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Introduction

An important task in dynamical systems, and the whole point of ergodic theory,
is to study the measures invariant under some transformation. We will focus here
on physical measures, which are empirical measures for a set of initial conditions of
non-zero Lebesgue measure (see Subsection [ for a definition of empirical mesures).
To obtain non-trivial results, some assumptions must be made on those transfor-
mations, for instance on their smoothness. We shall study here maps which are
piecewise differentiable, with Holder derivative, and uniformly expanding (that is,
with positive and bounded away from zero Lyapunov exponents) on some compact
space.

In one dimension, a most interesting result was found in 1973 by A. Lasota and
J.A. Yorke [LYT7]]: a piecewise twice differentiable uniformly expanding map on
an interval admits a finite number of physical invariant measures, whose densities
have bounded variation, and (up to taking an iterate of the transformation) they
are mixing. This is obtained via the study of the Perron-Frobenius operator on
the space of functions with bounded variation: the fixed points of this operator are
densities of invariant measures, and the existence of a spectral gap provides the
property of mixing at an exponential rate. To sum it up, the quasi-compactness of
the Perron-Frobenius operator, along with some classical arguments, is enough to
deduce many valuable ergodic properties of the system.

Problems arise when we weaken those assumptions. A possible generalization is
to obtain results in higher dimensions, where general answers were obtained only
recently, despite some early results on particular systems [Kel79]. Actually, a naive
generalization of the theorem proved by A. Lasota and J.A. Yorke does not hold
in dimension 2 or higher, as is shown by the counter-examples of M. Tsujii [[[su00]
and J. Buzzi [Buz01]|: some additional assumptions must be made. A first strategy
is to require a lower bound on the angles made by the discontinuities; P. Géra
and A. Boyarski [[GB89 made a successful attempt in 1989, although the sufficient
condition they found on the expanding rate is far from optimum. Another strategy
is to study the combinatorial complexity, i.e. the way the space is cut by the
discontinuities and the number of times they overlap; it was used for instance in
2000 by J.W. Cowieson [Cow0(] and B. Saussol [Sau0(], and we will follow this
approach.

In all those studies, a major problem is to find a suitable space of functions
on which the Perron-Frobenius operator may act. For piecewise smooth maps, the
function spaces we use should show some regularity (otherwise, no spectral gap will
be found), but not too much, since discontinuities must be allowed. For piecewise
twice differentiable maps, the space of functions with bounded variation is suitable,
as was shown by J.W. Cowieson [Cow0(] (although he proved only the existence of
invariant measures, and not stronger properties). For less smooth maps, B. Saussol
worked with spaces of functions with bounded oscillation [Sau0(|. Following the

method used in [BG0Y], we will work here mainly with Sobolev spaces.

The approach followed in this article has many advantages. We work with usual
and well-known spaces, instead of ad hoc function spaces. Moreover, the dynamic
does not need to be studied in detail: this gives a very robust method, which can
be more or less easily adapted to prove similar results for other function spaces or
dynamical systems, since it relies only on the core properties of the function spaces.



This paper is the outcome of a master’s thesis, supervised by V. Baladi. The main
goal is to simplify the proofs of the previous paper from V. Baladi and S. Gouézel
IBGOY, restricting ourselves to the study of expanding maps. Most of the setting
and proofs in sections 1 to 6 are directly adapted from that work (a notable exception
being Lemma [L.1], corresponding to Lemma 31 in [BG0Y but whose proof is adapted
from another article [BGI(]). There are multiple gains: the setting is simpler, the
function spaces used more standard (classical Sobolev spaces) and most of the proofs
much shorter (some of which are even found in the literature). We will also deal with
a limit case, when the transformation is piecewise differentiable with a Lipschitz
derivative, and prove a new result involving functions with bounded variation -

basically a stronger version of J.W. Cowieson’s theorem [[Cow0(].

The definitions and setting are explained in Section 1, as well as the main results:
a bound on the essential spectral radius of transfer operators, Theorem [.3, and
its consequence on the existence of finitely many mixing physical measures with
densities in appropriate Sobolev spaces, and on the rate of mixing for Holder test
functions (Corollary [[.LJ and Theorem [.6). We shall also present an application
of those result on a class of piecewise affine maps. Section || presents extensively
the Sobolev spaces and their basic properties, as well as the space of functions
with bounded variation. Section B contains the main lemmas, which exploit the
properties of the Sobolev spaces; they are used in Section f] to prove Theorem [.3.
Section [J contains the proof of Theorem [.§. Finally, in Section f| we will deal
with a limit case, where the transformation is piecewise differentiable with Lipschitz
derivative and one works on functions with bounded variation, and a discussion
on the previous similar results by J.W. Cowieson [Cow0(] and B. Saussol [Sau00].
This last section also highlights the fact that our main theorems can be quite easily
adapted to non-Sobolev function spaces.

1 Setting and results

If B is a Banach space, we denote the norm of an element f of B by ||f||5. In this
paper, a map defined on a closed subset of a manifold is said to be C¥ or C* if it
admits an extension to a neighborhood of this closed subset, which is C*¥ or C* in
the usual sense. For a € (0,1), a map is said to be C* if it is a-Holder, C*e if it is
C! with a-Hélder derivative, and C'TUP if it is C with Lipschitz derivative.

Let X be a Riemannian manifold of dimension d, and let X be a compact subset
of X. We call C! hypersurface with boundary a codimension-one C! submanifold
of X with boundary (i.e., every point of this set has a neighborhood diffeomorphic
either to R?~! or R?2 x [0, +00)).

Definition 1.1 (Piecewise C'* and C'*!P expanding maps).
For o > 0, we say that a map T : Xo — Xy is a piecewise C1T% expanding map
(respectively piecewise CYTYP expanding map) if:

o There exists a finite number of disjoint open subsets Oy, ..., Oy of Xy, covering
Lebesgue-almost all Xy, whose boundaries are unions of finitely many compact
C* hypersurfaces with boundary.

o For 1 < i < I, there exists a C'™ (respectively CYUP) map T; defined on
a neighborhood of O;, which is a diffeomorphism onto its image, such that T’



coincides with T; on O;.

DT,
e For any x € Xy and whenever T;(z) is defined, A(z) := inf 4| ()]

> 1.
vET: |U|

Since we choose to study the asymptotical combinatorial complexity, we have to
quantify it. It will be done the following way.
Let choose a non-zero integer n.
Let i = (io,...,in-1) € {1,...,1}". We define inductively sets O; by O,y = O;,
and
O(iO,...7in—1) = {:E € Oy | Tiyx € O(ilv---yinfl)}' (1'1)

Let also 1" =1T;, , o---0o1T,; it is defined on a neighborhood of O;.
For any x € Xy and whenever T;*(x) is defined, we denote :

DT?
An(z) := inf DT ()]
vET |’U|
We define the complexity at the beginning
Db :mz)x(XCard{i: (igy .- yin_1) | € Os}, (1.2)
rEXo

and the complexity at the end

D = max Card{i = (ig,...,in—1) | z € T™(O5)}. (1.3)
T 0

For T(x) = 2z mod 1 on [0, 1] we have D¢ > 2" but fortunately this quantity
plays no role when T is piecewise C!TMP where we can take p as close to 1 as
needed in Corollary [.F (cf. Corollary B.1]), or work in the space of functions with
bounded variation - see Theorem or Cowieson’s Theorem (referenced here as
Theorem p.9).

For generic piecewise expanding maps, the complexity D? increases subexponen-
tially, and therefore does not play an important role in the spectral formula ([.5)
below (see [[Cow03]). However, some pathologic cases may arise when the iterates of
the map T cut some open set ) too often, and then map it onto itself. In spite of
the expansion, these numerous ”cut-and-fold” may make the images of () arbitrarily
small, so that the physical measure starting from any point of €2 can be, for instance,
a Dirac measure. This phenomenon is central in the examples given by M. Tsuji
and J. Buzzi [Buz01]. A control on the combinatorial complexities ensures
that the expansion do beat the cuts.

1.1 Spectral results

The results about the physical measures will be obtained through the study of
transfer operators (or Perron-Frobenius operators); we now define them.

Definition 1.2 (Transfer operator).

Let o > 0. For all g : Xo — C such that the restriction of g to any O; is C* (in
the sense that it admits a C* extension to some neighborhood of O;), we define the
transfer operator L, on L>®(Xy) by:

Lou(x) = > gy)uly). (1.4)



These operators will act on Sobolev spaces 7—[;, forl <p<oocand 0 <t <
min(1/p, ), or on functions with bounded variation. As for now, we will just recall
that the Sobolev spaces H! on R? are defined as {u € L¥ : F1((14]¢|*)"*(Fu)(€)) €
LP}, with ||u||HZ = H]—Ll((l + |§|2)t/2(.7-"u)(§))HM, where F denotes the Fourier

transform. Using charts, one can define a Sobolev space 7—[; on X. Here, t is an
index for regularity; as ¢ increases, 7—[2 contains more regular functions. The Sobolev
and "bounded variation” spaces will be defined precisely in Section B

The first result is about the essential spectral radius of £, when acting on ’Hé;
then, an application of this result to Ly/|det pr), the Perron-Frobenius operator, will
lead to the proof (under some conditions) of the existence of finitely many mixing
physical measures.

Theorem 1.3 (Spectral theorem for piecewise C1* expanding maps).

Let o € (0,1], and let T be a piecewise C'™* uniformly expanding map. Choose
p € (1,400), and 0 < t < min(1/p, ). Let g : Xo — C be a function such that the
restriction of g to any O; admits a C* extension to O;. Then L, acts continuously
on ’H;, where its essential spectral radius is at most

1
Jdim (D))en (D)2 g det DT 2 A, (1.5)
n—1
where g™ = H goT", and the limit exists by submultiplicativity.
=0

When we say that £, acts continuously on ’H;, we mean that, for any u €
H;, N 1L>°(Leb), the function Lyu, which is essentially bounded, still belongs to H;
and satisfies [|Lgully,, < C|lull,,. Since L is dense in H} (by Theorem 3.2/2

P P

in [I¥i77]), the operator £, can be extended to a continuous operator on 7—[;. The
restriction 0 < ¢ < 1/p is exactly designed so that the space H;, is stable under
multiplication by characteristic functions of nice sets (see Lemma B.4). We also
provide a version of this theorem for piecewise C'*MP maps, including piecewise
C? maps. We cannot use the function space H{ (which for instance contains only
continuous functions in dimension 1); we will instead use the space of functions with
bounded variation BV, which will be defined rigorously in Section J:

Theorem 1.4 (Spectral theorem for piecewise C! TP expanding maps).

Let be T' a piecewise C*TVP expanding map. Let g : Xo — C be a function such
that the restriction of g to any O; admits a Lipschitz extension to O;. Then L, acts
continuously on BV (Xy), where its essential spectral radius is at most

lim (DY)7]lg™]| det DT"|A; 7. (1.6)

n—-+4o0o

1.2 Physical measures

The empirical measure of T" with initial condition x € X is the weak limit, if it
exists, of 1/n EZ;& Ork,; such a measure is always T-invariant. A physical measure
of T' is an invariant probability measures p which is an empirical measure for a set
of initial conditions of non-zero Lebesgue measure; the basin of a physical measure
1 is the set of all initial conditions whose corresponding empirical measure is .



In the following and for any finite measure p and integrable function f, the
expression (u, f) will be used for the integral of f against u. We may see any
integrable function u as the density (with respect to Lebesgue measure Leb) of some
finite measure, and use (u, f) instead of (udLeb, f). For all f € L>* and u € H},
we have (u, f o T') = (L1/|det 1|, f); @ nonnegative and nontrivial fixed point u of
L1)|det p7| N 7—[; then corresponds (up to normalization) to an invariant probability
measure u, = udLeb whose density with respect to the Lebesgue measure is in
'H;. By Birkhoff’s theorem, when such a measure pu, is ergodic, it is physical,
since 1/n EZ;& Ok, converges weakly to pu, for Lebesgue-almost every point in the
support of u.

Theorem implies in this setting:

Corollary 1.5.
Under the hypotheses of Theorem [1.3, assume that

At det DT H|" < L. (1.7)

]LOO

lim (D5)s% - (D5) ) |

n—-+4o0o

Then the essential spectral radius of Ly)|4et pT) aCting on ’H; 18 strictly smaller than
1.

If (L.7) holds, we will be able to prove the existence of a spectral gap, i.e. of
some 7 < 1 such that {z € Spec(Lijjaetpr)) : 7 < |2| < 1} = 0, together with a
nice repartition of the eigenvalues on the unit cicle. The number 7 can be larger
the essential spectral radius, as is shown for instance by G. Keller and H.H. Rugh
in [KR04] in a 1-dimensional setting. This will imply the following:

Theorem 1.6.

Under the assumptions of Theorem [[.3, if (L) holds, then T has a finite number
of physical measures whose densities are in ”H;, which are ergodic, and whose basins
cover Lebesque almost all Xy. Moreover, if  is one of these measures, there exist
an integer k and a decomposition p = py + - - -+ pg such that T sends p; to pjq for
J € ZJ/KZ, and the probability measures ku; are mizing at an exponential rate for
T* and a-Holder test functions.

The above will be proved in Section [, although the arguments are classical. We
shall also obtain its bounded variation counterpart:

Theorem 1.7.
Under the assumptions of Theorem [[.4, assume that:
. byl -1 %
Jim (D)= - A | < 1 (1.8)

Then T has a finite number of physical measures whose densities are in BV (Xj),
which are ergodic, and whose basins cover Lebesque almost all Xy. Moreover, if i1 is
one of these measures, there exist an integer k and a decomposition p = py+- - -+ g
such that T sends j; to pji1 for j € Z/kZ, and the probability measures ky; are
mizing at an exponential rate for T* and a-Holder test functions.



1.3 Piecewise affine maps

We now describe an explicit class of maps for which the assumptions of the previous
theorems are satisfied. Let Ay, ..., Ay be dxd matrices with no eigenvalue of modulus
smaller or equal to 1, such that any two of these matrices commute. Let X, be a
(non necessarily connected) polyhedral region of R% and define a map T on Xj by
cutting it into finitely many polyhedral subregions Oy, ..., Oy, applying A; to each
open set O;, and then mapping A;0y, ..., AxyOy back into X, by translations. It is
obviously piecewise C* and uniformly expanding. Let A be the lowest modulus of
all the eigenvalues of all the matrices A;; we get easily A\, > \".

Proposition 1.8.
Under those assumptions, the essential spectral radius of Ly 4et pr| acting on BY
is at most A\, thus strictly smaller than 1. Therefore, T satisfies the conclusions

of Theorem [I.7.

Proof.
Let K be the total number of the sides of the polyhedra O;. Around any point z,

the boundaries of the sets Oy, . ;,_,) are preimages of theses sides by one of the maps
n—1 n k—1

Aigy -, H A;,. Hence, there are at most J(n) = K Z Card{H A, {igy ey ig1} €
1=0 k=1 1=0

{1,.., N}*} such preimages. Since all the A; commute, there are at most A" different
k-1

maps which can be written as H A;,, and J(n) grows polynomially. Following the
1=0
claim p.105 in [Buzd7], D% < 2J(n)?. This quantity grows subexponentially.
By Theorem [[.4, the essential spectral radius of L;qct pr| acting on BV is
bounded by A7 O

This proposition can also be deduced from Cowieson’s theorem [Cow00] whenever
the polyhedral domain is connected.

2 Sobolev and bounded variation spaces

It is now time to define precisely the function spaces we work with. First, we will
present the Sobolev spaces H;, (p € (0,1) and 0 < ¢) and some of their properties.
Since they have been thoroughly studied in the 1960s-1970s, we may exploit many
ready-to-use results. They are spaces of IL.” functions which satisfy some regularity
condition; since the transfer operator of expanding dynamics tends to improve the
regularity, this may imply the existence of a spectral gap for these operators. We
show two equivalent ways to define these spaces; the first is via the Fourier transform,
the second via interpolation theory. Then, we will present the space of functions
with bounded variation, which is nicer than the Sobolev space Hj in our setting.

2.1 Definition via Fourier transform

Definition 2.1 (Local spaces H)).

Forl<p<oo,t>0,¢&€R?, put a,(€) = (1 + |€]2)/%. We define the space H)
of functions in R? as the subspace of functions u € LP such that F'(a,Fu) € LP
with its canonical norm, i.e., the ILP norm of the expression above.

7



Since a, increases at infinity, the condition F~*(a,Fu) € L? can be understood
as a condition on the decay at infinity of Fu, hence on the regularity of w.

If 0 <t < «a, we shall see that H;; is invariant under composition by C'*
diffeomorphisms: this is Lemma B.3. Hence, we can glue such spaces locally together
in appropriate coordinate patches, to define a space H;, of functions on the manifold:

Definition 2.2 (Sobolev spaces on Xj).

Let 0 <t < a. Fiz a finite number of C1** charts Kk, ..., k; whose domains of
definition cover a compact neighborhood of Xy, and a partition of unity p1,...,py,
such that the support of p; is compactly contained in the domain of definition of k;,
and Y p; =1 on X. The space ’H; 1s then the space of functions u supported on X
such that (pju) o /1;1 belongs to H; for all j, endowed with the norm

[l ==:£:}KPjU)C>%§1HH5- (2.1)

Changing the charts and the partition of unity gives an equivalent norm on the
same space of functions by Lemma B.I. To fix ideas, we shall view the charts and
partition of unity as fixed.

The Fourier transform approach also provides some effective theorems, for in-
stance Fourier multipliers theorems (the following is e.g. Theorem 2.4/2 in [Ixi7q)):

Theorem 2.3 (Marcinkiewicz multiplier theorem).

Let b € C4RY) satisfy |CYDb(C)| < K for all multi-indices v € {0,1}¢, and all
¢ € R Forallp € (1,00), there exists a constant C,, 4 which depends only on p and
d such that, for any u € 1L,

|FHbFu)|, < CpaK Jlull, - (2.2)

2.2 Definition via interpolation theory

Now, let us present the complex interpolation theory, developped by J.L. Lions,
A.P. Calderén and S.G. Krejn (see e.g. §1.9 in [Tri7g]).

A pair (By, By) of Banach spaces is called an interpolation couple if they are both
continuously embedded in a linear Hausdorff space B. For any interpolation couple
(Bo, B1), we let L(By, B1) be the space of all linear operators £ mapping By + B; to
itself so that L5, is continuous from B; to itself for j = 0,1. For an interpolation
couple (By,B;) and 0 < 6 < 1, we next define [By, B;]y the complex interpolation
space of parameter 6.

Set S ={z€ C|0< Rz < 1}, and introduce the vector space

F(By,By) = {f: S — By + By, analytic, extending continuously to S,
with sup [|f(2)[l 5,45, <o00,t— f(it) € C(R, By),
z€S

and t — f(1+it) € G(R, By)}.

Then, we define the following norm on this space:

11l 0,0y 2= max([[ILF @), || [1F L+ i), 1])

8



The complex interpolation space is defined for 6 € (0, 1) by
[Bo, Bi]g = {u € By + By | 3f € F(By, B1) with f(0) = u},

normed by

HUH[BO,Bl}@ = f(ig)liu ||f||F(Bo,Bl) :

The main idea is that the [By, Bi]y spaces are intermediates between By and By,
“close to By” for low parameters # and “close to B;” for high parameters. Usually,
the embedding can be done for example in &', the dual space of the space of C*
rapidly decaying functions. We mention here the following key result (Theorem 1.(c)

of §2.4.2 in [[IT17§)):

Proposition 2.4 (Interpolation of Sobolev spaces).
For any to, t1 € Ry, po, p1 € (1,00) and 6 € (0,1), the interpolation space
[H[0, H'g is equal to H) fort =to(1 —0) + 1,0 and 1/p = (1 —0)/po + 0/p1.

In particular, for allt € (0,1) and p € (1,00), H, = [, H}];.

Remark 2.5 (Alternative definition of Sobolev spaces).

By Proposition [2.4, we have another way to define the 'Hé spaces on a (compact)
Riemannian manifold X, this time intrinsically. Since there exists a Lebesgue mea-
sure Leb on X, the spaces ILP are well defined. Moreover, the space ’HII) s none other
than {u € LP : Vu € LP} with the norm HuHH; = ||ullpp + [|Vull,, the derivative
being taken in a weak sense, and defined via the Levi-Civita connection (see Theorem
1.(b) of §2.8.8 in [Tri7g]). It is not difficult to see that M}, = [LP(Xo), H,(Xo)lt,
with a norm equivalent to the one previously defined (Remark 2 p.321 in [Tri93)).

Here, the main interest of interpolation theory will be to derive inequalities for
operators in the H; spaces from inequalities in the IL.” and H; spaces, where the
manipulations are much easier. This will be made possible thanks to the following
property (see e.g. §1.9 in [[ITi7g]): for any interpolation couple (By, Bi), 6 € (0,1)
and £ € L(By, B;), we have

1-6 0
HEH[B(),BI}@—)[B(),BI}@ S ”LHB()—)BO HE”Bl—)Bl (2'3>
Remark 2.6 (Sobolev spaces with negative parameter).

The dual spaces of the Sobolev spaces are well known (see e.g. §4.8.1 in [Tri78]):
for any p € (1,00) and t € Ry, H! is reflevive and (HL)* = H,', where 1/p +
1/p* =1 and the ’H;f 1s defined via the Fourier transform the same way as the ’H;
spaces. Such Sobolev spaces with negative parameter will appear (although briefly),

for instance in the proof of Lemma [3.].

2.3 Functions with bounded variation

In order to define the space of functions with bounded variation, we proceed in the
same way as in Subsection R.1: we first define this space on open sets of R, and
then use the charts to define such a space on a Riemannian manifold.

Definition 2.7 (Functions with bounded variation).



Let us denote the Lebesgue measure on R? by Leb. Let Q be an open set of R.
For u € LY(Q), we define the variation of u, V(u), by

V(u)=d ' sup / u.div(p) dLeb.
PECE (QRY) JQ
llello <1
The space of functions with bounded variation on <), denoted BV (L), is the subspace
of functions u of L'(Q) such that V(u) < +o0, endowed with the norm ||u|gv) =
[l + V(w).
Remark 2.8.
Formally, we have (see e.g. Remark 1.8 in [Giu8}/):

V(u) = d_l/Q|V(u)|.

The derivative being taken in a weak sense, |V (u)| may be a measure with no density
with respect to the Lebesque measure. For Ct functions, it can be taken literally, with

V(u):dl/ﬂizd; Ou

8x,~
As for the Sobolev spaces, we may define the space of functions with bounded
variation on a compact set Xy of a Riemannian manifold X starting from its def-
inition on R? (this space also behaves well under composition by C'*MP diffeomor-
phisms, as is shown by Lemma p.g) and transporting by the charts.

dLeb.

Definition 2.9 (Functions with bounded variation on Xj).

Fix a finite number of CY*YP charts k1, . .., k; whose domains of definition cover
a compact neighborhood of Xy, and a partition of unity p1,...,ps, such that the
support of p; is compactly contained in the domain of definition of kj, and ) p; =1
on X. The space BV of functions with bounded variation on Xy (sometimes also
denoted BV(Xy)) is the space of functions u supported on Xo such that (p;u) o /-@j_l
belongs to BV(RY) for all j, endowed with the norm

J
lallgy = D [[(p5u) © 85 |y e - (2.4)

j=1
Since we can neither use the Fourier transform nor the interpolation theory
here, we will need different tools for the part of our proof relying on functions with
bounded variation. We choose to use two theorems dealing with the approximation
of functions with bounded variation by C*> functions, and then to work with smooth
functions (for which the computations can be done explicitly). They are respectively
a variation on Theorem 1.17 and Theorem 1.9 in [Giu84]. The first is obtained via
convolution with smooth kernels (say, gaussian or C* with compact support), the

second follows directly from the definition of the variation.

Theorem 2.10 (Approximation of functions with bounded variation).
For any function u in BV (RY), there exists a sequence of C*® functions (tn)nen
which converges in L' to u, and such that (||un|gygay)nen converges to ||ul|gyga)-

Theorem 2.11 (Control of the approximation).
Let u € BV(R?), and (up)nen @ sequence of functions with bounded variation
which converges to uw in L', Then lullgyray < liminf [tnllpyra)-
n—-+0o0
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3 Elementary inequalities

Our goal in this section is to prove several continuity results for operations in the
H; spaces, for instance multiplication by C functions or by characteristic functions
of intervals. They show the convenient properties of the spaces we are working with,
provided we take good values of ¢t and p, and are virtually sufficient to get the main
theorems.

Hence, obtaining versions of the main theorem for other parameters or function
spaces can be reduced to the obtention of those results of continuity; see for instance
Section [ for the corresponding results in the BV space.

3.1 First inequalities

The first inequalities are continuity results for some linear operations; they were
proven in the 60s and 70s.

We first deal with the multiplication by smooth enough functions, which will be
necessary primarily when we multiply v and g, and also when it comes to study what
happens at a small scale (we will multiply the functions v with smooth functions
with small supports). A proof of the following lemma can be found in §4.2.2 of

[TEi97).

Lemma 3.1 (Multiplication by C* functions).
Let 0 < t < « be real numbers. There exists Cy o such that, for all p € (1,400),
for all uw € HY{(RY) and g € C*(R?),

lgull gy < Crallgllea 1l g -

The next inequality (Corollary 1.4.2 from [Str67]) is central for our study, since
it tells us that H(R?) behaves well in a “piecewise setting” up to constraints on the
parameters t and p. We note that one has to combine Corollary 1.4.2 from [Btr67]
with its Corollary 1.3.7 to show that the constant C, in the following lemma does
not depend on €2 otherwise than via L.

Lemma 3.2 (Multiplication by characteristic functions of nice sets).

Let 0 <t < 1/p < 1 be real numbers; let L > 1. There exists Cy,, such that for
each measurable subset 0 of R? whose intersection with almost every line parallel to
some coordinate axis has at most L connected components, for all u € H;(]Rd),

0l < CopL Jull

3.2 Composition with C'* diffeomorphisms

The injection from 'Hé into IL? is compact, t being positive and X, compact (in the
case of compact subset of some R?, this is for instance Lemma 2.2 in [Bal]; the cor-
responding result for compact subset of Riemannian manifolds follows immediatly).
Thus, Lemma B.3 (a version of Lemma 24 in [BG0Y)) is essential in the way it gives
the decomposition of ||Lyul[4: into a part bounded by ||ull3y, and a part bounded
by ||u||Lr. By Hennion’s theorem [Hen93], the part bounded by ||u||L» will not affect

our estimation of the essential spectral radius of £, so that only the part bounded
by [|ull3 matters.
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When we apply Lemma B.3, F' will be the local inverse of an iterate of T, i.e.

some T; ™ (or rather the maps on some open set of R? obtained by transporting

T, via the charts), and A will be a local approximation of DT;". If A is such an

1
approximation in a neighborhood of some x, then, T" being expanding, we can write

|A]| < ):n_l where )\, is the essential infimum of A, on this neighborhood of z.

Lemma 3.3 (Composition with smooth diffeomorphisms).

Let F € CYR% RY) be a diffeomorphism and A € GL4q(R) such that, for all
ze€RY A Lo DF(2)]| €2 and |DF(2) 1o A < 2.

Then, for all t € [0,1], for all p € (1,+00), there exist constants Cy, and C;
which do not depend on F nor on A, such that, for all u € H;,

_1 _1
lwo Fll;y < Cipl det A2 [|A]" ull y + C7 [ det A7 [Jull,

Proof.

We will write uo F =uoAoA o F, and put F = A~ o F. First we deal with
uo A, and then with uo F.

First step: uo A

We want to estimate HquHHé = || F YarF(uo A))|l,, where a;(§) = (1 +

|€)¥2. A change of variables gives F~'(a;F(uo A)) = F~(a; o "AF (u)) o A.
If |€] > 1/]|A|l, we have
(a; 0 "A)(E) = (14 "AE")72 < (1 + [JAIPIE?)"? < 22| A]l"ar (€).
On the other hand, if [£] < 1/||A]|, we have

(ar o "A)(€) < (1 + [|AI*[ef)* < 272,
Finally, we get a;0'A < 2!/2||A||*a, + 22, and by the same means the same kind

tA
of upper bound for the £7D” <||:|t|toﬁ) for all v € {0,1}%. By Theorem P.3,
t

there exist C;, and Cj , such that

|7 (ar 0 "AF (w))]|,, < Crpl det A7VPI AP (| F~HaF (w)||,,
+C, | det A|7VP || FH(F (w) [
< Cyp|det A|7VP| Al [eell g7y + Cy, det A|7V7 |lufl, -

The following estimate ensues:

luo All gy < Cupl det A|TVPI AN full gy + oyl det A7V Jully, . (3.1)

This inequality ends the first part of the proof.

Second step: uo F 3 )
We will use interpolation. Notice that, since | DF|| > 1/2 everywhere, | det F!|

24 and ’ uwo I ) < 24P ||u|,, for all u € ILP. We also get the same way Hu o F’
Lr

vV

<
Hy
C,24/p+1 [ull gy for some C, since the H) norm is equivalent to |[u||, + || Dul|;, (see
for instance §2.3.3 in [[[Ti7g)]).

12



Hence, by Proposition P.4, there exists Cy, such that, for all ¢ € [0,1], for all
ue H!
p7

Hqu) < 297 |l e (3.2)
HY p
The lemma follows immediately from (B.I) and (B.9). O

Since the injection Hé — L is continuous (¢ being non-negative), a consequence
of (B.) is that, for all p € (1,+00) and ¢ € [0, 1], there exists a constant Cy, such
that, for all u € H/(R?), for all A € GLq(R),

luo Allmy < Crpsup{[|All, 1}| det A~ ull 5. (3.3)

3.3 Localization

For the proof of Theorem [.3, we work locally, on small open sets, and the compact-
ness of X allows us to work globally with a finite number of such sets. However,
we need to control the intersection multiplicity of those sets. This control will be
obtained with a partition of the unity and a "zoom” to get some regularity when
working at small scales.

Lemma 3.4 (Localization principle).
Let n € C*(RYR), and write, for all z € R? and m € Z4, n,(x) = n(x + m).
Then, there exists a constant C ., such that, for all u € H;,

1
(Z H%M!Z;,) < Crpm lull g - (3.4)

meZd

This lemma is Theorem 2.4.7 from [[Ir197).

The constant Cy,,,, depends on ¢, p, on the support of  and on its C* norm for
some large enough k. The proof we give of a localization principle in Section [ will
make explicit a kind of dependence of Cgy,, (the corresponding bound for the space
of functions with bounded variation) in 7.

Lemma 3.5.

Let 1 < p < 400 and t € Ry. There exists a constant Cy, such that, for
any functions vy, . .., v, with compact support in R?, belonging to H;, there exists a
constant Cyp g1, depending only on the supports of the functions v;, with

1 p

>

i=1

l l
< Gy Y Nvillfyy + Cropgoy Y lillE
=1

i=1

H
where m s the intersection multiplicity of the supports of the v;’s, i.e. m =

sup,cre Card{i | z € Supp(v;)}.

Proof.
Let B be the operator acting on functions by Bv = F~1((1+4|¢|?)2Fv), so that
1]y = 1BVll -

13



By Lemma 2.7 in [Bal], for any compact K and any neighborhood K’ of K, there
exist C rrpp > 0 and a function ¥ : R? — [0, 1] equal to 1 on K and vanishing on
the complement of K’, such that for any v € H;; with support in K,

19Bv — Bolly, < Cre e [0l -1 - (3.5)

Let vy, ..., v; be functions with compact supports whose intersection multiplicity
is m. Choose neighborhoods K7, ..., K] of the supports of the v;s whose intersection
multiplicity is also m, and functions ¥y, ..., ¥; as above. Then

Z’Ui ZBUZ Z ‘~I/ZB’UZ

<
p

p P p
- + Cr.xtp Z Hvi”?ﬁ—l . (3.6)
Hy, L Lp i
Since t < 1, the inclusion L? — Hé—l is continuous, and HviHZt,l < C, ||lvilF,.
p
By convexity, the inequality (zy + -+ + &m)?” < mP™ 3 27 holds for any non-

negative numbers x1,..., ;. Since the multiplicity of the K is at most m, this

yields
Z \I/ZB’UZ

Integrating this inequality and using (B.6), we get the lemma. O

p
<mpt Z | Bu; |P.
i

4 Proof of the main theorem

Before proving Theorem [[.J, we need to show that 7" does not "hack” too much the
functions, or in other words that its discontinuities are not so bad that functions
in ”H; do not stay in this space when composed by 7. The following lemma will
allow us to apply Lemma B.3. For once, its proof is adapted from [BGI(] instead of

Lemma 4.1.

For1 < <1, let L; be the number of smooth boundary components of O;, and
L =max; L;.

For any n > 1, for any i = (ig,...,in_1), for any x € Oy, for any j such that
x € Supp p;, there exists a neighborhood O" of x and an orthogonal matriz M such
that the intersection of Mr;(O" N O;) with almost any line parallel to a coordinate
axis has at most Lm components.

Proof.

If z is in the interior of some O;, we may just take for O’ a ball small enough so
that O" C O;, and M = Id. Let assume that x belongs to a backwards image of a
C! hypersurface of some 90;, by TF, with k < n.

On a small neighbourhood of x, the smooth boundary components of O; are close
to their tangent hyperplanes in x. We can choose d orthogonal vectors of norm 1 all
transverse to all those hyperplanes. The smooth boundary components are C!, so
that the vectors we chose are transverse to the boundary components (an not only
to the hyperplanes) on a small enough ball around x, that we shall denote O'.

14



n—1

We have O; = ﬂ T’kOik, each of the T‘kOik being an open set bounded by

at most L hypersurfaces; hence, O; is bounded by at most Ln preimages of those
hypersurfaces under some 7. By construction, each line parallel to any coordinate
axis in the new basis intersects any of these backward images of hypersurfaces in at
most one point, so that their intersection with O; N O’ has at most Ln connected
components. All we need is to take for M the change-of-basis natrix from the new
orthogonal basis to the canonical one. O

We now have all the tools we need to prove the main theorem.

Proof of Theorem [[.3.

Let p and ¢ be as in the assumptions of the theorem. Let n > 0, and r, > 1
(the precise value of 7, will be chosen later). We define a dilation R, on R? by
Ry (z) = rpz. Let ||lul[,, be another norm on #}, given by

J
lull, = > [I(ogu) 0 55 0 B (4.1)
j=1

The norm |[[ul],, is of course equivalent to the usual norm on H;, but we look at
the space X at a smaller scale. Functions are much flatter at this new scale, so
that we have no problem using Lemma B.J], which involves their C* norm: we will
replace it by their > norm. This will also enable us to use partitions of unity (7,,)
with very small supports without spoiling the estimates. The use of this ”zooming”
norm is similar to the good choice of ¢, in [Sau0(].

We will prove that there exists C, .o such that, if n is fixed and 7, is large
enough, then there exists Cy,,, such that:

1£2u]l” < Copn [l + Copa D (DL (L) || det DTN 792, [,
(4.2)
We have already observed that, since X is compact and ¢ > 0, the injection of
H;, into IL” is compact (see e.g. Lemma 2.2 in [Bal]). Hence, by Hennion’s theorem
(actually Corollary 1 in [Hen93)), the essential spectral radius of L7 acting on ’H;

(for either ||ul|,, or ||ul|,, since these norms are equivalent) is at most
P

Iy |

CopmalLn)" (D) || det DT A )9 | (4.3)

Taking the power 1/n and letting n tend to +oo, we obtain Theorem since
the quantity (C’l/p (Ln)P)Y/™ converges to 1.

t,p,m,
It remains to prove (f3), for large enough r,. The estimate will be subdivided

into three steps:

1. Decomposing v into a sum of functions v;,, with small supports and well
controlled ||-||, norms.

2. Estimating each term (1Oig(")vj7m) oT;™", for 7 of length n.

3. Adding all terms to obtain Lju.
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First step:
For 1 <j < Jandm € Z% let 0j,, = 1y - (pju)o,%j*loR;l, where n,,(z) = n(x+

m), with 7 : R? — [0, 1] a compactly supported C> function so that Z N = 1.

meZd
Since the intersection multiplicity of the supports of the functions 7,, is bounded,

this is also the case for the v;,,. Moreover, if j is fixed, we get, using Lemma 3.4,

D gl = D7 - (o) 0wt o B, (4.4)

meZ4 meZd
< Cipn H(,OJU) © ’f;l © R;IHI;{Ig < Cipg ||u||fz

Since R,, expands the distances by a factor r, while the size of the supports of
the functions 7, is uniformly bounded, the supports of the functions

Vjm = Ujm © Bn © Kj = 1hm © B 0 55 - (pju)

are arbitrarily small if r,, is large enough. Finally
u = iju = Z Vjom- (4.5)
J Jm

Second step:
Fix j, k€ {l,...,J},m € Z%and i= (ig,...,i,_1). We will prove that

H(pk(g(n)loivj,m) © 1—‘1_”) o “1;1 © Rgl HHzt7 (46)

< Crpa ||ullps + Crp(Ln) H\ det DT™|7 g™\ !

il

First, if the support of v;,, is small enough (which can be ensured by taking
rn large enough), there exists a neighborhood O of this support and a matrix M
satisfying the conclusion of Lemma [ for all z in O;. Therefore, the intersection of
R, (M(r;(O N Oy))) with almost any line parallel to a coordinate axis has at most
Ln connected components. Hence, Lemma B.3 implies that the multiplication by
lono, © /-@j_l oM~'o R ! sends H; into itself, with a norm bounded by C} ,Ln. Using
the fact that M and R,, commute, the properties of M, and (B-3)), we get

10, 0 w7 o Ry .f)j,mHH; < CopLn [[Omll s - (4.7)

Next, let
Ojam = ((pr 0 T{)1oy) 0 k5 ' o Ry - Tjm

(we suppress i from the notation for simplicity). Let also x be a C* function
supported in the neighborhood O of the support of v;,, with x = 1 on this support.
Up to taking larger r,, we may ensure that H(X<pk oT))o /@;1 o R;cha < 2. Then

Lemma B.1] and ([.7) imply

105 kmll g < Copalrt [|0gmll gy - (4.8)

In addition, putting G = k; 0T} " o /@,;1, we have
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((pr o T ojm) o Ty "okt o RV = mo RpokjoTy "okt o R (4.9)
= ﬁj,k,m e} Rn oGo R;l

Applying Lemma B.3 to F = R, o G o R,;!, we get (for some point = in the

n

support of v;,,, and some matrix A of the form DG(R,'(x)) for some z, so that
1Al < A7 ()

[ © R0 G o R e < Crpn [[ulls (4.10)

'l
iy

_1 —t 0~
+Ct,p|detA| P)\n({L‘) t ||Uj,k,m||7.% .

The constant Cy,, also depends on the choice of A. Let x be a C* function
supported in O" with y = 1 on the support of v, 0T, ™. For § > 0, we can ensure by
increasing r,, that the C® norm of (yg™)oT; "ok, o R, is bounded by |¢™(z)|+6
for some « in the support of v;,,. Choosing > 0 small enough, we deduce from

(E10), Lemma BJ] and (E3)
(k9" 10305m) 0 Ty ™) 0 3 0 B
< Copm tllys + Crpaln H| det DT"[F g™\

This proves (£.§).

Third step:

We have Lju = Z Z(loig(")vjvm) o Ty ". (Note that only finitely many terms

Jjm i

in this sum are nonzero by compactness of the support of each p;.) We claim that
the intersection multiplicity of the supports of the functions (10,9™v;,,) o T; ™ is
bounded by C,Dy,. Indeed, this follows from the fact that any point x € X, belongs
to at most D¢, sets 1*(0;), and that the intersection multiplicity of the supports of
the functions v;,, is bounded.

To estimate HE;‘an, we have to bound each term H(/)kﬁgu) ok, o R;lHH” for

P

1 <k < J. Let us fix such a k. By Lemma B.§, we have

Ml

1Corlgu) om0 By,

< Cupn [ullty + Crpa(Cpn D7) ™ 3 (1 (Losg ™ vim) 0 T 0 1" 0 B

]7m7l

We can bound each term in the sum using ([.6) and the convexity inequality
(a + b)P < 277Y(aP + b). Moreover, for any (j,m), the number of parameters ¢
for which the corresponding term is nonzero is bounded by the number of sets O;
intersecting the support of v;,,. Choosing r, large enough, we can ensure that
the supports of the v;,, are small enough so that this number is bounded by Db,

Together with (£.4), this concludes the proof of ([.3), and of Theorem [.3. O
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5 Existence of finitely many physical measures

In this section, we prove Theorem [[.4. In view of Theorem [.4, and with a few
minor adaptations, the same proof leads to Theorem [[.1. This proof is a simplified
version of Appendix B in [BG0Y], which is itself adapted from [BKL0J].

Proof.

First step: the spectrum

First, note that the Lebesgue measure Leb on the manifold X, is in (#)* and
is a fixed point for £*, so that 1 is an eigenvalue of £* and thus is in the spectrum
of L. By Corollary the essential spectral radius pegss of L is strictly smaller than
1, and 1 is an eigenvalue of L.

We also have the inclusions 'Hf, C L» C LY, so that L*™° C ’H;f and any essentially
bounded function on X, can be seen as a linear functional on H;.

In the following, when ~ denotes an eigenvalue of £ of modulus strictly big-
ger than the essential spectral radius, E, will denote the corresponding finite-
dimensional eigenspace and 7, : ’H; — E,, the corresponding canonical projection.
Consider such an eigenvalue ~; since L™ N 'H; is dense is 'H;, its image by 7, in E,
is a dense subspace of E.,, and therefore is E, itself.

Let us first prove that £ has no eigenvalue of modulus strictly bigger than 1,
nor a nontrivial Jordan block for an eigenvalue of modulus 1. Otherwise, let v be
an eigenvalue of £ of maximal modulus, with a Jordan block of maximal size d.
Therefore, there exists a bounded function f such that n=¢ Z?;ol v LY f converges
to a nonzero limit u. For any g € >,

n—1 n—1
1 S 1 . .
(u, g) ::/ ugdLeb = lim — E v L f,g) = lim — E fyl/fgoTldLeb.
Xo i=0 i=0

n—+oo N 4 n—s4oo nd -

If |y] > 1 or d > 2, this quantity converges to 0 when n — 400 since [ f-goT"dLeb
is uniformly bounded. This contradicts the fact that u is nonzero.

Let us take any eigenvalue v of modulus 1. Since 7 is of maximal modulus and
Pess < 1, the eigenprojection is given by

mf = lim lzwﬁf, (5.1)

where the convergence holds in 7—[;.

Let u € E,. Obviously, E, C H}, C IL? C L' and u can be seen as the density of
a finite complex measure with respect to the Lebesgue measure.

For any f e L™ N ’H; and any non-negative measurable bounded function g,

n—1

. 1 4
(w9} < Il Jim > [lgoT|dLeb

n—+oo n
=0

1 n—1
= / gL1 dLeb
n i=0

< [l [{mL, g)] -

< [ fllpe  lim

n—-+o0o
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This means that the measures u dLeb, where u belongs to some E, with |y| =1,
are all absolutely continuous with respect to the reference measure p = m1dLeb,
with bounded density.

For any u € E,, we write udLeb = ¢, u, where ¢, € L>(u) is defined p-almost
everywhere. The equation Lu = ~yu translates into T*(p,pu) = v u. Hence, since
W 1s invariant,

/moT—v1¢u|2du=/\<pu\20Tdu+/|7lsou\Q du—m/%oTvls@u du
=2 [Joul du = 2R [ 47 4T o) =

Let F, = {¢ € Loo(n) | ¢ oT = v '¢}. The map @, : u — ¢, is an injective
morphism from £, to F,,. We now show that ®, is also surjective, or in other words
that the functions ¢, 1 always belong to H,.

Let be ¢ € F,. Since the continuous functions are dense in L'(u), and any
continuous function can be uniformly approximated (thus approximated in L'(u),
all our measures being finite) by a sequence of C! functions, C* C 7—[; is dense in
L'(1). We choose an approximation (¢,,) of ¢ by C® functions in L'(u), and put
Uy = Ty (1 1).

The functions (u,,) belong to H7(Leb) by Lemma B-]. Moreover, |Lu| < L|u]
for any u € Hy, so that [|Lullpyqe) < lJullpsgen)-

For any f € C, we have:

n—1

NP ;
7y (Fm Dl ey < N inf = LMDy <l
=0

Hence, f — m,(fm1l) is continuous from C® (endowed with the semi-norm
[li1()) to Ey (endowed with the norm [|-[|;1 ). As a consequence, (uy) is a
Cauchy sequence in E,, which is of finite dimension and thus complete. The se-
quence (u,,) converges to some u € E,. Then, we have ®,(u) = ¢, and @, is an
isomorphism.

The eigenvalues of £ of modulus 1 are exactly those v such that F), is not reduced
to 0. We have ¢ € F\n for all n whenever ¢, € F\,, so that this set is an union of
groups. Since L only has a finite number of eigenvalues of modulus 1, this implies
that these eigenvalues are roots of unity. In particular, there exists N > 0 such that
vV =1 for any eigenvalue 7.

We now have a good description of the spectrum of L: its radius is 1, its essential
radius strictly smaller than 1, and the eigenvalues of modulus 1 form a finite group,
none of them having a nontrivial Jordan block. The measures corresponding to
those eigenvalues are all absolutely continuous with bounded density with respect
to a reference invariant measure, 71 dLeb, and are all absolutely continuous with
respect to the Lebesgue measure.

Second step: mixing physical measures

Let us now assume that 1 is the only eigenvalue of £ of modulus 1 (in the general
case, this will be true for £V, so we will be able to deduce the general case from
this particular case). Under this assumption, £"u converges to mu for any u € 'H;.

Consider the subset of F} (the T-invariant functions of L(u)>) given by the
nonnegative functions whose integral with respect to the measure p is 1. It is
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nonempty, since it contains the function u(Xy)~!. It is a bounded convex subset

of I, whose extremal points are of the form 1p for some minimal invariant set
B defined p-almost everywhere. Such extremal points are automatically linearly
independent; we can also assume that they are subsets of Supp(u). Since Fj is
finite-dimensional, there is only a finite number of them, say 1p,,...,1p, and a
function belongs to F if and only if it can be written as ¢ = > «a;1p, for some
scalars asq, ..., ;. The decomposition of the function 1 € F} is given by 1 = > 1p,,
hence the sets B; cover the whole space uplto a set of zero measure for . Moreover,
Bilt

1(B;)
measure.

Let u; = (131_1(1 B;) = 1lpml e ’H;, then any element of E; is a linear combination
of the w;. In particular, this applies to m(fu;) for any f € C* (we recall that
fu; € H, by Lemma BT, and that 1p, is T-invariant in L.°°(u)); we now compute

7T1<ful').

since B; is minimal, the measure u; := is an invariant ergodic probability

(mi(fug), 1,) = lim —Z/E (fu;) - 1p,dLeb = lim —Z/f 1p, - 1, oT* dpu

n—-+oo N,

Hence, we get:

m(fu;) = (/fdu,) u; (5.2)

This enables us to deduce that each measure p; is exponentially mixing, as
follows. Let 6 < 1 be the spectral radius of £ — m; we have ||[£" — m || = O(0").
Then, if f, g are C* functions, and following (b.2),

[ rogor du - <g)<£"<fu@> 0) = — 5 (m(fu).0) + 06"

(/f m) 5 e 9) + 0@
_ (/fd,ui) (/gd,ui) +O(").

Since C® is dense LL!, every p; is mixing and thus ergodic. Those u; are ergodic
measures, and absolutely continuous with respect to the Lebesgue measure, so that
they are also physical measures.

Third step: basins
We now turn to the relationship between Lebesgue measure and the measures
pi- For any function f € L>°(Leb) NH}, let us write

= Zal(f)ul (5.3)

i=1

We shall need to describe the coefficients a;(f). Let be 1 <1i <[, and f € L*(Leb)N
H;,. We recall that the sets B; are T-invariant and disjoint for the Lebesgue measure
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(except perhaps for a set a zero Lebesgue measure).

n—1

k=0 0

n—+o0o [ n—+00 N “—
Moreover, all the 1/n Z;é 1p, o T* are bounded by 1 ; let h; be one of their weak

L?(Leb) limits. The function h; is T-invariant Leb-almost everywhere, and satisfies

for all f € L>°(Leb) NH,, :

ai(f) =

Since a;(1) = 1, we have [ h; dLeb = u(B;).
Let us now compute [ h;h;dLeb. To begin with, h; being invariant,

aj(IBiOT"):/lBioT"-hjdLeb:/lgioT"-hjoT"dLeb:aj(IBiE"I).

The computation now gives :

/hlhj dLeb = M(BJ)CL]U?,Z) = ) lim — ZCL] 1B 9] Tk (54)

n—)-‘,—oo n

= u(B;) lim a; (13 ~ Zﬁk ) = u(Bj)a;(u;) = p(B;)y,;
Taking ¢ = j, we get [ h?dLeb = u(B;) = [ h;dLeb. Since h; takes its values
n [0, 1], this shows that there exists a subset C; of Xy such that h; = 1¢;, with
f 1¢, dLeb = p(B;). Moreover, (B.4) shows that Leb(C; N C;) = 0 if i # j. For any
function f € L>°(Leb) NH,,

1
) =5 /C b

Moreover,

/X Z Lo, dLeb = ZM(Bi) = 1(Xo) = Leb(Xy)

This shows that the sets C; form a partition of the space modulo a set of zero
Lebesgue measure. We have proved that

i (f) = Z M(;i) (/C deeb) s, (5.5)

which means that the sets C; form a partition of almost all X into ergodic basins
for the physical measures. O
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6 Piecewise C'*"? maps and functions with bounded
variation

For now on, we will assume that the transformation T is a piecewise C'*1% uni-
formly expanding map, and work with the space of functions with bounded varia-
tion. We prove the existence of a spectral gap for the operator L;/pepr) in this
space under simple assumptions, and compare our results with previous works by

J.W. Cowieson and B. Saussol [Sau0(].

In order to simplify the notations, in this section A, denotes the essential infimum
of the \,(x).

As an introduction and a last tribute to our work with Sobolev spaces, we first
prove a corollary to Corollary [.5.

Corollary 6.1.
If T is a piecewise C? expanding map with piecewise C' boundaries and if:
1 1
lim (D2)w )\, " < 1,
n——+00
then there exist 0 < to < 1/pg < 1 such that, for all0 <t < 1/p < 1 such that

to <t and 1/py < 1/p, the essential spectral radius of Li)petpr| acting on 7—[2 18
strictly smaller than 1.

Proof.
_1
Let us put e =1 — lim (DZ)% lim A, ™.
n—-+00 n—-+00
_to
We first choose 0 < ty < 1 such that lim (DZ)% lim A" <1—¢/2.
n—-+0oo n——+0oo

Then, we choose 1 < py < 1/ty such that lirf (Dfl)(k%)% <1+¢€/2.
n—-+0oo

Let 1 >t >ty and 1 < p < pp such that ¢ < 1/p < 1. The essential spectral
radius of Ly /|pepr) acting on 'H; is at most

n—-+o0o ’

oo

_t
n

< lim (Db)n - (D)) m A < (1—¢/2)(1+¢/2) < 1

n—-+o0o

O

Corollary B.1] can be seen as an asymptotic result; even if we work with parame-
ters t and p close to 1, we do not work on H1. Indeed, this result does not hold when
replacing H,, by H1i. Since T is piecewise continuous, we must allow discontinuities
in the function spaces we let L/ pe;pr| act on, and for instance in dimension one
every function of H] has a continuous version (because its derivative is a function
in L'). Here, the problem comes from the fact that the characteristic function of an
interval is in general not in H{(R), since its derivative - in general a sum of atomic
measures - is not in IL'. Therefore, we have to work in a broader space, for instance
the space of functions with bounded variation; this will lead us to an alternative
proof of a theorem shown by J.W. Cowieson in 2000 [Cow00]. We will also have a
closer look at the results proved by B. Saussol in 2000 [Sau00|, which may be linked

to this work in a similar fashion.
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6.1 Cowieson’s theorem

We recall here J.W. Cowieson’s results [Cow0(], and compare them to what we prove

later.

Theorem 6.2 (Cowieson, 2000).

Let X be a bounded and connected open set of R% with piecewise C* boundaries,
and T : X — X be a piecewise C* and uniformly expanding map with piecewise C?
boundaries.

If there exists n € N such that \,, > D%, then T admits an absolutely continuous
invariant probability measure whose density is in BV (X).

This theorem is indeed a consequence of Theorem [[.7. First, notice that (\,)nen
and (DP),en are respectively supermultiplicative and submultiplicative. Thus the

limits lim )\;; and lim (Db)n exist, and are respectively equal to sup )\{{ and
n—-+0o n—-—+o0o neN

in£I (DZ)E. Therefore, lirf A E(Df;)% < 1 if and only if there exists some n € N
ne n—+o00

such that A, > DP, and the condition stated in Cowieson’s theorem and condi-
tion ([.§) are equivalent.

The differences between Cowieson’s theorem and our results are the following. To
begin with, our setting is less restrictive: the domain does not need to be the closure
of a bounded, connected open set of some R?, but a compact subset of a Riemannian
manifold, and the boundaries do not need to be piecewise C? but piecewise C*. The
transformation 7" also only needs to be piecewise C'*MP, not piecewise C2. Then,
the condition on the expansion rate and the combinatorial complexity is the same.
At last, we shall prove that the essential spectral radius of L£y/|4et pr| acting on BV
is strictly smaller than 1. Moreover, once the spectral gap is proven, we will get
not only the existence of an absolutely continuous invariant measure with bounded
variation, but far stronger results, as in Theorem [[.7.

We recall once more that, for generic piecewise expanding maps, the complexity
D? increases subexponentially (Theorem 1.1 in [Cow03Z]), so that the consequences
of Theorem [[.7 hold generically.

6.2 Basic lemmas

We need to adapt the lemmas from Sections B and [ to this new setting in order to
get Theorem [.4 and subsequently Theorem [[.7. They are:

e A Fubini-type property, which allows us to work in a 1-dimensional setting:

Lemma [(.3.

The continuity of the multiplication by Lipschitz functions (equivalent of

Lemma B.1)): Lemma [.4.

The continuity of the multiplication by characteristic functions of nice sets

(equivalent of Lemma B.2): Lemma [.5.

The effect of composition with C! 1P diffeomorphisms (equivalent of Lemma B-3):

Lemma [.G.

A localization lemma (equivalent of Lemma B.4): Lemma (.7
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e A summation lemma (equivalent to Lemma B.5)).
e The compactness of the injection from BV(Xj) to L'(Xp).

In may arguments below, we will work in fact with C! functions, and then pro-
ceed by approximations to get the results for functions with bounded variation, the
approximation being done with Theorems P.10 and P.I(J. We hope that the quite
explicit computations involved will help to explain the properties described by the
many lemmas in Section fJ and Section [.

We start with the Fubini-like theorem, which allows us to reduce the problem
to dimension 1 in the proofs of some following lemmas. Let u € BV(RY), i € 1..d,
rc€Rand t € R.

We put @ = (21,...,%i-1, Tiy1, ..., Tq). We will denote by wu,; the map ¢t —
w(@1, oy Tio1, b, iy, ..., q), and by u; the map x — ||ug||Bv(r)

Lemma 6.3 (Fubini-type property).
For allu € C* NBV(RY) and i € 1..d, then u; € L' and

d
lllzyeay = d7t Y lluill
i=1

Proof.
Let u € C'. Fubini-Tonelli theorem gives, for all i € 1..d, |lull,, = ||[|w. il
hence

[

d
lulle = d™ > [ lulla ]
=1

On the other hand,

d
u):dl/wz gx dLeb = d- Z/ ) dLeb = d- ZHV s
i=1

Then, all is left is to sum the equalities. O

For any Lipschitz function u € Lip(R?, C), we put [|ullp;, = lull « + L(u), where
L(u) is the best Lipschitz constant for u. With this lemma, we can easily deduce
the following:

Lemma 6.4 (Multiplication by Lipschitz functions).
For all u € BV(RY), for all g € Lip(R¢, C),

||gu||BV(Rd) < ||g||Lip ||U||1BV(Rd)

Proof.

Assume first that v € C'. Thanks to the Fubini-type property of Lemma [.3,
we just have to show that |[gullgyw) < [l9llp, [[¢llgy@)- Since g is continuous, this
will be an application of the Leibniz formula (see e.g. Proposition 3.2 in [Bal0(];
the derivative of g has to be taken in a weak sense):
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g0l = [ loulateb+ [ D(gu)ldLed
R R
§/|gu|dLeb+/|gDu|dLeb+/|uDg|
R R R

< Jlglln / ju| dLeb + glly / Du|dLeb + || Dyl / fu] dLeb
R R R
< ||g||Lip ||u||]BW(]R)

For any u € BV(R), let be a sequence of C! functions (u,)nen approaching u in
the sense of Theorem P.IT].
Then, since

lgun = gullue < llgllioe [lun = wllps,

we see that (gu,) is a sequence of BV(R) functions which converges to gu in L.
Theorem P.17 tells us that:

||gu||]BV(]R) < lrllgligof ||gun||BV(]R) < ||g||Lip lélgligof ||un||]BV(]R) < ||g||Lip ||u||BV(]R)

O

Lemma 6.5 (Multiplication by characteristic functions of nice sets).

Let O be a measurable subset of R whose intersection with almost every line
parallel to a coordinate azis has at most L connected components. Then, for all
u € BY,

Noullsy < Ljullgy -

Proof.

Assume that u € C'. Using again the Fubini-type property of Lemma [.3, we
just have to show that [[1oullgygr) < L [|ullgy g, if O is an union of intervals, or even
that |[loullgygy < [[ullpyg) if O is an interval, and then sum the contributions of
the different intervals. Let us put O = [a, b] (the case O = R, is even easier). Then:

Moully < flull

V(1lou) = |u(a )I+/b] [/ (z)] dz + [u(b)]

‘/ ) dx| + / |u(z |dx+‘/ () dx
ooa] [a,b] b,+00)

Summing those inequalities ends this proof for C! functions. For a general func-
tion in BV(R), and using the same trick as in the end of the proof of Lemma [.4,
we just have to show that, if (u,) converges to u in L!, then (1pou,) converges to
low in L', which is trivial. ]

< V(u).

The next lemma deals with the composition with C1*%P diffeomorphisms.

25



Lemma 6.6 (Composition with C'™P diffeomorphisms).
Let I € CYHP(RY RY) be a diffeomorphism and let A € GLy(R) such that, for
all z € RY, |A~Y o DF(2)|| <2 and |DF(2)~t o A|| < 2. Then, for all u € C}(R?),

lu o Fllzygay < 27 det A7 Al [ullpyga) + 2 det A7 [l -

Proof.

Assume first that u is C'. We put, as in the proof of Lemma B3, wo F =
uwoAoA 1o F. Let us deal with u o A first.

We have [Juo Al <|det A7 |Jul|;, and V(uo A) < |det A|7H|A||V (u), so that

lu o Allgyga < | det A A lullgy(ga) + | det A7 flufl - (6.1)

We now deal with uwo A~' o F; we write FF = A~ o ['. Since the derivative of
F' is everywhere bounded between 1/2 and 2, | det D(F~1)| < 2¢ and a change of

“FH < 2% ul|; and V(uo F) < 2471V (u), so that
L

variables gives
Juo 7]

Together, (6.1) and (6.3) give

lu o Fllzyga < 27 det A7 Al [ullpyga) + 2 det A7 [l -

d+1
BV(RY) <277 ||ullgy (R4) (6.2)

Now, let us take any function u in BV(R?), and use the same trick as in the end
of the proof of Lemma [.4. Since Hu o FH < 2¢||u||., holds for any L' function, if

(uy) converges to u in L', then (u, o F') converges to uo F in L'. Hence, inequality
(B-2) holds for any function in BV(RY).

Inequality (B-])) can be obtained with a slighly different method: |juo Al <
| det A|~! |Ju]|,, holds obviously for any u in L'. We just have to prove that V(u o
A) < |det A|7Y|A||V (u) for any u in BV(R?); the approximation by C! function still
works (the reader can easily check that Theorem P.17] is still true if one writes V()
instead of ||-||gy)-

Therefore, Lemma [.§ holds for any function in BV(R?). O

A consequence of (B.1) is that, for all u € BV(R?) and A € GL4(R), ||uo Allgy <
2max(||All, 1)] det A| " |ul|zv.

The next result to prove is the equivalent of the first localization principle,
Lemma B.4.

Lemma 6.7 (Localization principle).
Let be n € CH(RY,R), and write, for all v € RY and m € Z¢, n,,(z) = n(x + m).
Then, there exists a constant C, such that, for all uw € BV(R?),

> lnmullzy < Cyllully -

meZd

Proof.

We define on R? a relation by z < y if and only if z; < y; for all i € {1,....d},
and another relation < the same way. For k € Z% 0 < k, we define O), = {z €
R?: 0 < z < k}. Up to a translation, we may assume that there exists some
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k = (ky,...,kq) € Z% such that Supp(n) C Or. We also note, for A € Z%, by Ak the
vector (Arky, .., Agkq).
We point out that, for any u in BV(R?) and A in R?, the sum Z lellgy e tiroy)
Aezd
is equal to ||u||BV(U>\eZd Me+1+0y)» Which is at most ||ul|pyga) (the L! norms are the
same, and the inequality of the variations comes directly from Definition 2.7)
We now split the sum, and then apply Lemma [.4):

Z Hnmu”BV(Rd) = Z Z HnAkJrlu”]BV()\kJrlJrOk)

meZ4 NeZ4 1ez
0<I<k

< [nlex Z Z HUHBV(AkHJrOk)

lezd \ezZd
0<i<k

< [Inllex Z ||U||BV(Rd)

lez?
0<i<k

d
= lInlle: <H k) 1l gvga)
i=1

d
This is the lemma, with C,, = ||| H k;. 0O
i=1
Since the space BV make us work morally with p = 1 and ¢ = 1, an equivalent of
Lemma B.3 for functions with bounded variation is that, for any functions vy, ..., v
with compact support in R? and belonging to BV (R?),

l !
> v <> loillsys) -
i=1

BV(R4) i=1

This is just the triangular inequality for the BV(R?) norm, so that there is
nothing to prove here.

Finally, it is a well-known fact that, for any open and bounded set with nice
boundaries (for instance piecewise C* boundaries) Q of some R?, the canonical im-
mersion of BV () into L.'(Q) is compact; see for instance Theorem 1.19 in [Giu84].
The compactness of the canonical immersion of BV (X,) into L'(Xj) ensues.

6.3 Saussol’s theorem

In sections 6.1 and 6.2, we have seen how to obtain Theorem [[.7, that is, a version
of Theorem when T is a piecewise C'*MP uniformly expanding map, in the limit
p=1and t = 1. This involves the space of functions with bounded variation, since
the Sobolev space H1 is not suitable for this task (for instance, it is not large enough
in dimension 1). One might want to know suitable spaces when one works instead
with a piecewise C!*® uniformly expanding map, and wants to get to the limit ¢t = «
(in this setting, Theorem tells nothing about the essential spectral radius of the
Perron-Frobenius operator on the HJ' spaces).
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The last part of this article is a study of a previous result by B. Saussol [Sau0(],
which is very close to our own results and gives us another example of function
spaces to which our method could be applied, with the parameters ¢ = « and
p = 1. B. Saussol proved the existence of a spectral gap of L/ 4et pr| When acting
on spaces of functions with bounded oscillation V,, when T is a piecewise C'*®
uniformly expanding map.

First, let us present the functions with bounded oscillation. Let X, be a compact
set of some R?. For any Borel set S € B(R?) such that Leb(S) > 0, and any
f € LYR?), we denote the essential infimum of f on S by Einfg f, and its essential
supremum by Esupg f. Next, we choose some ¢, > 0 and « € (0, 1], and define for
all f € LY(RY):

osc(f,S) = Esupg f — Einfg f (6.3)
|fla = sup eo‘/ osc(f, B(z,€)) dx (6.4)
0<e<eg Rd

Then, we define V,(RY) = {f € LY(R?) : | f], < +oo} and V, = V,(Xy) = {f €
Vo(R?) : Supp f C Xo}, both endowed with the norm || f||v, = || fllLt + | f]a-

Remark 6.8.

Different choices of €y lead to different norms, although they are all equivalent:
the space V,, does not depend on ¢.

We have already encountered V(R): it is the same space as BV(R) [Kel8]/.

Hence, the results of Saussol are a generalization of the previous theorem by A. La-
sota and J.A. Yorke [LY73].

Remark 6.9.
We endow C,, the set of a-Holder functions on Xy, with the norm || f|loa =
| flle + | fI.,, where:

|f|;: sup |f(x):f£y)|
z,y€Xo |l‘ y|

For f € Cy, v € Xg and € > 0, we get easily the following inequalities:

|fla = sup eo‘/ osc(f, B(x,€)) dz
R4

0<e<eg

< sup € *(2€)* Leb(Xo)|fl,

0<e<eg

< 2% Leb(Xo)[ 4

Hence, for all o € (0, 1], we have a continuous inclusion from C, into V,. How-
ever, V, is much larger, so that functions belonging to this space may present dis-
continuities.

The setting studied by B. Saussol is more general than the one we presented in
Section [[: for instance, it allows under some conditions boundaries whose Hausdorff
dimension is strictly larger than d—1, or maps whose sets of continuity are countably
many. However, one of these conditions is very abstract, and the use of more flexible
conditions leads naturally to our setting.
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In the following, we consider that o € (0, 1] is fixed, and we put v, = Leb(B(0, 1)).
Here is the main theorem, an adaptation of Theorem 5.1 and Lemma 2.1 in [Sau00]
with the additional use of Hennion’s theorem [Hen93)):

Theorem 6.10 (Saussol’s theorem).
Let T be a piecewise C*™* uniformly expanding map. L1)jaet pr| Cts continuously
on V,, and its essential spectral radius is at most:

44D}
(A =Dya-1

This theorem naturally leads to a result of existence of physical measures (stated
in a different way in [Sau0(]) similar to Theorem [L.6]:

Ao (6.5)

Theorem 6.11.

Let t be a piecewise C*T uniformly expanding map such that the bound for
the essential spectral radius is smaller than 1. Then T has a finite number of phys-
1cal measures whose densities are in V,, which are ergodic, and whose basins cover
Lebesgue almost all Xy. Moreover, if p is one of these measures, there exist an
integer k and a decomposition j1 = py + - -+ + py such that T sends 1 to 1 for
Jj € Z/KZ, and the probability measures kyu; are mizing at an exponential rate for
T* and a-Holder test functions.

Since the setting and conclusion are already familiar to the reader, we will look
more closely at the upper bound of the essential spectral radius. The estimate is
rather rough, and for o = 1 and small d is worse than the one given in Theorem [L.7.
However, just like in the proof of Theorem [[.3, one may iterate the transformation
to get better estimates of the essential spectral radius p.ss of the Perron-Frobenius
operator, and then take the limit as the number of iterations grows to infinity:

Pess < sup{ lim A, %(Dg)%; lim A, %} (6.6)
n—-+00 n—-+0o
Proof.

The expression p.5 appears in a Lasota-Yorke type inequality in the proof of
Saussol’s theorem. When using Hennions’s theorem [H J|, one can get a better
bound on the essential spectral radius of an operator by iterating this operator. In
other words, we have for all positive integer n:

44Dy, ) s
<)\n - 1)/7d71 .

_1 _a
Let us put C' = sup{ lim A\, " (DZ)%; lim A\, " } Let € > 0. Obviously,

n—-+o0o n—-4o00

Pess S ()\;a +

4~,DP
lim (A;a+ __
n—-4oo ()\n — 1)/7d71

) (C+e) =0

Hence,

1
4~ Db n
lim sup ()\na + ( Jdn ) (C+e)t <1

n—r+00 A — 1)Va-1

Since this is true for all € > 0, inequality [6.9 ensues. O
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Clearly, a sufficient condition for the conclusions of Theorem [.11 to hold is
limy, 400 An " (D2 < 1.

The V,, spaces were constructed to satisfy the same properties that we needed
(they include the characteristic functions of nice enough sets, the multiplication by
a-Holder functions behaves nicely, and the injection into ! is compact), and one
should be able to adapt the different lemmas as we did for the space of functions
with bounded variation. Finally, our method would probably give a different (and
worse) estimate of the essential spectral radius of the Perron-Frobenius operator,

such as (we take t = o and p = 1 in Theorem [.3):

Pess S lim (DZ)% . A;%

n—-+4o00o

B. Saussol also gives a lower bound on the spectral gap via the study of the
cones in V, (for another example of cone contraction method, see e.g. [Bal00]),
and an upper bound on the number of ergodic physical measures. Such features
could perhaps be adapted to our current setting, with Sobolev spaces or the space
of functions with bounded variation.
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