +tA+C (10)

%(x,t)/o/o [%(C§+VSM)(VXu)

we have the required expression for u. Moreover, it is evident from () that

dsdr 4+ tB + D (11)

Now, on differentiating ¢,, and 1, twice with respect to time, we get

Pou _wr | o

Froake " + cpApy + vpM(Apy)
321% Q/Jf 2

52 =, + cEAYy, + vsM(AYy,)

Finally, applying M on last two equatlons, neglecting the higher order terms in v
and v, and injecting back the expressions for M(Ag,,) and M(A,), we get the
required differential equations for ¢, and . O

() = \/(“?W ). m=s (12)

where the multiplication operator M(w) is the Fourier transform of the convolution
operator M.

If ¢, and v, are causal then it implies the causality of the inverse Fourier
transform of K,,(w),m = s,p. Applying the Kramers-Kronig relations, it follows
that

Let

— MK, (w) = H [?ReKm(w)} and  ReK,(w) = H [Sme(w)} . m=p,s,
(13)



where H is the Hilbert transform. Note that H#? = —I. The convolution operator
M given by (E) is based on the constraint that causality imposes on (E) Under the
smallness assumption (), the expressions in () can be found from the Kramers-
Kronig relations ([[3). One drawback of ([[) is that the attenuation, ImkK,,(w),
must be known at all frequencies to determine the dispersion, ReK,,(w). However,
bounds on the dispersion can be obtained from measurements of the attenuation
over a finite frequency range [[[J.

3.2 Solution of (P) with a Concentrated Force.

Let u;; denote the i-th component of the solution u; of the elastic wave equation
related to a force F concentrated in the zj-direction. Let j = 1 for simplicity and
suppose that

F=-T{t)(x—&e =—-T(t)o(x — &)(1,0,0), (14)

where ¢ is the source point and (ej,es,e3) is an orthonormal basis of R3. The
corresponding Helmholtz decomposition of the force F can be written [@] as

F=Vop;+V x1y,

where r = |z — ¢|.
Consider the Helmholtz decomposition for u;; as

uin = Vi +V x (16)

where 1 and v are the solutions of the equations

1 0%p1 vy 2\ pMlor)  f

Y1 — g o2 + %M(at p1) = 7/)6% - C?)—p, (17)
1 621/11 Vs Z/S./\/l(l/Jf) Uy

Ay — T _gM(af"/)l) =Tk 2y (18)

Taking the Fourier transform of ([L4),([[7) and ([[§) with respect to ¢ we get

W =V +V x4y (19)
K2(w vy M(w)$ D
Doy + Zeldy 1 Mor 2p (20)
2 pc pc?
N Ks2 w) I/SM W) b
Ay + g )1/)1: (4)1/}f 77/)_1;, (21)
c2 pc pc2

with K,,(w), m = p, s, given by ([[J).
It is well known that the Green’s functions of the Helmholtz equations (0) and

B1) are
eﬁkzL(W)r

rw) = T a7 m=35,p.

i (

g

Thus, following we write ¢ as

9271(‘%)‘*];6) = <1 - Vp/\c}l?(w)> T(W) / gp(x - X,w) 0 Ldvx

2 ) pldmey)? ax1 [x —¢]




and divide the volume V into spherical shells of radius A centered at observation
point z. On each shell §7(z — x,w) rests constant. So we have

X o B VpM(w) T(w) — —do
Prlnes) = (1 2 )p(4wcp>2/ / Oxi R R

with h = |z — x|, R = |x — &| and do the appropriate surface element.

As a
Lo (&)= ez ) nes

Therefore, we have following expression for ¢;:

o1 (@wi &) = — (1 _ %Q(W) Tw) o <%) /O/ CeVTTIE O ge.(22)

ca dmtp Oxy

In the same way, the vector 1&1 is given by

b (w0 £) = v M@\ TW) (0 (1Y _ 9 (1\Y [ . mixwc
7/’1(%%5) - (1 Cg ) 47Tp <05 0x3 (T) 776.’1]2 (T)>/0 ge d(

(23)
Introduce the following notation:
Ln(,0) = Am, / T R e g (24)
0
En(z,w) = A, eV TEm@es (25)
Ap(w) = (1 — %ﬁ) , m=p,Ss. (26)

We obtain, after a lengthy but simple calculation, that u,; is given by

i = 2 500 (1) (1) = )] + ok 25 25 By(r,)

dmp Oz 47rpc2r Ox; Oxq

+ T'(w) (51'1 — ﬂi) Ey(r,w),

dmwpc?r Ox; Oxq
and therefore, it follows that the solution u;; for an arbitrary j is

T(w)

Inp (3%% - 6ij) TL& [Is(r,w) I (T w)] + 47r(pc)2 YiViy i1E (T w)

Uij =

+—4Tw(pwc)2 (835 — vivy) 2Es(r,w),

where v; = (z; — &)/

3.3 Green’s function

If we substitute T'(t) = d(t), where delta is the Dirac mass, then the function u;; =
G;; is the i-th component of the Green function related to the force concentrated
in the xj-direction. In this case, we have T'(w) = 1. Thus, we have the following
expression for (A}’Z-j:

Gij = mp (377 = 0ij) 75 [1s(r,w) = Ip(r, )] + gz %7 Ep (7, )

+47ri)c§ (5” - 'Yi')/j) %ES(va)v



which implies that

éij (Tv w3 5) = gf] (7’, w) + gzsj (Tv w) + g:f_]s (7’, w)a (27)
where ) )

gzs(r w) = 47Tp (3vivj — 6ij) = [Ls(r,w) — Iy(r,w)], (28)

A
9t (r,w) = p(w)%%g P(r,w), (29)

PCp

and Aw)

g’fj (r,w) = —SC;U (0i5 — vivj) §° (r,w). (30)

S

Let G(r,t;€) = (Gy;(r,t;€)) denote the transient Green function of ({) associ-
ated with the source point £. Let G™(r,t;§) and W,,(r,t) be the inverse Fourier
transforms of A, (w)§™(r,w) and I, (r,w), m = p, s, respectively. Then, from (@—
B()), we have

Gij(r,t:€) = 5z GP (1, 6:.€) + 5oz (55 — 7675) G (1, £5€)
(31)
o (37075 — 0ij) 5 [Wa(r, t) = Wip(r, )]

Note that by a change of variables,

Wt =5 [ Comne

4 Imaging procedure

Consider the limiting case A — +00. The Green function for a quasi-incompressible
visco-elastic medium is given by

Gij(r t:€) = 5z (655 — 7i75) G*(r,:€)
oz (37075 = 0i5) 75 Jo PG (¢, 1:€)dC.
To generalize the detection algorithms presented in [E, E, E, , to the visco-elastic

case we shall express the ideal Green function without any viscous effect in terms
of the Green function in a viscous medium. From

—/—1wt s
Gt:6) = o= [ T A ) () do

it follows that
\/—_1(—wt+—KSCiw) r)

dw.
Gt 8) = \/27r/ dmr w
4.1 Approximation of the Green Function
Introduce the operator
+oo
/ / \/7K (w)'ref\/jlwt dr dw
T on ’



for a causal function ¢. We have

5(r—r/cs)

47r

G*(r,t;:€) = L( ),

and therefore,
ot —r/cs)

L*G*(r, t;€) = L*L( pp

)
where L* is the L?(0, +o00)-adjoint of L. R
Consider for simplicity the Voigt model. Then, M(w) = —v/—1w and hence,

vV —1v, V—1vg
7 WRWS 2
c 2cz

Ko(w) =wy/1+ w?,
under the smallness assumption (E) The operator L can then be approximated by

vg

4 1 Hoe - w2
Lo(t) = 5~ /R /0 Agw)p(r)e 237 eV gy,

Since
2 202
“2 T Tl —) gy = V2T s
e 25 e w = e EER
R \/VsT
and

Vs A/ c2 T— 2
\/—1/006_@&76“1“(7_” dw = — QWCSQE%,
R UsT Ot

it follows that

“+o0 2 2
~ t Cs _cg(r—t)
Lo(t) = — st dT. 32
o(t) /0 ST e dr (32)

Analogously,

Lo(t) = / T = (33)
o 0 t T \/27r1/5te : T

Since the phase in (@) is quadratic and vy is small then by the stationary phase
theorem , we can prove the following theorem:

Theorem 4.1
~ Vg ~ Vg
L*¢~ ¢+ Q—CQatt(t¢), Lo~ ¢+ Q—CQtatt¢a
and o y
L*Lo ~ ¢+ C—gat (t0:9), (34)
and therefore,
~ VS
(L'L) '~ ¢ — c—28t(t8t¢)- (35)

d

Proof. (See appendix [])



4.2 Reconstruction Methods

From the previous section, it follows that the ideal Green function, §(7 — r/c,)/(4nr),
can be approximately reconstructed from the viscous Green function, G*(r, t;£), by
either solving the ODE

Vs s
6+ S 0h(t0,9) = L' G (1, 1:9),
with ¢ = 0,¢ < 0 or just making the approximation
5(7 —r/es)/(Amr) ~ L*GP (r, t;€) — 220, (10,L* G (r, £:)).
CS

Once the ideal Green function 6(7 — r/cs)/(4mr) is reconstructed, one can find
i[és EOECE] ¢ using a time-reversal, a Kirchhoff or a back-propagation algorithm. See

Using the asymptotic formalism developed in [E, E, ﬁ], one can also find the
shear modulus of the anomaly using the ideal near-field measurements which can
be reconstructed from the near-field measurements in the viscous medium. The
asymptotic formalism reduces the anomaly imaging problem to the detection of the
location and the reconstruction of a certain polarizability tensor in the far-field and
separates the scales in the near-field.

5 Numerical Illustrations

In this section, we illustrate the profile of the Green function. We choose parameters
of simulation as in the work of Bercoff et al.[ﬂ]: we take p = 1000, ¢; =1, ¢, = 40,
r =0.015 and v, = 0.

In figure 1, we plot temporal representation of the green function:

t— p_i2 (GP(r, ;) + G*(r, 1)) + Wi(r,t) = Wp(r,2)].

3l
2 47 pr3

for three different values of y and vs;. We can see that the attenuation behavior

varies with respect to different choices of power law exponent y. One can clearly

distinguish the three different terms of the Green function; i.e. G§;, G7; and G77.
Figure 2 corresponds to spatial representation of the green function:

47T1p7’3 (3($/r)2_1) (W (r,t) — Wy(r,t)],

(@) = =z (/PG :€) + (1= (afr )G (. 1:) +
P
for different values of y at ¢t = 0.015. As expected, we get a diffusion of the wavefront
with the increasing values of y and depending the choice of vg.
In figure 3, we illustrate the results of the approximation of the operator L¢
with the smooth function ¢(t) = exp(—50* (t —1).2)”. As shown by the stationary
phase theorem @ , the numerically calculated L*°-error

Z/S
126~ (0+ 550" ) l=ay

is of order two.
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Figure 1: Temporal response to a spatio-temporal delta function using a purely
elastic Green’s function (red line) and a viscous Green’s function (blue line): Left,
y=1.5, vy =4 ; Center, y = 2, vs = 0.2 ; Right, y = 2.5, vs = 0.002.
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Figure 2: 2D spatial response to a spatio-temporal delta function at ¢ = 0.015 with
a purely elastic Green’s function, a viscous Green’s function with y = 2, v, = 0.2
and y = 2.5, v, = 0.002.



v, /¢?=0.001
SN

|Erreur |
N
N
N

-8
Iag(vS 1 cz)

Figure 3: Approximation of L via stationary phase theorem : Left, comparison
between L¢ and ¢ + Zt¢” where Z5 = 0.0001 and ¢ is a smooth function. Right:

error 25 — |[Lé — ¢ + £ [l in logarithmic scale.

6 Conclusion

In this paper, we have computed the Green function in a visco-elastic medium obey-
ing a frequency power-law. For the Voigt model, which corresponds to a quadratic
frequency loss, we have used the stationary phase theorem @ to reconstruct the
ideal Green function from the viscous one by solving an ODE. Once the ideal Green
function is reconstructed, one can find its source £ using the algorithms in [E, E, @, E]
such as time reversal, back-propagation, and Kirchhoff Imaging. For more general
power-law media, one can recover the ideal Green function from the viscous one by
inverting a fractional derivative operator. This would be the subject of a forthcom-

ing paper.

A Proof of Theorem (Z-1))

The proof of theorem ([L1]) is based on the following theorem (see [[[J, Theorem
7.7.1]).

Theorem A.1 (Stationary Phase)Let K C [0,00) be a compact set, X an open
neighborhood of K and k a positive integer. If 9 € C2¥(K), f € C**+1(X) and
Im(f) > 0in X, Im(f(to)) =0, f'(to) =0, f"(to) #0, f' # 0 in K\ {to} then
fore>0

/ Y(t)e O eda — e (A (k) j2mi) 2T Ll < OF S sup [ ().
K N
i<k a<2k

Here C' is bounded when f stays in a bounded set in C3*T1(X) and |t — to|/|f'(t)]
has a uniform bound. With,

gul6) = F(8) = F(t0) = 37" (o)t~ 1)

which vanishes up to third order at to, we have

L= 3 3 i () ) ()™ (). B
v—p=j 2v>3p s

10



Note that L; can be expressed as the sum Ly = Lit) + L2t + L1, where L{ is
respectively associate to the pair (v, u;) = (1,0),(2,1), (3,2) and is identified to

Lip = 5" (to) 0P (to),

L3 = g (t0) 2(gew) D (to) = 1"(t0) % (9 (to)(t0) + 494, (t0)4 (ko) )

LYY = o £ (t0) > (97,9) 'V (to) = soams [ (to) " (97,) ) (t0) o (to)-

Now we turn to the proof of formula (B4). Let us first consider the case of
operator L*. We have

T % _ +oe T Cs 2(2; 0?2 o zf(‘r)/e
L¢(t)—/0 ;Qﬁ(T)\/ﬁ stdr = 7(/ (T ),

with, f(7) = in(r — t)?, e = 2%t and (1) = 7¢(7). Remark that the phase f
satisfies at 7 =1t , f(t) =0, f'(t) =0, f"(t) = 2imw # 0. Moreover, we have

eif )/ ( 71f//( )/21-7_(.)—1/2 = /e
g9:(1) = f(7) = f() = éf”()(Tjt) =0
Lip(t) = Lig(t) = S0 ()7 () = - ()"

Thus, Theorem @ implies that

2000~ (00 + 500" )| < S S sl e

a<4

The case of the operator L is very similar. Note that

o= [ 1 Cs = b=t e (/e
fot) = [ ot e 0 ([ v

with f(7) = iﬂﬂ, € = %5 and (1) = ¢(7)7 2. It follows that

T 27c

t2 2

t 1
oy =in(1-5). £ =2inky, 10 =2ing,
and the function g:(7) equals to

— )2 _ )3
gt(r):m( Tt) ! tt) _ Tt).

We deduce that

{<gtw><4><t> = (ot @) + 49 (00w (1)) = i (Bo(t) — Hv'(1)
(g20) @) = (91D (Wp(t) = —mFu(@).

and then,

Liv = 2L (O 0) = £t (5) = 4 (Vg ©) - £ + 35)
B = 007 (s 6ot + 16700 0) = 2 (3
L3 = st (02 02O ()0(s) = 1= (288)

where ¢(7) = ¢(7)/7. Then, we have




L% = LY+ L{y+ Ly

1 ) (3 9 15\ 6(t) 1L\
E(x/iqb (0)+@-1) +(Z_§+Z) W)Z @0

and again Theorem @ shows that

Z/S
2
2c2

o)~ (600) + 5516"(0))| < o> S sup w0

a<4

Acknowledgement

The authors would like to thank Prof. Habib Ammari for proposing this prob-
lem and for his fruitful pieces of advice. This work is supported by the foundation
Digiteo and the Higher Education Commission of Pakistan.

References

1]

2]

Aki K, Richards PG.Quantitative Seismology(2nd edition) University Science
Books.

Ammari H. An Introduction to Mathematics of Emerging Biomedical Imaging.
In Mathématiques et Applications. Vol 62. Springer-Verlag, Berlin, 2008.

Ammari H (ed). Mathematical Modeling in Biomedical Imaging I: Electrical and
Ultrasound Tomographies, Anomaly Detection, and Brain Imaging. In Lecture
Notes in Mathematics: Mathematical Biosciences Subseries. Vol 1983. Springer-
Verlag, Berlin, 2009.

Ammari H, Garapon P, Guadarrama-Bustos L, Kang H. Transient anomaly
imaging by the acoustic radiation force. Journal of Differential Equations. To
appear.

Ammari H, Guadarrama-Bustos L, Kang H, Lee H. Transient elasticity imaging
and time reversal. Proc. Royal Soc. of Edinburgh: Sect. A. Submitted.

Ammari H and Kang H. Reconstruction of Small Inhomogeneities from Bound-
ary Measurements. In Lecture Notes in Mathematics. Vol 1846. Springer-Verlag,
Berlin, 2004.

Ammari H and Kang H. Polarization and Moment Tensors: with Applications
to Inverse Problems and Effective Medium Theory. In Applied Mathematical
Sciences Series. Vol 162. Springer-Verlag, New York, 2007.

Ammari H and Kang H. Expansion Methods, Handbook of Mathematical Methods
in Imaging. Springer, New York, 2011.

Bercoff J, Tanter M, Muller M, Fink M. The role of viscosity in the impulse
differection field of elastic waves induced by the acoustic radiation force. IEFEE
Trans. on Ultr. Ferr. freq. Control, 2004, 51(11):1523-1535.

[10] Catheline S, Gennisson J L, Delon G, Sinkus R, Fink M, Abdouelkaram S,

Culioli J. Measurement of visco-elastic properties of solid using transient elas-
tography: An inverse problem approach.J. Acoustical Society of America, 2004,
116:3734-3741.

12



[11] Duck F A. Physical properties of tissue. A comprehensive reference book.
Acadamic, London, 1990.

[12] Hormander L. The analysis of the linear partial differential operators I: Dis-
tribution theory and Fourier analysis. Classics in Mathematics. Springer-Verlag,
Berlin, 2003.

[13] Milton G W, Eyre D J, Mantese V J. Finite frequency range kramers-kronig
relations: bounds on the dispersion. Physics Rev. Lett. 1997, 79:3062-3075.

[14] Pujol J. Elastic Wave Propagation and Generation in Seismology. Cambridge
University Press, United Kingdom, 2003.

[15] Szabo T L. Causal theories and data for acoustic attenuation obeying a fre-
quency power law. Journal of Acoustical Society of America, 1995, 97(1):14-24.

[16] Szabo T L, Wu J. A model for longitudinal and shear wave propagation in
viscoelastic media.. Journal of Acoustical Society of America, 2000, 107(5):2437—
2446.

13



