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Transient Anomaly Imaging in Visco-Elastic Media Obeying a Frequency Power-Law

In this work, we consider the problem of reconstructing a small anomaly in a viscoelastic medium from wave-field measurements. We choose Szabo's model to describe the viscoelastic properties of the medium. Expressing the ideal elastic field without any viscous effect in terms of the measured field in a viscous medium, we generalize the imaging procedures, such as time reversal, Kirchhoff Imaging and Back propagation, for an ideal medium to detect an anomaly in a visco-elastic medium from wave-field measurements.

Introduction

We consider the problem of reconstructing a small anomaly in a viscoelastic medium from wave-field measurements. The Voigt model is a common model to describe the viscoelastic properties of tissues. Catheline et al. [START_REF] Catheline | Measurement of visco-elastic properties of solid using transient elastography: An inverse problem approach[END_REF] have shown that this model is well adapted to describe the viscoelastic response of tissues to low-frequency excitations. We choose a more general model derived by Szabo et al. [START_REF] Szabo | A model for longitudinal and shear wave propagation in viscoelastic media[END_REF] that describes observed power-law behavior of many viscoelastic materials. It is based on a time-domain statement of causality [START_REF] Szabo | Causal theories and data for acoustic attenuation obeying a frequency power law[END_REF]. It reduces to the Voigt model for the specific case of quadratic frequency loss. Expressing the ideal elastic field without any viscous effect in terms of the measured field in a viscous medium, we generalize the methods described in [START_REF] Ammari | An Introduction to Mathematics of Emerging Biomedical Imaging[END_REF][START_REF] Ammari | Mathematical Modeling in Biomedical Imaging I: Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging[END_REF][START_REF] Ammari | Transient anomaly imaging by the acoustic radiation force[END_REF][START_REF] Ammari | Transient elasticity imaging and time reversal[END_REF][START_REF] Ammari | Expansion Methods, Handbook of Mathematical Methods in Imaging[END_REF]; namely the time reversal, back-propagation and Krichhoff Imaging, to recover the viscoelastic and geometric properties of an anomaly from wave-field measurements.

The article is organized as follows. In section 2 we introduce a general viscoelastic wave equation. section 3 is devoted to the derivation of the Green function in a viscoelastic medium. In section 4 we present anomaly imaging procedures and reconstruction methods in visco-elastic media. Numerical illustrations are provided in section 5.

General Visco-Elastic Wave Equation

When a wave travels through a biological medium, its amplitude decreases with time due to attenuation. The attenuation coefficient for biological tissue may be approximated by a power-law over a wide range of frequencies. Measured attenuation coefficients of soft tissue typically have linear or greater than linear dependence on frequency [START_REF] Duck | Physical properties of tissue. A comprehensive reference book[END_REF][START_REF] Szabo | Causal theories and data for acoustic attenuation obeying a frequency power law[END_REF][START_REF] Szabo | A model for longitudinal and shear wave propagation in viscoelastic media[END_REF].

In an ideal medium; without attenuation, Hooke's law gives the following relationship between stress and strain tensors:

T = C : S (1) 
where T , C and S are respectively stress, stiffness and strain tensors of orders 2, 4 and 2 and : represents tensorial product. Consider a dissipative medium. Suppose that the medium is homogeneous and isotropic. We write

C = [C ijkl ] = [λδ ij δ kl + µ(δ ik δ jl + δ il δ jk )] , (2) 
η = [η ijkl ] = [η s δ ij δ kl + η p (δ ik δ jl + δ il δ jk )] , (3) 
where δ ab is the Kronecker delta function, µ, λ are the Lamé parameters, and η s , η p are the shear and bulk viscosities, respectively. Here we have adopted the generalized summation convention over the repeated index.

Throughout this work we suppose that

η p , η s << 1. ( 4 
)
For a medium obeying a power-law attenuation model and under the smallness condition (4), a generalized Hooke's law reads [START_REF] Szabo | A model for longitudinal and shear wave propagation in viscoelastic media[END_REF] T

(x, t) = C : S(x, t) + η : M(S)(x, t) (5) 
where the convolution operator M is given by

M(S) =              -(-1) y/2 ∂ y-1 S ∂t y-1
y is an even integer, 

2 π (y -1)!(-1) (y+1)/2
Here H(t) is the Heaviside function and Γ denotes the gamma function. Note that for the common case, y = 2, the generalized Hooke's law [START_REF] Ammari | Transient elasticity imaging and time reversal[END_REF] reduces to the Voigt model,

T = C : S + η : ∂S ∂t . (7) 
Taking the divergence of (5) we get

∇ • T = λ + μ ∇(∇ • u) + μ∆u, where λ = λ + η p M(•) and μ = µ + η s M(•).
Next, considering the equation of motion for the system, i.e.,

ρ ∂ 2 u ∂t 2 -F = ∇ • T , (8) 
with ρ being the constant density and F the applied force. Using the expression for ∇ • T , we obtain the generalized visco-elastic wave equation

ρ ∂ 2 u ∂t 2 -F = λ + μ ∇(∇ • u) + μ∆u. ( 9 
)
3 Green's Function

In this section we find the Green function of the viscoelastic wave equation [START_REF] Bercoff | The role of viscosity in the impulse differection field of elastic waves induced by the acoustic radiation force[END_REF]. For doing so, we first need a Helmholtz decomposition.

Helmholtz Decomposition

The following lemma holds.

Lemma 3.1 If the displacement field u(x, t) satisfies ( 9), ∂u(x,0) ∂t = ∇A + ∇ × B and u(x, 0) = ∇C + ∇ × D and if the body force F = ∇ϕ f + ∇ × ψ f then there exist potentials ϕ u and ψ u such that

• u = ∇ϕ u + ∇ × ψ u ; ∇ • ψ u = 0; • ∂ 2 ϕu ∂t 2 = ϕ f ρ + c 2 p ∆ϕ u + ν p M(∆ϕ u ) ≈ ϕ f ρ - νpM(ϕ f ) ρc 2 p + c 2 p ∆ϕ u + νp c 2 p M(∂ 2 t ϕ u ); • ∂ 2 ψu ∂t 2 = ψ f ρ + c 2 s ∆ψ u + ν s M(∆ψ u ) ≈ ψ f ρ - νsM(ψ f ) ρc 2 s + c 2 s ∆ψ u + νs c 2 s M(∂ 2 t ψ u ), with c 2 p = λ + 2µ ρ , c 2 s = µ ρ , ν p = η p + 2η s ρ , and 
ν s = η s ρ .
Proof.For ϕ u and ψ u defined as

ϕ u (x, t) = t 0 τ 0 ϕ f ρ + (c 2 p + ν p M)(∇ • u) dsdτ + tA + C (10) 
ψ u (x, t) = t 0 τ 0 ψ f ρ -(c 2 s + ν s M)(∇ × u) dsdτ + t B + D (11) 
we have the required expression for u. Moreover, it is evident from [START_REF] Duck | Physical properties of tissue. A comprehensive reference book[END_REF] that

∇ • ψ u = 0
Now, on differentiating ϕ u and ψ u twice with respect to time, we get

∂ 2 ϕ u ∂t 2 = ϕ f ρ + c 2 p ∆ϕ u + ν p M(∆ϕ u ) ∂ 2 ψ u ∂t 2 = ψ f ρ + c 2 s ∆ψ u + ν s M(∆ψ u )
Finally, applying M on last two equations, neglecting the higher order terms in ν s and ν p and injecting back the expressions for M(∆ϕ u ) and M(∆ψ u ), we get the required differential equations for ϕ u and ψ u .

2 Let K m (ω) = ω 1 - ν m c 2 m M(ω) , m = s, p, (12) 
where the multiplication operator M(ω) is the Fourier transform of the convolution operator M.

If ϕ u and ψ u are causal then it implies the causality of the inverse Fourier transform of K m (ω), m = s, p. Applying the Kramers-Krönig relations, it follows that

-ℑmK m (ω) = H ℜeK m (ω) and ℜeK m (ω) = H ℑmK m (ω) , m = p, s, (13) 
where H is the Hilbert transform. Note that H 2 = -I. The convolution operator M given by ( 6) is based on the constraint that causality imposes on [START_REF] Ammari | Transient elasticity imaging and time reversal[END_REF]. Under the smallness assumption (4), the expressions in ( 6) can be found from the Kramers-Krönig relations [START_REF] Milton | Finite frequency range kramers-kronig relations: bounds on the dispersion[END_REF]. One drawback of ( 13) is that the attenuation, ℑmK m (ω), must be known at all frequencies to determine the dispersion, ℜeK m (ω). However, bounds on the dispersion can be obtained from measurements of the attenuation over a finite frequency range [START_REF] Milton | Finite frequency range kramers-kronig relations: bounds on the dispersion[END_REF].

3.2 Solution of ( 9) with a Concentrated Force.

Let u ij denote the i-th component of the solution u j of the elastic wave equation related to a force F concentrated in the x j -direction. Let j = 1 for simplicity and suppose that

F = -T (t)δ(x -ξ)e 1 = -T (t)δ(x -ξ)(1, 0, 0), ( 14 
)
where ξ is the source point and (e 1 , e 2 , e 3 ) is an orthonormal basis of R 3 . The corresponding Helmholtz decomposition of the force F can be written [START_REF] Pujol | Elastic Wave Propagation and Generation in Seismology[END_REF] as

             F = ∇ϕ f + ∇ × ψ f , ϕ f = T (t) 4π ∂ ∂x1 1 r , ψ f = -T (t) 4π 0, ∂ ∂x3 1 r , -∂ ∂x2 1 r , (15) 
where r = |x -ξ|.

Consider the Helmholtz decomposition for u i1 as

u i1 = ∇ϕ 1 + ∇ × ψ 1 (16) 
where ϕ 1 and ψ 1 are the solutions of the equations

∆ϕ 1 - 1 c 2 p ∂ 2 ϕ 1 ∂t 2 + ν p c 4 p M(∂ 2 t ϕ 1 ) = ν p M(ϕ f ) ρc 4 p - ϕ f c 2 p ρ , ( 17 
) ∆ψ 1 - 1 c 2 s ∂ 2 ψ 1 ∂t 2 + ν s c 4 s M(∂ 2 t ψ 1 ) = ν s M(ψ f ) ρc 4 s - ψ f c 2 s ρ . ( 18 
)
Taking the Fourier transform of ( 16),( 17) and ( 18) with respect to t we get

û1 = ∇ φ1 + ∇ × ψ1 (19) ∆ φ1 + K 2 p (ω) c 2 p φ1 = ν p M(ω) φf ρc 4 p - φf ρc 2 p , (20) 
∆ ψ1 + K 2 s (ω) c 2 s ψ1 = ν s M(ω) ψf ρc 4 s - ψf ρc 2 s , (21) 
with K m (ω), m = p, s, given by [START_REF] Hormander | The analysis of the linear partial differential operators I: Distribution theory and Fourier analysis[END_REF]. It is well known that the Green's functions of the Helmholtz equations ( 20) and (21) are

ĝm (r, ω) = e √ -1 Km(ω) cm r 4πr , m = s, p.
Thus, following [START_REF] Pujol | Elastic Wave Propagation and Generation in Seismology[END_REF] we write φ1 as

φ1 (x, ω; ξ) = -1 - ν p M(ω) c 2 p T (ω) ρ(4πc p ) 2 V ĝp (x -χ, ω) ∂ ∂χ 1 1 |χ -ξ| dV χ .
and divide the volume V into spherical shells of radius h centered at observation point x. On each shell ĝp (x -χ, ω) rests constant. So we have

φ1 (x, ω; ξ) = -1 - ν p M(ω) c 2 p T (ω) ρ(4πc p ) 2 ∞ 0 1 h ĝp (h, ω) σ ∂ ∂χ 1 1 R dσdh.
with h = |x -χ|, R = |χ -ξ| and dσ the appropriate surface element.

As [START_REF] Aki | Quantitative Seismology[END_REF] σ

∂ ∂χ 1 1 R = 0 h > r 4πh 2 ∂ ∂x1 1 r h < r
Therefore, we have following expression for φ1 :

φ1 (x, ω; ξ) = -1 - ν p M(ω) c 2 p T (ω) 4πρ ∂ ∂x 1 1 r r/cp 0 ζe √ -1Kp(ω)ζ dζ. (22) 
In the same way, the vector ψ1 is given by

ψ1 (x, ω; ξ) = 1 - ν s M(ω) c 2 s T (ω) 4πρ 0, ∂ ∂x 3 1 r , - ∂ ∂x 2 1 r r/cs 0 ζe √ -1Ks(ω)ζ dζ.
(23) Introduce the following notation:

I m (x, ω) = A m r/cm 0 ζe √ -1Km(ω)ζ dζ (24) E m (x, ω) = A m e √ -1Km(ω) r cm , (25) 
A m (ω) = 1 - ν m M(ω) c 2 m , m = p, s. (26) 
We obtain, after a lengthy but simple calculation, that ûi1 is given by

ûi1 = T (ω) 4πρ ∂ 2 ∂xix1 1 r [I s (r, ω) -I p (r, ω)] + T (ω) 4πρc 2 p r ∂r ∂xi
∂r ∂x1 E p (r, ω)

+ T (ω) 4πρc 2 s r δ i1 -∂r ∂xi ∂r ∂x1 E s (r, ω),
and therefore, it follows that the solution u ij for an arbitrary j is

ûij = T (ω) 4πρ (3γ i γ j -δ ij ) 1 r 3 [I s (r, ω) -I p (r, ω)] + T (ω) 4πρc 2 p γ i γ j 1 r E p (r, ω) + T (ω) 4πρc 2 s (δ ij -γ i γ j ) 1 r E s (r, ω),
where γ i = (x i -ξ i )/r.

Green's function

If we substitute T (t) = δ(t), where delta is the Dirac mass, then the function u ij = G ij is the i-th component of the Green function related to the force concentrated in the x j -direction. In this case, we have T (ω) = 1. Thus, we have the following expression for Ĝij :

Ĝij = 1 4πρ (3γ i γ j -δ ij ) 1 r 3 [I s (r, ω) -I p (r, ω)] + 1 4πρc 2 p γ i γ j 1 r E p (r, ω) + 1 4πρc 2 s (δ ij -γ i γ j ) 1 r E s (r, ω), which implies that Ĝij (r, ω; ξ) = ĝp ij (r, ω) + ĝs ij (r, ω) + ĝps ij (r, ω), (27) 
where

ĝps ij (r, ω) = 1 4πρ (3γ i γ j -δ ij ) 1 r 3 [I s (r, ω) -I p (r, ω)] , (28) 
ĝp ij (r, ω) = A p (ω) ρc 2 p γ i γ j ĝp (r, ω), (29) 
and

ĝs ij (r, ω) = A s (ω) ρc 2 s (δ ij -γ i γ j ) ĝs (r, ω). ( 30 
)
Let G(r, t; ξ) = (G ij (r, t; ξ)) denote the transient Green function of ( 9) associated with the source point ξ. Let G m (r, t; ξ) and W m (r, t) be the inverse Fourier transforms of A m (ω)ĝ m (r, ω) and I m (r, ω), m = p, s, respectively. Then, from (27-30), we have

G ij (r, t; ξ) = 1 ρc 2 p γ i γ j G p (r, t; ξ) + 1 ρc 2 s (δ ij -γ i γ j ) G s (r, t; ξ) + 1 4πρ (3γ i γ j -δ ij ) 1 r 3 [W s (r, t) -W p (r, t)] . (31) 
Note that by a change of variables,

W m (r, t) = 4π c 2 m r 0 ζ 2 G m (ζ, t; ξ)dζ.

Imaging procedure

Consider the limiting case λ → +∞. The Green function for a quasi-incompressible visco-elastic medium is given by

G ij (r, t; ξ) = 1 ρc 2 s (δ ij -γ i γ j ) G s (r, t; ξ) + 1 ρc 2 s (3γ i γ j -δ ij ) 1 r 3 r 0 ζ 2 G s (ζ, t; ξ)dζ.
To generalize the detection algorithms presented in [START_REF] Ammari | An Introduction to Mathematics of Emerging Biomedical Imaging[END_REF][START_REF] Ammari | Mathematical Modeling in Biomedical Imaging I: Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging[END_REF][START_REF] Ammari | Transient elasticity imaging and time reversal[END_REF][START_REF] Ammari | Transient anomaly imaging by the acoustic radiation force[END_REF][START_REF] Ammari | Expansion Methods, Handbook of Mathematical Methods in Imaging[END_REF] to the visco-elastic case we shall express the ideal Green function without any viscous effect in terms of the Green function in a viscous medium. From

G s (r, t; ξ) = 1 √ 2π R e - √ -1ωt A s (ω)g s (r, ω) dω, it follows that G s (r, t; ξ) = 1 √ 2π R A s (ω) e √ -1(-ωt+ Ks (ω) cs r)
4πr dω.

Approximation of the Green Function

Introduce the operator

Lφ(t) = 1 2π R +∞ 0 A s (ω)φ(τ )e √ -1Ks(ω)τ e - √ -1ωt dτ dω,
for a causal function φ. We have

G s (r, t; ξ) = L( δ(τ -r/c s ) 4πr ),
and therefore,

L * G s (r, t; ξ) = L * L( δ(τ -r/c s ) 4πr ),
where L * is the L 2 (0, +∞)-adjoint of L.

Consider for simplicity the Voigt model. Then, M(ω) = -√ -1ω and hence,

K s (ω) = ω 1 + √ -1ν s c 2 s ω ≈ ω + √ -1ν s 2c 2 s ω 2 ,
under the smallness assumption (4). The operator L can then be approximated by

Lφ(t) = 1 2π R +∞ 0 A s (ω)φ(τ )e -νs 2c 2 s ω 2 τ e √ -1ω(τ -t) dτ dω. Since R e -νs 2c 2 s ω 2 τ e √ -1ω(τ -t) dω = √ 2πc s √ ν s τ e -c 2 s (τ -t) 2 2νs τ , and √ -1 R ωe -νs 2c 2 s ω 2 τ e √ -1ω(τ -t) dω = - √ 2πc s √ ν s τ ∂ ∂t e -c 2 s (τ -t) 2 2νs τ , it follows that Lφ(t) = +∞ 0 t τ φ(τ ) c s √ 2πν s τ e -c 2 s (τ -t) 2 2νs τ dτ. (32) 
Analogously,

L * φ(t) = +∞ 0 τ t φ(τ ) c s √ 2πν s t e -c 2 s (τ -t) 2 2νs t dτ. ( 33 
)
Since the phase in (33) is quadratic and ν s is small then by the stationary phase theorem A.1, we can prove the following theorem:

Theorem 4.1 L * φ ≈ φ + ν s 2c 2 s ∂ tt (tφ), Lφ ≈ φ + ν s 2c 2 s t∂ tt φ, and 
L * Lφ ≈ φ + ν s c 2 s ∂ t (t∂ t φ), ( 34 
)
and therefore,

(L * L) -1 φ ≈ φ - ν s c 2 s ∂ t (t∂ t φ). (35) 2 
Proof. (See appendix A)

Reconstruction Methods

From the previous section, it follows that the ideal Green function, δ(τ -r/c s )/(4πr), can be approximately reconstructed from the viscous Green function, G s (r, t; ξ), by either solving the ODE

φ + ν s c 2 s ∂ t (t∂ t φ) = L * G s (r, t; ξ),
with φ = 0, t ≪ 0 or just making the approximation

δ(τ -r/c s )/(4πr) ≈ L * G s (r, t; ξ) - ν s c 2 s ∂ t (t∂ t L * G s (r, t; ξ)).
Once the ideal Green function δ(τ -r/c s )/(4πr) is reconstructed, one can find its source ξ using a time-reversal, a Kirchhoff or a back-propagation algorithm. See [START_REF] Ammari | An Introduction to Mathematics of Emerging Biomedical Imaging[END_REF][START_REF] Ammari | Mathematical Modeling in Biomedical Imaging I: Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging[END_REF][START_REF] Ammari | Transient anomaly imaging by the acoustic radiation force[END_REF][START_REF] Ammari | Transient elasticity imaging and time reversal[END_REF].

Using the asymptotic formalism developed in [START_REF] Ammari | Transient elasticity imaging and time reversal[END_REF][START_REF] Ammari | Reconstruction of Small Inhomogeneities from Boundary Measurements[END_REF][START_REF] Ammari | Polarization and Moment Tensors: with Applications to Inverse Problems and Effective Medium Theory[END_REF], one can also find the shear modulus of the anomaly using the ideal near-field measurements which can be reconstructed from the near-field measurements in the viscous medium. The asymptotic formalism reduces the anomaly imaging problem to the detection of the location and the reconstruction of a certain polarizability tensor in the far-field and separates the scales in the near-field.

Numerical Illustrations

In this section, we illustrate the profile of the Green function. We choose parameters of simulation as in the work of Bercoff et al. [START_REF] Bercoff | The role of viscosity in the impulse differection field of elastic waves induced by the acoustic radiation force[END_REF]: we take ρ = 1000, c s = 1, c p = 40, r = 0.015 and ν p = 0.

In figure 1, we plot temporal representation of the green function:

t → 1 ρc 2 p (G p (r, t; ξ) + G s (r, t; ξ)) + 1 4πρr 3 [W s (r, t) -W p (r, t)] .
for three different values of y and ν s . We can see that the attenuation behavior varies with respect to different choices of power law exponent y. One can clearly distinguish the three different terms of the Green function; i.e. G s ij , G p ij and G ps ij . Figure 2 corresponds to spatial representation of the green function:

(x, y) → 1 ρc 2 p (x/r) 2 G p (r, t; ξ) + (1 -(x/r) 2 )G s (r, t; ξ) + 1 4πρr 3 (3(x/r) 2 -1) [W s (r, t) -W p (r, t)] ,
for different values of y at t = 0.015. As expected, we get a diffusion of the wavefront with the increasing values of y and depending the choice of ν s .

In figure 3, we illustrate the results of the approximation of the operator Lφ with the smooth function φ(t) = exp(-50 * (t -1). 2 ) ′′ . As shown by the stationary phase theorem A.1 , the numerically calculated L ∞ -error

Lφ -φ + ν s 2c 2 s tφ ′′ L ∞ (R + )
is of order two. 

Conclusion

In this paper, we have computed the Green function in a visco-elastic medium obeying a frequency power-law. For the Voigt model, which corresponds to a quadratic frequency loss, we have used the stationary phase theorem A.1 to reconstruct the ideal Green function from the viscous one by solving an ODE. Once the ideal Green function is reconstructed, one can find its source ξ using the algorithms in [START_REF] Ammari | An Introduction to Mathematics of Emerging Biomedical Imaging[END_REF][START_REF] Ammari | Mathematical Modeling in Biomedical Imaging I: Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging[END_REF][START_REF] Ammari | Transient anomaly imaging by the acoustic radiation force[END_REF][START_REF] Ammari | Transient elasticity imaging and time reversal[END_REF] such as time reversal, back-propagation, and Kirchhoff Imaging. For more general power-law media, one can recover the ideal Green function from the viscous one by inverting a fractional derivative operator. This would be the subject of a forthcoming paper.

A Proof of Theorem (4.1)

The proof of theorem (4.1) is based on the following theorem (see [START_REF] Hormander | The analysis of the linear partial differential operators I: Distribution theory and Fourier analysis[END_REF]Theorem 7.7.1]).

Theorem A.1 (Stationary Phase)Let K ⊂ [0, ∞) be a compact set, X an open neighborhood of K and k a positive integer. If ψ ∈ C 2k 0 (K), f ∈ C 3k+1 (X) and Im(f ) ≥ 0 in X, Im(f (t 0 )) = 0, f ′ (t 0 ) = 0, f ′′ (t 0 ) = 0, f ′ = 0 in K \ {t 0 } then for ǫ > 0 K ψ(t)e if (t)/ǫ dx -e if (t0)/ǫ (λf ′′ (t 0 )/2πi) -1/2 j<k ǫ j L j ψ ≤ Cǫ k α≤2k sup |ψ (α) (x)|.
Here C is bounded when f stays in a bounded set in C 3k+1 (X) and |t -

t 0 |/|f ′ (t)| has a uniform bound. With, g t0 (t) = f (t) -f (t 0 ) - 1 2 f ′′ (t 0 )(t -t 0 ) 2 ,
which vanishes up to third order at t 0 , we have

L j ψ = ν-µ=j 2ν≥3µ i -j 2 -ν ν!µ! (-1) ν f ′′ (t 0 ) -ν (g µ t0 ψ) (2ν) (t 0 ). 2 
Note that L 1 can be expressed as the sum L 1 ψ = L 1 1 ψ + L 2 1 ψ + L 3 1 ψ, where L j 1 is respectively associate to the pair (ν j , µ j ) = (1, 0), (2, 1), [START_REF] Ammari | Mathematical Modeling in Biomedical Imaging I: Electrical and Ultrasound Tomographies, Anomaly Detection, and Brain Imaging[END_REF][START_REF] Ammari | An Introduction to Mathematics of Emerging Biomedical Imaging[END_REF] and is identified to

       L 1 1 ψ = -1 2i f ′′ (t 0 ) -1 ψ (2) (t 0 ), L 2 1 ψ = 1 2 2 2!i f ′′ (t 0 ) -2 (g t0 u) (4) (t 0 ) = 1 8i f ′′ (t 0 ) -2 g (4)
t0 (t 0 )ψ(t 0 ) + 4g

(3)

t0 (t 0 )ψ ′ (t 0 ) , L 3 1 ψ = -1 2 3 2!3!i f ′′ (t 0 ) -3 (g 2 t0 ψ) (6) (t 0 ) = -1 2 3 2!3!i f ′′ (t 0 ) -3 (g 2 t0 ) (6) (t 0 )ψ(t 0 ).
Now we turn to the proof of formula (34). Let us first consider the case of operator L * . We have We deduce that (g t ψ) (4) (t) = g t (t)ψ(t) + 4g

L * φ(t) = +∞ 0 τ t φ(τ ) c s √ 2πν s t e -c 2 s (τ -t) 2 2νs t dτ = 1 t √ ǫ +∞ 0 ψ(τ )e if (τ )/ǫ , with, f (τ ) = iπ(τ -t) 2 , ǫ = 2πνst c 2 s and ψ(τ ) = τ φ(τ ). Remark that the phase f satisfies at τ = t , f (t) = 0, f ′ (t) = 0, f ′′ (t) = 2iπ = 0. Moreover, we have      e if (t)/ǫ ǫ -1 f ′′ (t)/2iπ -1/2 = √ ǫ g t (τ ) = f (τ ) -f (t) -1 2 f ′′ (t)(τ -t) 2 = 0 L 1 ψ(t) = L 1 1 ψ(t) = -1 2i f ′′ (t) -1 ψ ′′ (t) =
(3) t (t)ψ ′ (t) = iπ 24 t 3 ψ(t) -24 t 2 ψ ′ (t) (g 2 t ψ) (6) (t) = (g 2 t ) (6) (t)ψ(t) = -π 2 6! t 4 ψ(t), and then, 

           L 1 1 ψ = -1 i 1 2 (f ′′ (t)) -1 ψ ′′ (t) =

Figure 1 :

 1 Figure 1: Temporal response to a spatio-temporal delta function using a purely elastic Green's function (red line) and a viscous Green's function (blue line): Left, y = 1.5, ν s = 4 ; Center, y = 2, ν s = 0.2 ; Right, y = 2.5, ν s = 0.002.

Figure 2 :Figure 3 : 2 stφ ′′ where νs c 2 s 2 s→ 2 s∞

 232222 Figure 2: 2D spatial response to a spatio-temporal delta function at t = 0.015 with a purely elastic Green's function, a viscous Green's function with y = 2, ν s = 0.2 and y = 2.5, ν s = 0.002.

  1 4π (tφ) ′′ .

	Thus, Theorem A.1 implies that			
		L * φ(t) -φ(t) +	ν s 2c 2 s	(tφ) ′′ ≤	C t	ǫ 3/2
	The case of the operator L is very similar. Note that
	Lφ(t) =	0	+∞	t τ	φ(τ )	c s 2πν s τ √	e -c 2 s (τ -t) 2 2νs τ	dτ =	t √ ǫ	0	+∞	ψ(τ )e if (τ )/ǫ ,
	with f (τ ) = iπ (τ -t) 2 τ	, ǫ = νs 2πc 2 s	and ψ(τ ) = φ(τ )τ -3 2 . It follows that
	f ′ (τ ) = iπ 1 -	t 2 τ 2 , f ′′ (τ ) = 2iπ	t 2 τ 3 , f ′′ (t) = 2iπ	1 t	,
	and the function g t (τ ) equals to				
			g t (τ ) = iπ	(τ -t) 2 τ	-iπ	(τ -t) 2 t	= iπ	(t -τ ) 3 τ t	.

α≤4 sup |(tφ) (α) |.
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