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Introduction

An important task in dynamical systems, and the whole point of ergodic theory,
is to study the measures invariant under some transformation. We will focus here
on physical measures, which are empirical measures for a set of initial conditions of
non-zero Lebesgue measure (see Subsection 1.2 for a definition of empirical mesures).
To obtain non-trivial results, some assumptions must be made on those transfor-
mations, for instance on their smoothness. We shall study here maps which are
piecewise differentiable, with Hölder derivative, and uniformly expanding (that is,
with positive and bounded away from zero Lyapunov exponents) on some compact
space.

In one dimension, a most interesting result was found in 1973 by A. Lasota and
J.A. Yorke [LY73]: a piecewise twice differentiable uniformly expanding map on
an interval admits a finite number of physical invariant measures, whose densities
have bounded variation, and (up to taking an iterate of the transformation) they
are mixing. This is obtained via the study of the Perron-Frobenius operator on
the space of functions with bounded variation: the fixed points of this operator are
densities of invariant measures, and the existence of a spectral gap provides the
property of mixing at an exponential rate. To sum it up, the quasi-compactness of
the Perron-Frobenius operator, along with some classical arguments, is enough to
deduce many valuable ergodic properties of the system.

Problems arise when we weaken those assumptions. A possible generalization is
to obtain results in higher dimensions, where general answers were obtained only
recently, despite some early results on particular systems [Kel79]. Actually, a naive
generalization of the theorem proved by A. Lasota and J.A. Yorke does not hold
in dimension 2 or higher, as is shown by the counter-examples of M. Tsujii [Tsu00]
and J. Buzzi [Buz01]: some additional assumptions must be made. A first strategy
is to require a lower bound on the angles made by the discontinuities; P. Góra
and A. Boyarski [GB89] made a successful attempt in 1989, although the sufficient
condition they found on the expanding rate is far from optimum. Another strategy
is to study the combinatorial complexity, i.e. the way the space is cut by the
discontinuities and the number of times they overlap; it was used for instance in
2000 by J.W. Cowieson [Cow00] and B. Saussol [Sau00], and we will follow this
approach.

In all those studies, a major problem is to find a suitable space of functions
on which the Perron-Frobenius operator may act. For piecewise smooth maps, the
function spaces we use should show some regularity (otherwise, no spectral gap will
be found), but not too much, since discontinuities must be allowed. For piecewise
twice differentiable maps, the space of functions with bounded variation is suitable,
as was shown by J.W. Cowieson [Cow00] (although he proved only the existence of
invariant measures, and not stronger properties). For less smooth maps, B. Saussol
worked with spaces of functions with bounded oscillation [Sau00]. Following the
method used in [BG09], we will work here mainly with Sobolev spaces.

The approach followed in this article has many advantages. We work with usual
and well-known spaces, instead of ad hoc function spaces. Moreover, the dynamic
does not need to be studied in detail: this gives a very robust method, which can
be more or less easily adapted to prove similar results for other function spaces or
dynamical systems, since it relies only on the core properties of the function spaces.
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This paper is the outcome of a master’s thesis, supervised by V. Baladi. The main
goal is to simplify the proofs of the previous paper from V. Baladi and S. Gouëzel
[BG09], restricting ourselves to the study of expanding maps. Most of the setting
and proofs in sections 1 to 6 are directly adapted from that work (a notable exception
being Lemma 4.1, corresponding to Lemma 31 in [BG09] but whose proof is adapted
from another article [BG10]). There are multiple gains: the setting is simpler, the
function spaces used more standard (classical Sobolev spaces) and most of the proofs
much shorter (some of which are even found in the literature). We will also deal with
a limit case, when the transformation is piecewise differentiable with a Lipschitz
derivative, and prove a new result involving functions with bounded variation -
basically a stronger version of J.W. Cowieson’s theorem [Cow00].

The definitions and setting are explained in Section 1, as well as the main results:
a bound on the essential spectral radius of transfer operators, Theorem 1.3, and
its consequence on the existence of finitely many mixing physical measures with
densities in appropriate Sobolev spaces, and on the rate of mixing for Hölder test
functions (Corollary 1.5 and Theorem 1.6). We shall also present an application
of those result on a class of piecewise affine maps. Section 2 presents extensively
the Sobolev spaces and their basic properties, as well as the space of functions
with bounded variation. Section 3 contains the main lemmas, which exploit the
properties of the Sobolev spaces; they are used in Section 4 to prove Theorem 1.3.
Section 5 contains the proof of Theorem 1.6. Finally, in Section 6 we will deal
with a limit case, where the transformation is piecewise differentiable with Lipschitz
derivative and one works on functions with bounded variation, and a discussion
on the previous similar results by J.W. Cowieson [Cow00] and B. Saussol [Sau00].
This last section also highlights the fact that our main theorems can be quite easily
adapted to non-Sobolev function spaces.

1 Setting and results

If B is a Banach space, we denote the norm of an element f of B by ‖f‖B. In this
paper, a map defined on a closed subset of a manifold is said to be Ck or C∞ if it
admits an extension to a neighborhood of this closed subset, which is Ck or C∞ in
the usual sense. For α ∈ (0, 1), a map is said to be Cα if it is α-Hölder, C1+α if it is
C1 with α-Hölder derivative, and C1+Lip if it is C1 with Lipschitz derivative.

Let X be a Riemannian manifold of dimension d, and let X0 be a compact subset
of X . We call C1 hypersurface with boundary a codimension-one C1 submanifold
of X with boundary (i.e., every point of this set has a neighborhood diffeomorphic
either to Rd−1 or Rd−2 × [0,+∞)).

Definition 1.1 (Piecewise C1+α and C1+Lip expanding maps).
For α > 0, we say that a map T : X0 → X0 is a piecewise C1+α expanding map

(respectively piecewise C1+Lip expanding map) if:

• There exists a finite number of disjoint open subsets O1, . . . , OI of X0, covering
Lebesgue-almost all X0, whose boundaries are unions of finitely many compact
C1 hypersurfaces with boundary.

• For 1 ≤ i ≤ I, there exists a C1+α (respectively C1+Lip) map Ti defined on
a neighborhood of Oi, which is a diffeomorphism onto its image, such that T
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coincides with Ti on Oi.

• For any x ∈ X0 and whenever Ti(x) is defined, λ(x) := inf
v∈Tx

|DTi(x)v|

|v|
> 1.

Since we choose to study the asymptotical combinatorial complexity, we have to
quantify it. It will be done the following way.

Let choose a non-zero integer n.
Let i = (i0, . . . , in−1) ∈ {1, . . . , I}n. We define inductively sets Oi by O(i0) = Oi,

and
O(i0,...,in−1) = {x ∈ Oi0 | Ti0x ∈ O(i1,...,in−1)}. (1.1)

Let also T n
i
= Tin−1

◦ · · · ◦ Ti0 ; it is defined on a neighborhood of Oi.
For any x ∈ X0 and whenever T n

i
(x) is defined, we denote :

λn(x) := inf
v∈Tx

|DT n
i
(x)v|

|v|
> 1.

We define the complexity at the beginning

Db
n = max

x∈X0

Card{i = (i0, . . . , in−1) | x ∈ Oi}, (1.2)

and the complexity at the end

De
n = max

x∈X0

Card{i = (i0, . . . , in−1) | x ∈ T n(Oi)}. (1.3)

For T (x) = 2x mod 1 on [0, 1] we have De
n ≥ 2n, but fortunately this quantity

plays no role when T is piecewise C1+Lip, where we can take p as close to 1 as
needed in Corollary 1.5 (cf. Corollary 6.1), or work in the space of functions with
bounded variation - see Theorem 1.4 or Cowieson’s Theorem (referenced here as
Theorem 6.2).

For generic piecewise expanding maps, the complexity Db
n increases subexponen-

tially, and therefore does not play an important role in the spectral formula (1.5)
below (see [Cow02]). However, some pathologic cases may arise when the iterates of
the map T cut some open set Ω too often, and then map it onto itself. In spite of
the expansion, these numerous ”cut-and-fold” may make the images of Ω arbitrarily
small, so that the physical measure starting from any point of Ω can be, for instance,
a Dirac measure. This phenomenon is central in the examples given by M. Tsuji
[Tsu00] and J. Buzzi [Buz01]. A control on the combinatorial complexities ensures
that the expansion do beat the cuts.

1.1 Spectral results

The results about the physical measures will be obtained through the study of
transfer operators (or Perron-Frobenius operators); we now define them.

Definition 1.2 (Transfer operator).
Let α > 0. For all g : X0 → C such that the restriction of g to any Oi is Cα (in

the sense that it admits a Cα extension to some neighborhood of Oi), we define the
transfer operator Lg on L

∞(X0) by:

Lgu(x) =
∑

y∈T−1({x})

g(y)u(y). (1.4)
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These operators will act on Sobolev spaces Ht
p, for 1 < p < ∞ and 0 < t <

min(1/p, α), or on functions with bounded variation. As for now, we will just recall
that the Sobolev spaces H t

p on Rd are defined as {u ∈ Lp : F−1((1+|ξ|2)t/2(Fu)(ξ)) ∈

Lp}, with ‖u‖Ht
p
=
∥

∥F−1((1 + |ξ|2)t/2(Fu)(ξ))
∥

∥

Lp, where F denotes the Fourier

transform. Using charts, one can define a Sobolev space Ht
p on X . Here, t is an

index for regularity; as t increases, Ht
p contains more regular functions. The Sobolev

and ”bounded variation” spaces will be defined precisely in Section 2.
The first result is about the essential spectral radius of Lg when acting on Ht

p;
then, an application of this result to L1/| detDT |, the Perron-Frobenius operator, will
lead to the proof (under some conditions) of the existence of finitely many mixing
physical measures.

Theorem 1.3 (Spectral theorem for piecewise C1+α expanding maps).
Let α ∈ (0, 1], and let T be a piecewise C1+α uniformly expanding map. Choose

p ∈ (1,+∞), and 0 < t < min(1/p, α). Let g : X0 7→ C be a function such that the
restriction of g to any Oi admits a Cα extension to Oi. Then Lg acts continuously
on Ht

p, where its essential spectral radius is at most

lim
n→+∞

(Db
n)

1

p
1

n (De
n)

(1− 1

p
) 1

n‖g(n)| detDT n|
1

pλ−t
n ‖

1

n

L∞ , (1.5)

where g(n) =

n−1
∏

i=0

g ◦ T i, and the limit exists by submultiplicativity.

When we say that Lg acts continuously on Ht
p, we mean that, for any u ∈

Ht
p ∩ L∞(Leb), the function Lgu, which is essentially bounded, still belongs to Ht

p

and satisfies ‖Lgu‖Ht
p
≤ C ‖u‖Ht

p
. Since L∞ is dense in Ht

p (by Theorem 3.2/2

in [Tri77]), the operator Lg can be extended to a continuous operator on Ht
p. The

restriction 0 < t < 1/p is exactly designed so that the space H t
p is stable under

multiplication by characteristic functions of nice sets (see Lemma 3.2). We also
provide a version of this theorem for piecewise C1+Lip maps, including piecewise
C2 maps. We cannot use the function space H1

1 (which for instance contains only
continuous functions in dimension 1); we will instead use the space of functions with
bounded variation BV, which will be defined rigorously in Section 2:

Theorem 1.4 (Spectral theorem for piecewise C1+Lip expanding maps).
Let be T a piecewise C1+Lip expanding map. Let g : X0 7→ C be a function such

that the restriction of g to any Oi admits a Lipschitz extension to Oi. Then Lg acts
continuously on BV(X0), where its essential spectral radius is at most

lim
n→+∞

(Db
n)

1

n‖g(n)| detDT n|λ−1
n ‖

1

n

L∞ . (1.6)

1.2 Physical measures

The empirical measure of T with initial condition x ∈ X0 is the weak limit, if it
exists, of 1/n

∑n−1
k=0 δT kx; such a measure is always T -invariant. A physical measure

of T is an invariant probability measures µ which is an empirical measure for a set
of initial conditions of non-zero Lebesgue measure; the basin of a physical measure
µ is the set of all initial conditions whose corresponding empirical measure is µ.

5



In the following and for any finite measure µ and integrable function f , the
expression 〈µ, f〉 will be used for the integral of f against µ. We may see any
integrable function u as the density (with respect to Lebesgue measure Leb) of some
finite measure, and use 〈u, f〉 instead of 〈u dLeb, f〉. For all f ∈ L∞ and u ∈ Ht

p,
we have 〈u, f ◦ T 〉 = 〈L1/|detDT |u, f〉; a nonnegative and nontrivial fixed point u of
L1/|detDT | in Ht

p then corresponds (up to normalization) to an invariant probability
measure µu = u dLeb whose density with respect to the Lebesgue measure is in
Ht

p. By Birkhoff’s theorem, when such a measure µu is ergodic, it is physical,

since 1/n
∑n−1

k=0 δT kx converges weakly to µu for Lebesgue-almost every point in the
support of u.

Theorem 1.3 implies in this setting:

Corollary 1.5.

Under the hypotheses of Theorem 1.3, assume that

lim
n→+∞

(Db
n)

1

p
1

n · (De
n)

(1− 1

p
) 1

n ·
∥

∥

∥
λ−t
n | detDT n|

1

p
−1
∥

∥

∥

1

n

L∞

< 1. (1.7)

Then the essential spectral radius of L1/| detDT | acting on Ht
p is strictly smaller than

1.

If (1.7) holds, we will be able to prove the existence of a spectral gap, i.e. of
some τ < 1 such that {z ∈ Spec(L1/|detDT |) : τ < |z| < 1} = ∅, together with a
nice repartition of the eigenvalues on the unit cicle. The number τ can be larger
the essential spectral radius, as is shown for instance by G. Keller and H.H. Rugh
in [KR04] in a 1-dimensional setting. This will imply the following:

Theorem 1.6.

Under the assumptions of Theorem 1.3, if (1.7) holds, then T has a finite number
of physical measures whose densities are in Ht

p, which are ergodic, and whose basins
cover Lebesgue almost all X0. Moreover, if µ is one of these measures, there exist
an integer k and a decomposition µ = µ1+ · · ·+µk such that T sends µj to µj+1 for
j ∈ Z/kZ, and the probability measures kµj are mixing at an exponential rate for
T k and α-Hölder test functions.

The above will be proved in Section 5, although the arguments are classical. We
shall also obtain its bounded variation counterpart:

Theorem 1.7.

Under the assumptions of Theorem 1.4, assume that:

lim
n→+∞

(Db
n)

1

n ·
∥

∥λ−1
n

∥

∥

1

n

L∞
< 1. (1.8)

Then T has a finite number of physical measures whose densities are in BV(X0),
which are ergodic, and whose basins cover Lebesgue almost all X0. Moreover, if µ is
one of these measures, there exist an integer k and a decomposition µ = µ1+ · · ·+µk

such that T sends µj to µj+1 for j ∈ Z/kZ, and the probability measures kµj are
mixing at an exponential rate for T k and α-Hölder test functions.
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1.3 Piecewise affine maps

We now describe an explicit class of maps for which the assumptions of the previous
theorems are satisfied. Let A1, ..., AN be d×dmatrices with no eigenvalue of modulus
smaller or equal to 1, such that any two of these matrices commute. Let X0 be a
(non necessarily connected) polyhedral region of Rd, and define a map T on X0 by
cutting it into finitely many polyhedral subregions O1, . . . , ON , applying Ai to each
open set Oi, and then mapping A1O1, . . . , ANON back into X0 by translations. It is
obviously piecewise C∞ and uniformly expanding. Let λ be the lowest modulus of
all the eigenvalues of all the matrices Ai; we get easily λn ≥ λn.

Proposition 1.8.

Under those assumptions, the essential spectral radius of L1/| detDT | acting on BV

is at most λ−1, thus strictly smaller than 1. Therefore, T satisfies the conclusions
of Theorem 1.7.

Proof.
Let K be the total number of the sides of the polyhedra Oi. Around any point x,

the boundaries of the sets O(i0,...,in−1) are preimages of theses sides by one of the maps

Ai0 , . . . ,

n−1
∏

l=0

Ail. Hence, there are at most J(n) = K

n
∑

k=1

Card{
k−1
∏

l=0

Ail : {i0, ..., ik−1} ∈

{1, .., N}k} such preimages. Since all the Ai commute, there are at most kN different

maps which can be written as

k−1
∏

l=0

Ail , and J(n) grows polynomially. Following the

claim p.105 in [Buz97], Db
n ≤ 2J(n)d. This quantity grows subexponentially.

By Theorem 1.4, the essential spectral radius of L1/|detDT | acting on BV is
bounded by λ−1.

This proposition can also be deduced from Cowieson’s theorem [Cow00] whenever
the polyhedral domain is connected.

2 Sobolev and bounded variation spaces

It is now time to define precisely the function spaces we work with. First, we will
present the Sobolev spaces Ht

p (p ∈ (0, 1) and 0 ≤ t) and some of their properties.
Since they have been thoroughly studied in the 1960s-1970s, we may exploit many
ready-to-use results. They are spaces of Lp functions which satisfy some regularity
condition; since the transfer operator of expanding dynamics tends to improve the
regularity, this may imply the existence of a spectral gap for these operators. We
show two equivalent ways to define these spaces; the first is via the Fourier transform,
the second via interpolation theory. Then, we will present the space of functions
with bounded variation, which is nicer than the Sobolev space H1

1 in our setting.

2.1 Definition via Fourier transform

Definition 2.1 (Local spaces H t
p).

For 1 < p < ∞, t ≥ 0, ξ ∈ Rd, put at(ξ) = (1 + |ξ|2)t/2. We define the space H t
p

of functions in Rd as the subspace of functions u ∈ Lp such that F−1(atFu) ∈ L
p

with its canonical norm, i.e., the Lp norm of the expression above.
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Since at increases at infinity, the condition F−1(atFu) ∈ L
p can be understood

as a condition on the decay at infinity of Fu, hence on the regularity of u.
If 0 ≤ t < α, we shall see that H t

p is invariant under composition by C1+α

diffeomorphisms: this is Lemma 3.3. Hence, we can glue such spaces locally together
in appropriate coordinate patches, to define a space Ht

p of functions on the manifold:

Definition 2.2 (Sobolev spaces on X0).
Let 0 ≤ t < α. Fix a finite number of C1+α charts κ1, . . . , κJ whose domains of

definition cover a compact neighborhood of X0, and a partition of unity ρ1, . . . , ρJ ,
such that the support of ρj is compactly contained in the domain of definition of κj,
and

∑

ρj = 1 on X. The space Ht
p is then the space of functions u supported on X0

such that (ρju) ◦ κ
−1
j belongs to H t

p for all j, endowed with the norm

‖u‖Ht
p
=

J
∑

j=1

∥

∥(ρju) ◦ κ
−1
j

∥

∥

Ht
p

. (2.1)

Changing the charts and the partition of unity gives an equivalent norm on the
same space of functions by Lemma 3.1. To fix ideas, we shall view the charts and
partition of unity as fixed.

The Fourier transform approach also provides some effective theorems, for in-
stance Fourier multipliers theorems (the following is e.g. Theorem 2.4/2 in [Tri77]):

Theorem 2.3 (Marcinkiewicz multiplier theorem).
Let b ∈ Cd(Rd) satisfy |ζγDγb(ζ)| ≤ K for all multi-indices γ ∈ {0, 1}d, and all

ζ ∈ Rd. For all p ∈ (1,∞), there exists a constant Cp,d which depends only on p and
d such that, for any u ∈ Lp,

∥

∥F−1(bFu)
∥

∥

Lp ≤ Cp,dK ‖u‖
Lp . (2.2)

2.2 Definition via interpolation theory

Now, let us present the complex interpolation theory, developped by J.L. Lions,
A.P. Calderón and S.G. Krejn (see e.g. §1.9 in [Tri78]).

A pair (B0,B1) of Banach spaces is called an interpolation couple if they are both
continuously embedded in a linear Hausdorff space B. For any interpolation couple
(B0,B1), we let L(B0,B1) be the space of all linear operators L mapping B0 + B1 to
itself so that L|Bj

is continuous from Bj to itself for j = 0, 1. For an interpolation
couple (B0,B1) and 0 < θ < 1, we next define [B0,B1]θ the complex interpolation
space of parameter θ.

Set S = {z ∈ C | 0 < ℜz < 1}, and introduce the vector space

F (B0,B1) = {f : S → B0 + B1, analytic, extending continuously to S,

with sup
z∈S

‖f(z)‖B0+B1
< ∞, t 7→ f(it) ∈ Cb(R,B0),

and t 7→ f(1 + it) ∈ Cb(R,B1)}.

Then, we define the following norm on this space:

‖f‖F (B0,B1)
:= max(

∥

∥‖f(it)‖B0

∥

∥

∞
,
∥

∥‖f(1 + it)‖B1

∥

∥

∞
)
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The complex interpolation space is defined for θ ∈ (0, 1) by

[B0,B1]θ = {u ∈ B0 + B1 | ∃f ∈ F (B0,B1) with f(θ) = u},

normed by
‖u‖[B0,B1]θ

= inf
f(θ)=u

‖f‖F (B0,B1)
.

The main idea is that the [B0,B1]θ spaces are intermediates between B0 and B1,
“close to B0” for low parameters θ and “close to B1” for high parameters. Usually,
the embedding can be done for example in S ′, the dual space of the space of C∞

rapidly decaying functions. We mention here the following key result (Theorem 1.(c)
of §2.4.2 in [Tri78]):

Proposition 2.4 (Interpolation of Sobolev spaces).
For any t0, t1 ∈ R+, p0, p1 ∈ (1,∞) and θ ∈ (0, 1), the interpolation space

[H t0
p0
, H t1

p1
]θ is equal to H t

p for t = t0(1− θ) + t1θ and 1/p = (1− θ)/p0 + θ/p1.
In particular, for all t ∈ (0, 1) and p ∈ (1,∞), H t

p = [Lp, H1
p ]t.

Remark 2.5 (Alternative definition of Sobolev spaces).
By Proposition 2.4, we have another way to define the Ht

p spaces on a (compact)
Riemannian manifold X, this time intrinsically. Since there exists a Lebesgue mea-
sure Leb on X, the spaces Lp are well defined. Moreover, the space H1

p is none other
than {u ∈ Lp : ∇u ∈ Lp} with the norm ‖u‖H1

p
= ‖u‖

Lp + ‖∇u‖
Lp, the derivative

being taken in a weak sense, and defined via the Levi-Civita connection (see Theorem
1.(b) of §2.3.3 in [Tri78]). It is not difficult to see that Ht

p = [Lp(X0),H
1
p(X0)]t,

with a norm equivalent to the one previously defined (Remark 2 p.321 in [Tri92]).

Here, the main interest of interpolation theory will be to derive inequalities for
operators in the H t

p spaces from inequalities in the L
p and H1

p spaces, where the
manipulations are much easier. This will be made possible thanks to the following
property (see e.g. §1.9 in [Tri78]): for any interpolation couple (B0,B1), θ ∈ (0, 1)
and L ∈ L(B0,B1), we have

‖L‖[B0,B1]θ→[B0,B1]θ
≤ ‖L‖1−θ

B0→B0
‖L‖θB1→B1

(2.3)

Remark 2.6 (Sobolev spaces with negative parameter).
The dual spaces of the Sobolev spaces are well known (see e.g. §4.8.1 in [Tri78]):

for any p ∈ (1,∞) and t ∈ R+, Ht
p is reflexive and (Ht

p)
∗ = H−t

p∗ , where 1/p +
1/p∗ = 1 and the H−t

p∗ is defined via the Fourier transform the same way as the Ht
p

spaces. Such Sobolev spaces with negative parameter will appear (although briefly),
for instance in the proof of Lemma 3.5.

2.3 Functions with bounded variation

In order to define the space of functions with bounded variation, we proceed in the
same way as in Subsection 2.1: we first define this space on open sets of Rd, and
then use the charts to define such a space on a Riemannian manifold.

Definition 2.7 (Functions with bounded variation).

9



Let us denote the Lebesgue measure on Rd by Leb. Let Ω be an open set of Rd.
For u ∈ L1(Ω), we define the variation of u, V (u), by

V (u) = d−1 sup
ϕ∈C∞

c (Ω,Rd)
‖ϕ‖

∞
≤1

∫

Ω

u.div(ϕ) dLeb .

The space of functions with bounded variation on Ω, denoted BV(Ω), is the subspace
of functions u of L1(Ω) such that V (u) < +∞, endowed with the norm ‖u‖BV(Ω) =
‖u‖L1 + V (u).

Remark 2.8.

Formally, we have (see e.g. Remark 1.8 in [Giu84]):

V (u) = d−1

∫

Ω

|∇(u)|.

The derivative being taken in a weak sense, |∇(u)| may be a measure with no density
with respect to the Lebesgue measure. For C1 functions, it can be taken literally, with

V (u) = d−1

∫

Ω

d
∑

i=1

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

dLeb .

As for the Sobolev spaces, we may define the space of functions with bounded
variation on a compact set X0 of a Riemannian manifold X starting from its def-
inition on R

d (this space also behaves well under composition by C1+Lip diffeomor-
phisms, as is shown by Lemma 6.6) and transporting by the charts.

Definition 2.9 (Functions with bounded variation on X0).
Fix a finite number of C1+Lip charts κ1, . . . , κJ whose domains of definition cover

a compact neighborhood of X0, and a partition of unity ρ1, . . . , ρJ , such that the
support of ρj is compactly contained in the domain of definition of κj, and

∑

ρj = 1
on X. The space BV of functions with bounded variation on X0 (sometimes also
denoted BV(X0)) is the space of functions u supported on X0 such that (ρju) ◦ κ

−1
j

belongs to BV(Rd) for all j, endowed with the norm

‖u‖
BV

=

J
∑

j=1

∥

∥(ρju) ◦ κ
−1
j

∥

∥

BV(Rd)
. (2.4)

Since we can neither use the Fourier transform nor the interpolation theory
here, we will need different tools for the part of our proof relying on functions with
bounded variation. We choose to use two theorems dealing with the approximation
of functions with bounded variation by C∞ functions, and then to work with smooth
functions (for which the computations can be done explicitly). They are respectively
a variation on Theorem 1.17 and Theorem 1.9 in [Giu84]. The first is obtained via
convolution with smooth kernels (say, gaussian or C∞ with compact support), the
second follows directly from the definition of the variation.

Theorem 2.10 (Approximation of functions with bounded variation).
For any function u in BV(Rd), there exists a sequence of C∞ functions (un)n∈N

which converges in L1 to u, and such that (‖un‖BV(Rd))n∈N converges to ‖u‖
BV(Rd).

Theorem 2.11 (Control of the approximation).
Let u ∈ BV(Rd), and (un)n∈N a sequence of functions with bounded variation

which converges to u in L
1. Then ‖u‖

BV(Rd) ≤ lim inf
n→+∞

‖un‖BV(Rd).

10



3 Elementary inequalities

Our goal in this section is to prove several continuity results for operations in the
H t

p spaces, for instance multiplication by Cα functions or by characteristic functions
of intervals. They show the convenient properties of the spaces we are working with,
provided we take good values of t and p, and are virtually sufficient to get the main
theorems.

Hence, obtaining versions of the main theorem for other parameters or function
spaces can be reduced to the obtention of those results of continuity; see for instance
Section 6 for the corresponding results in the BV space.

3.1 First inequalities

The first inequalities are continuity results for some linear operations; they were
proven in the 60s and 70s.

We first deal with the multiplication by smooth enough functions, which will be
necessary primarily when we multiply u and g, and also when it comes to study what
happens at a small scale (we will multiply the functions u with smooth functions
with small supports). A proof of the following lemma can be found in §4.2.2 of
[Tri92].

Lemma 3.1 (Multiplication by Cα functions).
Let 0 < t < α be real numbers. There exists Ct,α such that, for all p ∈ (1,+∞),

for all u ∈ H t
p(R

d) and g ∈ Cα(Rd),

‖gu‖Ht
p
≤ Ct,α ‖g‖Cα ‖u‖Ht

p
.

The next inequality (Corollary I.4.2 from [Str67]) is central for our study, since
it tells us that H t

p(R
d) behaves well in a “piecewise setting” up to constraints on the

parameters t and p. We note that one has to combine Corollary I.4.2 from [Str67]
with its Corollary I.3.7 to show that the constant Ct,p in the following lemma does
not depend on Ω otherwise than via L.

Lemma 3.2 (Multiplication by characteristic functions of nice sets).
Let 0 < t < 1/p < 1 be real numbers; let L ≥ 1. There exists Ct,p such that for

each measurable subset Ω of Rd whose intersection with almost every line parallel to
some coordinate axis has at most L connected components, for all u ∈ H t

p(R
d),

‖1Ωu‖Ht
p
≤ Ct,pL ‖u‖Ht

p
.

3.2 Composition with C1+α diffeomorphisms

The injection from Ht
p into L

p is compact, t being positive and X0 compact (in the
case of compact subset of some Rd, this is for instance Lemma 2.2 in [Bal]; the cor-
responding result for compact subset of Riemannian manifolds follows immediatly).
Thus, Lemma 3.3 (a version of Lemma 24 in [BG09]) is essential in the way it gives
the decomposition of ‖Lgu‖Ht

p
into a part bounded by ‖u‖Ht

p
, and a part bounded

by ‖u‖Lp. By Hennion’s theorem [Hen93], the part bounded by ‖u‖Lp will not affect
our estimation of the essential spectral radius of Lg, so that only the part bounded
by ‖u‖Ht

p
matters.

11



When we apply Lemma 3.3, F will be the local inverse of an iterate of T , i.e.
some T−n

i
(or rather the maps on some open set of Rd obtained by transporting

T−n
i

via the charts), and A will be a local approximation of DT−n
i

. If A is such an
approximation in a neighborhood of some x, then, T being expanding, we can write

‖A‖ ≤ λ̃n
−1

where λ̃n is the essential infimum of λn on this neighborhood of x.

Lemma 3.3 (Composition with smooth diffeomorphisms).
Let F ∈ C1(Rd,Rd) be a diffeomorphism and A ∈ GLd(R) such that, for all

z ∈ Rd, ‖A−1 ◦DF (z)‖ ≤ 2 and ‖DF (z)−1 ◦ A‖ ≤ 2.
Then, for all t ∈ [0, 1], for all p ∈ (1,+∞), there exist constants Ct,p and C ′

t,p,
which do not depend on F nor on A, such that, for all u ∈ H t

p,

‖u ◦ F‖Ht
p
≤ Ct,p| detA|

− 1

p‖A‖t ‖u‖Ht
p
+ C ′

t,p| detA|
− 1

p ‖u‖
Lp

Proof.
We will write u ◦ F = u ◦A ◦A−1 ◦ F , and put F̃ = A−1 ◦ F . First we deal with

u ◦ A, and then with u ◦ F̃ .
First step: u ◦ A
We want to estimate ‖u ◦ A‖Ht

p
= ‖F−1(atF(u ◦ A))‖

Lp , where at(ξ) = (1 +

|ξ|2)t/2. A change of variables gives F−1(atF(u ◦ A)) = F−1(at ◦
tAF(u)) ◦ A.

If |ξ| > 1/‖A‖, we have

(at ◦
tA)(ξ) = (1 + |tAξ|2)t/2 ≤ (1 + ‖A‖2|ξ|2)t/2 ≤ 2t/2‖A‖tat(ξ).

On the other hand, if |ξ| ≤ 1/‖A‖, we have

(at ◦
tA)(ξ) ≤ (1 + ‖A‖2|ξ|2)t/2 ≤ 2t/2.

Finally, we get at ◦
tA ≤ 2t/2‖A‖tat+2t/2, and by the same means the same kind

of upper bound for the ξγDγ

(

at ◦
tA

‖A‖tat + 1

)

for all γ ∈ {0, 1}d. By Theorem 2.3,

there exist Ct,p and C ′
t,p such that

∥

∥F−1(at ◦
tAF(u))

∥

∥

Lp ≤ Ct,p| detA|
−1/p‖A‖t

∥

∥F−1(atF(u))
∥

∥

Lp

+ C ′
t,p| detA|

−1/p
∥

∥F−1(F(u))
∥

∥

Lp

≤ Ct,p| detA|
−1/p‖A‖t ‖u‖Ht

p
+ C ′

t,p| detA|
−1/p ‖u‖

Lp .

The following estimate ensues:

‖u ◦ A‖Ht
p
≤ Ct,p| detA|

−1/p‖A‖t ‖u‖Ht
p
+ C ′

t,p| detA|
−1/p ‖u‖

Lp . (3.1)

This inequality ends the first part of the proof.

Second step: u ◦ F̃
We will use interpolation. Notice that, since ‖DF̃‖ ≥ 1/2 everywhere, | det F̃−1| ≥

2d and
∥

∥

∥
u ◦ F̃

∥

∥

∥

Lp
≤ 2d/p ‖u‖

Lp for all u ∈ Lp. We also get the same way
∥

∥

∥
u ◦ F̃

∥

∥

∥

H1
p

≤

Cp2
d/p+1 ‖u‖H1

p
for some Cp, since the H

1
p norm is equivalent to ‖u‖

Lp +‖Du‖
Lp (see

for instance §2.3.3 in [Tri78]).
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Hence, by Proposition 2.4, there exists Ct,p such that, for all t ∈ [0, 1], for all
u ∈ H t

p,

∥

∥

∥
u ◦ F̃

∥

∥

∥

Ht
p

≤ Ct,p2
d/p ‖u‖Ht

p
. (3.2)

The lemma follows immediately from (3.1) and (3.2).

Since the injection H t
p → Lp is continuous (t being non-negative), a consequence

of (3.1) is that, for all p ∈ (1,+∞) and t ∈ [0, 1], there exists a constant Ct,p such
that, for all u ∈ H t

p(R
d), for all A ∈ GLd(R),

‖u ◦ A‖Ht
p
≤ Ct,p sup{‖A‖, 1}| detA|

−1/p‖u‖Ht
p
. (3.3)

3.3 Localization

For the proof of Theorem 1.3, we work locally, on small open sets, and the compact-
ness of X0 allows us to work globally with a finite number of such sets. However,
we need to control the intersection multiplicity of those sets. This control will be
obtained with a partition of the unity and a ”zoom” to get some regularity when
working at small scales.

Lemma 3.4 (Localization principle).
Let η ∈ C∞

c (Rd,R), and write, for all x ∈ Rd and m ∈ Zd, ηm(x) = η(x + m).
Then, there exists a constant Ct,p,η such that, for all u ∈ H t

p,

(

∑

m∈Zd

‖ηmu‖
p
Ht

p

)
1

p

≤ Ct,p,η ‖u‖Ht
p
. (3.4)

This lemma is Theorem 2.4.7 from [Tri92].
The constant Ct,p,η depends on t, p, on the support of η and on its Ck norm for

some large enough k. The proof we give of a localization principle in Section 6 will
make explicit a kind of dependence of CBV,η (the corresponding bound for the space
of functions with bounded variation) in η.

Lemma 3.5.

Let 1 < p < +∞ and t ∈ R+. There exists a constant Ct,p such that, for
any functions v1, . . . , vl with compact support in Rd, belonging to H t

p, there exists a
constant Ct,p,{v}, depending only on the supports of the functions vi, with

∥

∥

∥

∥

∥

l
∑

i=1

vi

∥

∥

∥

∥

∥

p

Ht
p

≤ Ct,pm
p−1

l
∑

i=1

‖vi‖
p
Ht

p
+ Ct,p,{v}

l
∑

i=1

‖vi‖
p
Lp ,

where m is the intersection multiplicity of the supports of the vi’s, i.e. m =
supx∈Rd Card{i | x ∈ Supp(vi)}.

Proof.
Let B be the operator acting on functions by Bv = F−1((1+ |ξ|2)t/2Fv), so that

‖v‖Ht
p
= ‖Bv‖

Lp .
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By Lemma 2.7 in [Bal], for any compact K and any neighborhood K ′ of K, there
exist CK,K ′,t,p > 0 and a function Ψ : Rd → [0, 1] equal to 1 on K and vanishing on
the complement of K ′, such that for any v ∈ H t

p with support in K,

‖ΨBv − Bv‖
Lp

≤ CK,K ′,t,p ‖v‖Ht−1
p

. (3.5)

Let v1, . . . , vl be functions with compact supports whose intersection multiplicity
is m. Choose neighborhoods K ′

1, . . . , K
′
l of the supports of the vis whose intersection

multiplicity is also m, and functions Ψ1, . . . ,Ψl as above. Then

∥

∥

∥

∥

∥

∑

i

vi

∥

∥

∥

∥

∥

p

Ht
p

=

∥

∥

∥

∥

∥

∑

i

Bvi

∥

∥

∥

∥

∥

p

Lp

≤

∥

∥

∥

∥

∥

∑

i

ΨiBvi

∥

∥

∥

∥

∥

p

Lp

+ CK,K ′,t,p

∑

i

‖vi‖
p

Ht−1
p

. (3.6)

Since t ≤ 1, the inclusion Lp → H t−1
p is continuous, and ‖vi‖

p

Ht−1
p

≤ Cp ‖vi‖
p
Lp .

By convexity, the inequality (x1 + · · · + xm)
p ≤ mp−1

∑

xp
i holds for any non-

negative numbers x1, . . . , xm. Since the multiplicity of the K ′
i is at most m, this

yields
∣

∣

∣

∣

∣

∑

i

ΨiBvi

∣

∣

∣

∣

∣

p

≤ mp−1
∑

i

|Bvi|
p.

Integrating this inequality and using (3.6), we get the lemma.

4 Proof of the main theorem

Before proving Theorem 1.3, we need to show that T does not ”hack” too much the
functions, or in other words that its discontinuities are not so bad that functions
in Ht

p do not stay in this space when composed by T . The following lemma will
allow us to apply Lemma 3.2. For once, its proof is adapted from [BG10] instead of
[BG09].

Lemma 4.1.

For 1 ≤ i ≤ I, let Li be the number of smooth boundary components of Oi, and
L = maxi Li.

For any n ≥ 1, for any i = (i0, . . . , in−1), for any x ∈ Oi, for any j such that
x ∈ Supp ρj, there exists a neighborhood O′ of x and an orthogonal matrix M such
that the intersection of Mκj(O

′ ∩ Oi) with almost any line parallel to a coordinate
axis has at most Ln components.

Proof.
If x is in the interior of some Oi, we may just take for O′ a ball small enough so

that O′ ⊂ Oi, and M = Id. Let assume that x belongs to a backwards image of a
C1 hypersurface of some ∂Oik by T k

i
, with k ≤ n.

On a small neighbourhood of x, the smooth boundary components of Oi are close
to their tangent hyperplanes in x. We can choose d orthogonal vectors of norm 1 all
transverse to all those hyperplanes. The smooth boundary components are C1, so
that the vectors we chose are transverse to the boundary components (an not only
to the hyperplanes) on a small enough ball around x, that we shall denote O′.
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We have Oi =

n−1
⋂

k=0

T−kOik , each of the T−kOik being an open set bounded by

at most L hypersurfaces; hence, Oi is bounded by at most Ln preimages of those
hypersurfaces under some T−k. By construction, each line parallel to any coordinate
axis in the new basis intersects any of these backward images of hypersurfaces in at
most one point, so that their intersection with Oi ∩ O′ has at most Ln connected
components. All we need is to take for M the change-of-basis natrix from the new
orthogonal basis to the canonical one.

We now have all the tools we need to prove the main theorem.

Proof of Theorem 1.3.
Let p and t be as in the assumptions of the theorem. Let n > 0, and rn > 1

(the precise value of rn will be chosen later). We define a dilation Rn on Rd by
Rn(z) = rnz. Let ‖u‖n be another norm on Ht

p, given by

‖u‖n =

J
∑

j=1

∥

∥(ρju) ◦ κ
−1
j ◦R−1

n

∥

∥

Ht
p

. (4.1)

The norm ‖u‖n is of course equivalent to the usual norm on Ht
p, but we look at

the space X0 at a smaller scale. Functions are much flatter at this new scale, so
that we have no problem using Lemma 3.1, which involves their Cα norm: we will
replace it by their L∞ norm. This will also enable us to use partitions of unity (ηm)
with very small supports without spoiling the estimates. The use of this ”zooming”
norm is similar to the good choice of ǫ0 in [Sau00].

We will prove that there exists Ct,p,η,α such that, if n is fixed and rn is large
enough, then there exists Ct,p,n such that:

∥

∥Ln
gu
∥

∥

p

n
≤ Ct,p,n ‖u‖

p
Lp + Ct,p,η,αD

b
n(D

e
n)

p−1(Ln)p
∥

∥| detDT n|λ−tp
n |g(n)|p

∥

∥

L∞
‖u‖pn .

(4.2)
We have already observed that, since X0 is compact and t > 0, the injection of

Ht
p into Lp is compact (see e.g. Lemma 2.2 in [Bal]). Hence, by Hennion’s theorem

(actually Corollary 1 in [Hen93]), the essential spectral radius of Ln
g acting on Ht

p

(for either ‖u‖Ht
p
or ‖u‖n, since these norms are equivalent) is at most

[

Ct,p,η,α(Ln)
pDb

n(D
e
n)

p−1
∥

∥| detDT n|λ−tp
n |g(n)|p

∥

∥

L∞

]
1

p

. (4.3)

Taking the power 1/n and letting n tend to +∞, we obtain Theorem 1.3 since

the quantity (C
1/p
t,p,η,α(Ln)

p)1/n converges to 1.

It remains to prove (4.2), for large enough rn. The estimate will be subdivided
into three steps:

1. Decomposing u into a sum of functions vj,m with small supports and well
controlled ‖·‖n norms.

2. Estimating each term (1Oi
g(n)vj,m) ◦ T

−n
i

, for i of length n.

3. Adding all terms to obtain Ln
gu.
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First step:

For 1 ≤ j ≤ J and m ∈ Zd, let ṽj,m = ηm · (ρju)◦κ
−1
j ◦R−1

n , where ηm(x) = η(x+

m), with η : Rd → [0, 1] a compactly supported C∞ function so that
∑

m∈Zd

ηm = 1.

Since the intersection multiplicity of the supports of the functions ηm is bounded,
this is also the case for the ṽj,m. Moreover, if j is fixed, we get, using Lemma 3.4,

∑

m∈Zd

‖ṽj,m‖
p
Ht

p
=
∑

m∈Zd

∥

∥ηm · (ρju) ◦ κ
−1
j ◦R−1

n

∥

∥

p

Ht
p

(4.4)

≤ Ct,p,η

∥

∥(ρju) ◦ κ
−1
j ◦R−1

n

∥

∥

p

Ht
p

≤ Ct,p,η ‖u‖
p
n .

Since Rn expands the distances by a factor rn while the size of the supports of
the functions ηm is uniformly bounded, the supports of the functions

vj,m = ṽj,m ◦Rn ◦ κj = ηm ◦Rn ◦ κj · (ρju)

are arbitrarily small if rn is large enough. Finally

u =
∑

j

ρju =
∑

j,m

vj,m. (4.5)

Second step:

Fix j, k ∈ {1, . . . , J}, m ∈ Zd and i = (i0, . . . , in−1). We will prove that

∥

∥(ρk(g
(n)1Oi

vj,m) ◦ T
−n
i

) ◦ κ−1
k ◦R−1

n

∥

∥

Ht
p

(4.6)

≤ Ct,p,n ‖u‖Lp + Ct,p(Ln)
∥

∥

∥
| detDT n|

1

p g(n)λ−t
n

∥

∥

∥

L∞

‖ṽj,m‖Ht
p
.

First, if the support of vj,m is small enough (which can be ensured by taking
rn large enough), there exists a neighborhood O of this support and a matrix M
satisfying the conclusion of Lemma 4.1 for all x in Oi. Therefore, the intersection of
Rn(M(κj(O ∩ Oi))) with almost any line parallel to a coordinate axis has at most
Ln connected components. Hence, Lemma 3.2 implies that the multiplication by
1O∩Oi

◦κ−1
j ◦M−1 ◦R−1

n sends H t
p into itself, with a norm bounded by Ct,pLn. Using

the fact that M and Rn commute, the properties of M , and (3.3), we get

∥

∥1Oi
◦ κ−1

j ◦R−1
n · ṽj,m

∥

∥

Ht
p

≤ Ct,pLn ‖ṽj,m‖Ht
p
. (4.7)

Next, let
ṽj,k,m = ((ρk ◦ T

n
i
)1Oi

) ◦ κ−1
j ◦R−1

n · ṽj,m

(we suppress i from the notation for simplicity). Let also χ be a C∞ function
supported in the neighborhood O of the support of vj,m with χ ≡ 1 on this support.
Up to taking larger rn we may ensure that

∥

∥(χ(ρk ◦ T
n
i
)) ◦ κ−1

j ◦R−1
n

∥

∥

Cα
≤ 2. Then

Lemma 3.1 and (4.7) imply

‖ṽj,k,m‖Ht
p
≤ Ct,p,αLn ‖ṽj,m‖Ht

p
. (4.8)

In addition, putting G = κj ◦ T
−n
i

◦ κ−1
k , we have
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((ρk ◦ T
n
i
)1Oi

vj,m) ◦ T
−n
i

◦ κ−1
k ◦R−1

n = ṽj,k,m ◦Rn ◦ κj ◦ T
−n
i

◦ κ−1
k ◦R−1

n (4.9)

= ṽj,k,m ◦Rn ◦G ◦R−1
n .

Applying Lemma 3.3 to F = Rn ◦ G ◦ R−1
n , we get (for some point x in the

support of vj,m, and some matrix A of the form DG(R−1
n (x)) for some x, so that

‖A‖ ≤ λ−1
n (x))

∥

∥ṽj,k,m ◦Rn ◦G ◦R−1
n

∥

∥

Ht
p
≤ Ct,p,n ‖u‖Lp (4.10)

+ Ct,p| detA|
− 1

pλn(x)
−t ‖ṽj,k,m‖Ht

p
.

The constant Ct,p,n also depends on the choice of A. Let χ be a C∞ function
supported in O′ with χ ≡ 1 on the support of vj,m◦T−n

i
. For δ > 0, we can ensure by

increasing rn that the Cα norm of (χg(n))◦T−n
i

◦κ−1
k ◦R−1

n is bounded by |g(n)(x)|+δ
for some x in the support of vj,m. Choosing δ > 0 small enough, we deduce from
(4.10), Lemma 3.1 and (4.8)

∥

∥(ρk(g
(n)1Oi

vj,m) ◦ T
−n
i

) ◦ κ−1
k ◦R−1

n

∥

∥

Ht
p

≤ Ct,p,n ‖u‖Lp + Ct,p,αLn
∥

∥

∥
| detDT n|

1

p g(n)λ−t
n

∥

∥

∥

L∞

‖ṽj,m‖Ht
p
.

This proves (4.6).

Third step:

We have Ln
gu =

∑

j,m

∑

i

(1Oi
g(n)vj,m) ◦ T

−n
i

. (Note that only finitely many terms

in this sum are nonzero by compactness of the support of each ρj .) We claim that
the intersection multiplicity of the supports of the functions (1Oi

g(n)vj,m) ◦ T−n
i

is
bounded by CηD

e
n. Indeed, this follows from the fact that any point x ∈ X0 belongs

to at most De
n sets T n

i
(Oi), and that the intersection multiplicity of the supports of

the functions vj,m is bounded.
To estimate

∥

∥Ln
gu
∥

∥

n
, we have to bound each term

∥

∥(ρkL
n
gu) ◦ κ

−1
k ◦R−1

n

∥

∥

Ht
p

, for

1 ≤ k ≤ J . Let us fix such a k. By Lemma 3.5, we have

∥

∥(ρkL
n
gu) ◦ κ

−1
k ◦R−1

n

∥

∥

p

Ht
p

≤ Ct,p,n ‖u‖
p
Lp + Ct,p,α(Ct,p,ηD

e
n)

p−1
∑

j,m,i

∥

∥(ρk(1Oi
g(n)vj,m) ◦ T

−n
i

) ◦ κ−1
k ◦R−1

n

∥

∥

p

Ht
p
.

We can bound each term in the sum using (4.6) and the convexity inequality
(a + b)p ≤ 2p−1(ap + bp). Moreover, for any (j,m), the number of parameters i
for which the corresponding term is nonzero is bounded by the number of sets Oi

intersecting the support of vj,m. Choosing rn large enough, we can ensure that
the supports of the vj,m are small enough so that this number is bounded by Db

n.
Together with (4.4), this concludes the proof of (4.2), and of Theorem 1.3.
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5 Existence of finitely many physical measures

In this section, we prove Theorem 1.6. In view of Theorem 1.4, and with a few
minor adaptations, the same proof leads to Theorem 1.7. This proof is a simplified
version of Appendix B in [BG09], which is itself adapted from [BKL02].

Proof.
First step: the spectrum

First, note that the Lebesgue measure Leb on the manifold X0 is in (Ht
p)

∗ and
is a fixed point for L∗, so that 1 is an eigenvalue of L∗ and thus is in the spectrum
of L. By Corollary 1.5 the essential spectral radius ρess of L is strictly smaller than
1, and 1 is an eigenvalue of L.

We also have the inclusions Ht
p ⊂ Lp ⊂ L1, so that L∞ ⊂ H−t

p∗ and any essentially
bounded function on X0 can be seen as a linear functional on Ht

p.
In the following, when γ denotes an eigenvalue of L of modulus strictly big-

ger than the essential spectral radius, Eγ will denote the corresponding finite-
dimensional eigenspace and πγ : Ht

p → Eγ the corresponding canonical projection.
Consider such an eigenvalue γ; since L∞ ∩Ht

p is dense is Ht
p, its image by πγ in Eγ

is a dense subspace of Eγ, and therefore is Eγ itself.
Let us first prove that L has no eigenvalue of modulus strictly bigger than 1,

nor a nontrivial Jordan block for an eigenvalue of modulus 1. Otherwise, let γ be
an eigenvalue of L of maximal modulus, with a Jordan block of maximal size d.
Therefore, there exists a bounded function f such that n−d

∑n−1
i=0 γ−iLif converges

to a nonzero limit u. For any g ∈ L∞,

〈u, g〉 :=

∫

X0

ug dLeb = lim
n→+∞

1

nd

n−1
∑

i=0

γ−i〈Lif, g〉 = lim
n→+∞

1

nd

n−1
∑

i=0

γ−i

∫

f ·g◦T i dLeb .

If |γ| > 1 or d ≥ 2, this quantity converges to 0 when n → +∞ since
∫

f ·g ◦T i dLeb
is uniformly bounded. This contradicts the fact that u is nonzero.

Let us take any eigenvalue γ of modulus 1. Since γ is of maximal modulus and
ρess < 1, the eigenprojection is given by

πγf = lim
n→+∞

1

n

n−1
∑

i=0

γ−iLif, (5.1)

where the convergence holds in Ht
p.

Let u ∈ Eγ . Obviously, Eγ ⊂ Ht
p ⊂ Lp ⊂ L1 and u can be seen as the density of

a finite complex measure with respect to the Lebesgue measure.
For any f ∈ L∞ ∩Ht

p and any non-negative measurable bounded function g,

|〈πγf, g〉| ≤ ‖f‖
L∞ lim

n→+∞

1

n

n−1
∑

i=0

∫

∣

∣g ◦ T i
∣

∣ dLeb

≤ ‖f‖
L∞ lim

n→+∞

∣

∣

∣

∣

∣

1

n

n−1
∑

i=0

∫

gLi1 dLeb

∣

∣

∣

∣

∣

≤ ‖f‖
L∞ |〈π11, g〉| .
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This means that the measures u dLeb, where u belongs to some Eγ with |γ| = 1,
are all absolutely continuous with respect to the reference measure µ = π11 dLeb,
with bounded density.

For any u ∈ Eγ , we write u dLeb = ϕuµ, where ϕu ∈ L
∞(µ) is defined µ-almost

everywhere. The equation Lu = γu translates into T ∗(ϕuµ) = γϕuµ. Hence, since
µ is invariant,
∫

|ϕu ◦ T − γ−1ϕu|
2 dµ =

∫

|ϕu|
2 ◦ T dµ+

∫

|γ−1ϕu|
2 dµ− 2ℜ

∫

ϕu ◦ Tγ
−1ϕu dµ

= 2

∫

|ϕu|
2 dµ − 2ℜ

∫

γ−1ϕu dT ∗(ϕuµ) = 0.

Let Fγ = {ϕ ∈ L∞(µ) | ϕ ◦ T = γ−1ϕ}. The map Φγ : u → ϕu is an injective
morphism from Eγ to Fγ . We now show that Φγ is also surjective, or in other words
that the functions ϕuπ11 always belong to Ht

p.
Let be ϕ ∈ Fγ. Since the continuous functions are dense in L1(µ), and any

continuous function can be uniformly approximated (thus approximated in L1(µ),
all our measures being finite) by a sequence of C1 functions, Cα ⊂ Ht

p is dense in
L1(µ). We choose an approximation (ϕm) of ϕ by Cα functions in L1(µ), and put
um = πγ(ϕmπ11).

The functions (um) belong to Hp
t (Leb) by Lemma 3.1. Moreover, |Lu| ≤ L|u|

for any u ∈ Hp
t , so that ‖Lu‖

L1(Leb) ≤ ‖u‖
L1(Leb).

For any f ∈ Cα, we have:

‖πγ(fπ11)‖L1(Leb) ≤ lim inf
n→+∞

1

n

n−1
∑

i=0

∥

∥Li(fπ11)
∥

∥

L1(Leb)
≤ ‖f‖

L1(µ)

Hence, f → πγ(fπ11) is continuous from Cα (endowed with the semi-norm
‖·‖

L1(µ)) to Eγ (endowed with the norm ‖·‖
L1(Leb)). As a consequence, (um) is a

Cauchy sequence in Eγ , which is of finite dimension and thus complete. The se-
quence (um) converges to some u ∈ Eγ. Then, we have Φγ(u) = ϕ, and Φγ is an
isomorphism.

The eigenvalues of L of modulus 1 are exactly those γ such that Fγ is not reduced
to 0. We have ϕn

γ ∈ Fγn for all n whenever ϕγ ∈ Fγ, so that this set is an union of
groups. Since L only has a finite number of eigenvalues of modulus 1, this implies
that these eigenvalues are roots of unity. In particular, there exists N > 0 such that
γN = 1 for any eigenvalue γ.

We now have a good description of the spectrum of L: its radius is 1, its essential
radius strictly smaller than 1, and the eigenvalues of modulus 1 form a finite group,
none of them having a nontrivial Jordan block. The measures corresponding to
those eigenvalues are all absolutely continuous with bounded density with respect
to a reference invariant measure, π11 dLeb, and are all absolutely continuous with
respect to the Lebesgue measure.

Second step: mixing physical measures

Let us now assume that 1 is the only eigenvalue of L of modulus 1 (in the general
case, this will be true for LN , so we will be able to deduce the general case from
this particular case). Under this assumption, Lnu converges to π1u for any u ∈ Ht

p.
Consider the subset of F1 (the T -invariant functions of L(µ)∞) given by the

nonnegative functions whose integral with respect to the measure µ is 1. It is
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nonempty, since it contains the function µ(X0)
−1. It is a bounded convex subset

of F1, whose extremal points are of the form 1B for some minimal invariant set
B defined µ-almost everywhere. Such extremal points are automatically linearly
independent; we can also assume that they are subsets of Supp(µ). Since F1 is
finite-dimensional, there is only a finite number of them, say 1B1

, . . . , 1Bl
, and a

function belongs to F1 if and only if it can be written as ϕ =
∑

αi1Bi
for some

scalars α1, . . . , αl. The decomposition of the function 1 ∈ F1 is given by 1 =
∑

1Bi
,

hence the sets Bi cover the whole space up to a set of zero measure for µ. Moreover,

since Bi is minimal, the measure µi :=
1Bi

µ

µ(Bi)
is an invariant ergodic probability

measure.
Let ui = Φ−1

1 (1Bi
) = 1Bi

π11 ∈ Ht
p, then any element of E1 is a linear combination

of the ui. In particular, this applies to π1(fui) for any f ∈ Cα (we recall that
fui ∈ Ht

p by Lemma 3.1, and that 1Bi
is T -invariant in L∞(µ)); we now compute

π1(fui).

〈π1(fui), 1Bj
〉 = lim

n→+∞

1

n

n−1
∑

k=0

∫

Lk(fui) · 1Bj
dLeb = lim

n→+∞

1

n

n−1
∑

k=0

∫

f · 1Bi
· 1Bj

◦ T k dµ

=

∫

Bi∩Bj

f dµ = µ(Bi)δi,j

∫

f dµi

Hence, we get:

π1(fui) =

(
∫

f dµi

)

ui (5.2)

This enables us to deduce that each measure µi is exponentially mixing, as
follows. Let δ < 1 be the spectral radius of L − π1; we have ‖Ln − π1‖ = O(δn).
Then, if f, g are Cα functions, and following (5.2),

∫

f · g ◦ T n dµi =
1

µ(Bi)
〈Ln(fui), g〉 =

1

µ(Bi)
〈π1(fui), g〉+O(δn)

=

(
∫

f dµi

)

1

µ(Bi)
〈ui, g〉+O(δn)

=

(
∫

f dµi

)(
∫

g dµi

)

+O(δn).

Since Cα is dense L
1, every µi is mixing and thus ergodic. Those µi are ergodic

measures, and absolutely continuous with respect to the Lebesgue measure, so that
they are also physical measures.

Third step: basins

We now turn to the relationship between Lebesgue measure and the measures
µi. For any function f ∈ L∞(Leb) ∩ Ht

p, let us write

π1(f) =
l
∑

i=1

ai(f)ui. (5.3)

We shall need to describe the coefficients ai(f). Let be 1 ≤ i ≤ l, and f ∈ L∞(Leb)∩
Ht

p. We recall that the sets Bi are T -invariant and disjoint for the Lebesgue measure
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(except perhaps for a set a zero Lebesgue measure).

lim
n→+∞

∫

X0

f ·
1

n

n−1
∑

k=0

1Bi
◦ T k dLeb = lim

n→+∞

1

n

n−1
∑

k=0

〈1Bi
,Lkf〉 = 〈1Bi

, π1f〉 = ai(f)µ(Bi)

Moreover, all the 1/n
∑n−1

k=0 1Bi
◦ T k are bounded by 1 ; let hi be one of their weak

L2(Leb) limits. The function hi is T -invariant Leb-almost everywhere, and satisfies
for all f ∈ L∞(Leb) ∩ Ht

p :

ai(f) =
1

µ(Bi)

∫

fhi dLeb

Since ai(1) = 1, we have
∫

hi dLeb = µ(Bi).
Let us now compute

∫

hihj dLeb. To begin with, hj being invariant,

aj(1Bi
◦ T n) =

∫

1Bi
◦ T n · hj dLeb =

∫

1Bi
◦ T n · hj ◦ T

n dLeb = aj(1Bi
Ln1).

The computation now gives :

∫

hihj dLeb = µ(Bj)aj(hi) = µ(Bj) lim
n→+∞

1

n

n−1
∑

k=0

aj(1Bi
◦ T k) (5.4)

= µ(Bj) lim
n→+∞

aj

(

1Bi

1

n

n−1
∑

k=0

Lk1

)

= µ(Bj)aj(ui) = µ(Bi)δi,j

Taking i = j, we get
∫

h2
i dLeb = µ(Bi) =

∫

hi dLeb. Since hi takes its values
in [0, 1], this shows that there exists a subset Ci of X0 such that hi = 1Ci

, with
∫

1Ci
dLeb = µ(Bi). Moreover, (5.4) shows that Leb(Ci ∩ Cj) = 0 if i 6= j. For any

function f ∈ L∞(Leb) ∩Ht
p,

ai(f) =
1

µ(Bi)

∫

Ci

f dLeb

Moreover,
∫

X0

∑

i

1Ci
dLeb =

∑

i

µ(Bi) = µ(X0) = Leb(X0)

This shows that the sets Ci form a partition of the space modulo a set of zero
Lebesgue measure. We have proved that

π1(f) =
l
∑

i=1

1

µ(Bi)

(
∫

Ci

f dLeb

)

ui, (5.5)

which means that the sets Ci form a partition of almost all X0 into ergodic basins
for the physical measures.
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6 Piecewise C1+Lip maps and functions with bounded

variation

For now on, we will assume that the transformation T is a piecewise C1+Lip uni-
formly expanding map, and work with the space of functions with bounded varia-
tion. We prove the existence of a spectral gap for the operator L1/|DetDT | in this
space under simple assumptions, and compare our results with previous works by
J.W. Cowieson [Cow00] and B. Saussol [Sau00].

In order to simplify the notations, in this section λn denotes the essential infimum
of the λn(x).

As an introduction and a last tribute to our work with Sobolev spaces, we first
prove a corollary to Corollary 1.5.

Corollary 6.1.

If T is a piecewise C2 expanding map with piecewise C1 boundaries and if:

lim
n→+∞

(Db
n)

1

nλ
− 1

n
n < 1,

then there exist 0 < t0 < 1/p0 < 1 such that, for all 0 < t < 1/p < 1 such that
t0 ≤ t and 1/p0 ≤ 1/p, the essential spectral radius of L1/|DetDT | acting on Ht

p is
strictly smaller than 1.

Proof.

Let us put ǫ = 1− lim
n→+∞

(Db
n)

1

n lim
n→+∞

λ
− 1

n
n .

We first choose 0 < t0 < 1 such that lim
n→+∞

(Db
n)

1

n lim
n→+∞

λ
−

t0
n

n < 1− ǫ/2.

Then, we choose 1 < p0 < 1/t0 such that lim
n→+∞

(De
n)

(1− 1

p0
) 1

n < 1 + ǫ/2.

Let 1 > t ≥ t0 and 1 < p ≤ p0 such that t < 1/p < 1. The essential spectral
radius of L1/|DetDT | acting on Ht

p is at most

lim
n→+∞

(Db
n)

1

p
1

n · (De
n)

1

n
(1− 1

p
) ·
∥

∥

∥
λ−t
n | detDT n|

1

p
−1
∥

∥

∥

1

n

L∞

≤ lim
n→+∞

(Db
n)

1

n · (De
n)

(1− 1

p0
) 1

n · λ
−

t0
n

n ≤ (1− ǫ/2)(1 + ǫ/2) < 1

Corollary 6.1 can be seen as an asymptotic result; even if we work with parame-
ters t and p close to 1, we do not work on H1

1. Indeed, this result does not hold when
replacing Ht

p by H1
1. Since T is piecewise continuous, we must allow discontinuities

in the function spaces we let L1/|DetDT | act on, and for instance in dimension one
every function of H1

1 has a continuous version (because its derivative is a function
in L1). Here, the problem comes from the fact that the characteristic function of an
interval is in general not in H1

1 (R), since its derivative - in general a sum of atomic
measures - is not in L1. Therefore, we have to work in a broader space, for instance
the space of functions with bounded variation; this will lead us to an alternative
proof of a theorem shown by J.W. Cowieson in 2000 [Cow00]. We will also have a
closer look at the results proved by B. Saussol in 2000 [Sau00], which may be linked
to this work in a similar fashion.
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6.1 Cowieson’s theorem

We recall here J.W. Cowieson’s results [Cow00], and compare them to what we prove
later.

Theorem 6.2 (Cowieson, 2000).
Let X be a bounded and connected open set of Rd with piecewise C2 boundaries,

and T : X 7→ X be a piecewise C2 and uniformly expanding map with piecewise C2

boundaries.
If there exists n ∈ N such that λn > Db

n, then T admits an absolutely continuous
invariant probability measure whose density is in BV(X).

This theorem is indeed a consequence of Theorem 1.7. First, notice that (λn)n∈N
and (Db

n)n∈N are respectively supermultiplicative and submultiplicative. Thus, the

limits lim
n→+∞

λ
1

n
n and lim

n→+∞
(Db

n)
1

n exist, and are respectively equal to sup
n∈N

λ
1

n
n and

inf
n∈N

(Db
n)

1

n . Therefore, lim
n→+∞

λ
− 1

n
n (Db

n)
1

n < 1 if and only if there exists some n ∈ N

such that λn > Db
n, and the condition stated in Cowieson’s theorem and condi-

tion (1.8) are equivalent.
The differences between Cowieson’s theorem and our results are the following. To

begin with, our setting is less restrictive: the domain does not need to be the closure
of a bounded, connected open set of some Rd, but a compact subset of a Riemannian
manifold, and the boundaries do not need to be piecewise C2 but piecewise C1. The
transformation T also only needs to be piecewise C1+Lip, not piecewise C2. Then,
the condition on the expansion rate and the combinatorial complexity is the same.
At last, we shall prove that the essential spectral radius of L1/| detDT | acting on BV

is strictly smaller than 1. Moreover, once the spectral gap is proven, we will get
not only the existence of an absolutely continuous invariant measure with bounded
variation, but far stronger results, as in Theorem 1.7.

We recall once more that, for generic piecewise expanding maps, the complexity
Db

n increases subexponentially (Theorem 1.1 in [Cow02]), so that the consequences
of Theorem 1.7 hold generically.

6.2 Basic lemmas

We need to adapt the lemmas from Sections 3 and 4 to this new setting in order to
get Theorem 1.4 and subsequently Theorem 1.7. They are:

• A Fubini-type property, which allows us to work in a 1-dimensional setting:
Lemma 6.3.

• The continuity of the multiplication by Lipschitz functions (equivalent of
Lemma 3.1): Lemma 6.4.

• The continuity of the multiplication by characteristic functions of nice sets
(equivalent of Lemma 3.2): Lemma 6.5.

• The effect of composition with C1+Lip diffeomorphisms (equivalent of Lemma 3.3):
Lemma 6.6.

• A localization lemma (equivalent of Lemma 3.4): Lemma 6.7.
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• A summation lemma (equivalent to Lemma 3.5).

• The compactness of the injection from BV(X0) to L1(X0).

In may arguments below, we will work in fact with C1 functions, and then pro-
ceed by approximations to get the results for functions with bounded variation, the
approximation being done with Theorems 2.10 and 2.10. We hope that the quite
explicit computations involved will help to explain the properties described by the
many lemmas in Section 3 and Section 4.

We start with the Fubini-like theorem, which allows us to reduce the problem
to dimension 1 in the proofs of some following lemmas. Let u ∈ BV(Rd), i ∈ 1..d,
x ∈ Rd−1 and t ∈ R.

We put x = (x1, ..., xi−1, xi+1, ..., xd). We will denote by ux,i the map t 7→
u(x1, ..., xi−1, t, xi+1, ..., xd), and by ui the map x 7→ ‖ux,i‖BV(R).

Lemma 6.3 (Fubini-type property).
For all u ∈ C1 ∩ BV(Rd) and i ∈ 1..d, then ui ∈ L1 and

‖u‖
BV(Rd) = d−1

d
∑

i=1

‖ui‖L1

Proof.
Let u ∈ C1. Fubini-Tonelli theorem gives, for all i ∈ 1..d, ‖u‖

L1 =
∥

∥‖u.,i‖L1

∥

∥

L1
,

hence

‖u‖
L1 = d−1

d
∑

i=1

∥

∥‖u.,i‖L1

∥

∥

L1

On the other hand,

V (u) = d−1

∫

Rd

d
∑

i=1

∣

∣

∣

∣

∂u

∂xi

∣

∣

∣

∣

dLeb = d−1
d
∑

i=1

∫

Rd−1

V (u.,i) dLeb = d−1
d
∑

i=1

‖V (u.,i)‖L1 .

Then, all is left is to sum the equalities.

For any Lipschitz function u ∈ Lip(Rd,C), we put ‖u‖Lip = ‖u‖
L∞ +L(u), where

L(u) is the best Lipschitz constant for u. With this lemma, we can easily deduce
the following:

Lemma 6.4 (Multiplication by Lipschitz functions).
For all u ∈ BV(Rd), for all g ∈ Lip(Rd,C),

‖gu‖
BV(Rd) ≤ ‖g‖Lip ‖u‖BV(Rd)

Proof.
Assume first that u ∈ C1. Thanks to the Fubini-type property of Lemma 6.3,

we just have to show that ‖gu‖
BV(R) ≤ ‖g‖Lip ‖u‖BV(R). Since g is continuous, this

will be an application of the Leibniz formula (see e.g. Proposition 3.2 in [Bal00];
the derivative of g has to be taken in a weak sense):
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‖gu‖
BV(R) =

∫

R

|gu| dLeb+

∫

R

|D(gu)| dLeb

≤

∫

R

|gu| dLeb+

∫

R

|gDu| dLeb+

∫

R

|uDg|

≤ ‖g‖
L∞

∫

R

|u| dLeb+ ‖g‖
L∞

∫

R

|Du| dLeb+ ‖Dg‖
L∞

∫

R

|u| dLeb

≤ ‖g‖Lip ‖u‖BV(R)

For any u ∈ BV(R), let be a sequence of C1 functions (un)n∈N approaching u in
the sense of Theorem 2.10.

Then, since
‖gun − gu‖

L1 ≤ ‖g‖
L∞ ‖un − u‖

L1 ,

we see that (gun) is a sequence of BV(R) functions which converges to gu in L1.
Theorem 2.11 tells us that:

‖gu‖
BV(R) ≤ lim inf

n→+∞
‖gun‖BV(R) ≤ ‖g‖Lip lim inf

n→+∞
‖un‖BV(R) ≤ ‖g‖Lip ‖u‖BV(R)

Lemma 6.5 (Multiplication by characteristic functions of nice sets).
Let O be a measurable subset of Rd whose intersection with almost every line

parallel to a coordinate axis has at most L connected components. Then, for all
u ∈ BV,

‖1Ou‖BV ≤ L ‖u‖
BV

.

Proof.
Assume that u ∈ C1. Using again the Fubini-type property of Lemma 6.3, we

just have to show that ‖1Ou‖BV(R) ≤ L ‖u‖
BV(R) if O is an union of intervals, or even

that ‖1Ou‖BV(R) ≤ ‖u‖
BV(R) if O is an interval, and then sum the contributions of

the different intervals. Let us put O = [a, b] (the case O = R+ is even easier). Then:

‖1Ou‖L1 ≤ ‖u‖
L1 ,

V (1Ou) = |u(a)|+

∫

[a,b]

|u′(x)| dx+ |u(b)|

=

∣

∣

∣

∣

∫

(−∞,a]

u′(x) dx

∣

∣

∣

∣

+

∫

[a,b]

|u′(x)| dx+

∣

∣

∣

∣

∫

[b,+∞)

u′(x) dx

∣

∣

∣

∣

≤ V (u).

Summing those inequalities ends this proof for C1 functions. For a general func-
tion in BV(R), and using the same trick as in the end of the proof of Lemma 6.4,
we just have to show that, if (un) converges to u in L

1, then (1Oun) converges to
1Ou in L1, which is trivial.

The next lemma deals with the composition with C1+Lip diffeomorphisms.
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Lemma 6.6 (Composition with C1+Lip diffeomorphisms).
Let F ∈ C1+Lip(Rd,Rd) be a diffeomorphism and let A ∈ GLd(R) such that, for

all z ∈ Rd, ‖A−1 ◦DF (z)‖ ≤ 2 and ‖DF (z)−1 ◦ A‖ ≤ 2. Then, for all u ∈ C1(Rd),

‖u ◦ F‖
BV(Rd) ≤ 2d+1| detA|−1‖A‖ ‖u‖

BV(Rd) + 2d+1| detA|−1 ‖u‖
L1 .

Proof.
Assume first that u is C1. We put, as in the proof of Lemma 3.3, u ◦ F =

u ◦ A ◦A−1 ◦ F . Let us deal with u ◦ A first.
We have ‖u ◦ A‖

L1 ≤ | detA|−1 ‖u‖
L1 and V (u◦A) ≤ | detA|−1‖A‖V (u), so that

‖u ◦ A‖
BV(Rd) ≤ | detA|−1‖A‖ ‖u‖

BV(Rd) + | detA|−1 ‖u‖
L1 . (6.1)

We now deal with u ◦ A−1 ◦ F ; we write F̃ = A−1 ◦ F . Since the derivative of
F̃ is everywhere bounded between 1/2 and 2, | detD(F̃−1)| ≤ 2d and a change of

variables gives
∥

∥

∥
u ◦ F̃

∥

∥

∥

L1

≤ 2d ‖u‖
L1 and V (u ◦ F̃ ) ≤ 2d+1V (u), so that

∥

∥

∥
u ◦ F̃

∥

∥

∥

BV(Rd)
≤ 2d+1 ‖u‖

BV(Rd) (6.2)

Together, (6.1) and (6.2) give

‖u ◦ F‖
BV(Rd) ≤ 2d+1| detA|−1‖A‖ ‖u‖

BV(Rd) + 2d+1| detA|−1 ‖u‖
L1 .

Now, let us take any function u in BV(Rd), and use the same trick as in the end

of the proof of Lemma 6.4. Since
∥

∥

∥
u ◦ F̃

∥

∥

∥

L1

≤ 2d ‖u‖
L1 holds for any L1 function, if

(un) converges to u in L1, then (un ◦ F̃ ) converges to u ◦ F̃ in L1. Hence, inequality
(6.2) holds for any function in BV(Rd).

Inequality (6.1) can be obtained with a slighly different method: ‖u ◦ A‖
L1 ≤

| detA|−1 ‖u‖
L1 holds obviously for any u in L1. We just have to prove that V (u ◦

A) ≤ | detA|−1‖A‖V (u) for any u in BV(Rd); the approximation by C1 function still
works (the reader can easily check that Theorem 2.11 is still true if one writes V (·)
instead of ‖·‖

BV
).

Therefore, Lemma 6.6 holds for any function in BV(Rd).

A consequence of (6.1) is that, for all u ∈ BV(Rd) and A ∈ GLd(R), ‖u◦A‖BV ≤
2max(‖A‖, 1)| detA|−1‖u‖BV.

The next result to prove is the equivalent of the first localization principle,
Lemma 3.4.

Lemma 6.7 (Localization principle).
Let be η ∈ C1

c (R
d,R), and write, for all x ∈ Rd and m ∈ Zd, ηm(x) = η(x+m).

Then, there exists a constant Cη such that, for all u ∈ BV(Rd),

∑

m∈Zd

‖ηmu‖BV ≤ Cη ‖u‖BV .

Proof.
We define on Rd a relation by x < y if and only if xi < yi for all i ∈ {1, ..., d},

and another relation ≤ the same way. For k ∈ Zd, 0 < k, we define Ok = {x ∈
R

d : 0 < x < k}. Up to a translation, we may assume that there exists some
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k = (k1, ..., kd) ∈ Zd such that Supp(η) ⊂ Ok. We also note, for λ ∈ Zd, by λk the
vector (λ1k1, .., λdkd).

We point out that, for any u in BV(Rd) and λ in Rd, the sum
∑

λ∈Zd

‖u‖
BV(λk+l+Ok)

is equal to ‖u‖
BV(

⋃
λ∈Zd

λk+l+Ok)
, which is at most ‖u‖

BV(Rd) (the L1 norms are the

same, and the inequality of the variations comes directly from Definition 2.7)
We now split the sum, and then apply Lemma 6.4:

∑

m∈Zd

‖ηmu‖BV(Rd) =
∑

λ∈Zd

∑

l∈Zd

0≤l<k

‖ηλk+lu‖BV(λk+l+Ok)

≤ ‖η‖C1

∑

l∈Zd

0≤l<k

∑

λ∈Zd

‖u‖
BV(λk+l+Ok)

≤ ‖η‖C1

∑

l∈Zd

0≤l<k

‖u‖
BV(Rd)

= ‖η‖C1

(

d
∏

i=1

ki

)

‖u‖
BV(Rd) .

This is the lemma, with Cη = ‖η‖C1

d
∏

i=1

ki.

Since the space BV make us work morally with p = 1 and t = 1, an equivalent of
Lemma 3.5 for functions with bounded variation is that, for any functions v1, . . . , vl
with compact support in Rd and belonging to BV(Rd),

∥

∥

∥

∥

∥

l
∑

i=1

vi

∥

∥

∥

∥

∥

BV(Rd)

≤
l
∑

i=1

‖vi‖BV(Rd) .

This is just the triangular inequality for the BV(Rd) norm, so that there is
nothing to prove here.

Finally, it is a well-known fact that, for any open and bounded set with nice
boundaries (for instance piecewise C1 boundaries) Ω of some Rd, the canonical im-
mersion of BV(Ω) into L

1(Ω) is compact; see for instance Theorem 1.19 in [Giu84].
The compactness of the canonical immersion of BV(X0) into L1(X0) ensues.

6.3 Saussol’s theorem

In sections 6.1 and 6.2, we have seen how to obtain Theorem 1.7, that is, a version
of Theorem 1.6 when T is a piecewise C1+Lip uniformly expanding map, in the limit
p = 1 and t = 1. This involves the space of functions with bounded variation, since
the Sobolev space H1

1 is not suitable for this task (for instance, it is not large enough
in dimension 1). One might want to know suitable spaces when one works instead
with a piecewise C1+α uniformly expanding map, and wants to get to the limit t = α
(in this setting, Theorem 1.3 tells nothing about the essential spectral radius of the
Perron-Frobenius operator on the Hα

p spaces).
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The last part of this article is a study of a previous result by B. Saussol [Sau00],
which is very close to our own results and gives us another example of function
spaces to which our method could be applied, with the parameters t = α and
p = 1. B. Saussol proved the existence of a spectral gap of L1/|detDT | when acting
on spaces of functions with bounded oscillation Vα, when T is a piecewise C1+α

uniformly expanding map.
First, let us present the functions with bounded oscillation. Let X0 be a compact

set of some Rd. For any Borel set S ∈ B(Rd) such that Leb(S) > 0, and any
f ∈ L1(Rd), we denote the essential infimum of f on S by EinfS f , and its essential
supremum by EsupS f . Next, we choose some ǫ0 > 0 and α ∈ (0, 1], and define for
all f ∈ L1(Rd):

osc(f, S) = EsupS f − EinfS f (6.3)

|f |α = sup
0<ǫ≤ǫ0

ǫ−α

∫

Rd

osc(f, B(x, ǫ)) dx (6.4)

Then, we define Vα(R
d) = {f ∈ L1(Rd) : |f |α < +∞} and Vα = Vα(X0) = {f ∈

Vα(R
d)) : Supp f ⊂ X0}, both endowed with the norm ‖f‖Vα

= ‖f‖L1 + |f |α.

Remark 6.8.

Different choices of ǫ0 lead to different norms, although they are all equivalent:
the space Vα does not depend on ǫ0.

We have already encountered V1(R): it is the same space as BV(R) [Kel85].
Hence, the results of Saussol are a generalization of the previous theorem by A. La-
sota and J.A. Yorke [LY73].

Remark 6.9.

We endow Cα, the set of α-Hölder functions on X0, with the norm ‖f‖α =
‖f‖L1 + |f |′α, where:

|f |′α = sup
x,y∈X0

|f(x)− f(y)|

|x− y|α

For f ∈ Cα, x ∈ X0 and ǫ > 0, we get easily the following inequalities:

|f |α = sup
0<ǫ≤ǫ0

ǫ−α

∫

Rd

osc(f, B(x, ǫ)) dx

≤ sup
0<ǫ≤ǫ0

ǫ−α(2ǫ)α Leb(X0)|f |
′
α

≤ 2α Leb(X0)|f |
′
α

Hence, for all α ∈ (0, 1], we have a continuous inclusion from Cα into Vα. How-
ever, Vα is much larger, so that functions belonging to this space may present dis-
continuities.

The setting studied by B. Saussol is more general than the one we presented in
Section 1: for instance, it allows under some conditions boundaries whose Hausdorff
dimension is strictly larger than d−1, or maps whose sets of continuity are countably
many. However, one of these conditions is very abstract, and the use of more flexible
conditions leads naturally to our setting.
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In the following, we consider that α ∈ (0, 1] is fixed, and we put γd = Leb(B(0, 1)).
Here is the main theorem, an adaptation of Theorem 5.1 and Lemma 2.1 in [Sau00]
with the additional use of Hennion’s theorem [Hen93]):

Theorem 6.10 (Saussol’s theorem).
Let T be a piecewise C1+α uniformly expanding map. L1/|detDT | acts continuously

on Vα, and its essential spectral radius is at most:

λ−α +
4γdD

b
1

(λ− 1)γd−1
. (6.5)

This theorem naturally leads to a result of existence of physical measures (stated
in a different way in [Sau00]) similar to Theorem 1.6:

Theorem 6.11.

Let t be a piecewise C1+α uniformly expanding map such that the bound 6.5 for
the essential spectral radius is smaller than 1. Then T has a finite number of phys-
ical measures whose densities are in Vα, which are ergodic, and whose basins cover
Lebesgue almost all X0. Moreover, if µ is one of these measures, there exist an
integer k and a decomposition µ = µ1 + · · · + µk such that T sends µj to µj+1 for
j ∈ Z/kZ, and the probability measures kµj are mixing at an exponential rate for
T k and α-Hölder test functions.

Since the setting and conclusion are already familiar to the reader, we will look
more closely at the upper bound of the essential spectral radius. The estimate 6.5 is
rather rough, and for α = 1 and small d is worse than the one given in Theorem 1.7.
However, just like in the proof of Theorem 1.3, one may iterate the transformation
to get better estimates of the essential spectral radius ρess of the Perron-Frobenius
operator, and then take the limit as the number of iterations grows to infinity:

ρess ≤ sup

{

lim
n→+∞

λ
− 1

n
n (Db

n)
1

n ; lim
n→+∞

λ
−α

n
n

}

(6.6)

Proof.
The expression 6.5 appears in a Lasota-Yorke type inequality in the proof of

Saussol’s theorem. When using Hennions’s theorem [Hen93], one can get a better
bound on the essential spectral radius of an operator by iterating this operator. In
other words, we have for all positive integer n:

ρess ≤

(

λ−α
n +

4γdD
b
n

(λn − 1)γd−1

)

1

n

.

Let us put C = sup

{

lim
n→+∞

λ
− 1

n
n (Db

n)
1

n ; lim
n→+∞

λ
−α

n
n

}

. Let ǫ > 0. Obviously,

lim
n→+∞

(

λ−α
n +

4γdD
b
n

(λn − 1)γd−1

)

(C + ǫ)−n = 0.

Hence,

lim sup
n→+∞

(

λ−α
n +

4γdD
b
n

(λn − 1)γd−1

)

1

n

(C + ǫ)−1 ≤ 1.

Since this is true for all ǫ > 0, inequality 6.6 ensues.
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Clearly, a sufficient condition for the conclusions of Theorem 6.11 to hold is

limn→+∞ λ
− 1

n
n (Db

n)
1

n < 1.
The Vα spaces were constructed to satisfy the same properties that we needed

(they include the characteristic functions of nice enough sets, the multiplication by
α-Hölder functions behaves nicely, and the injection into L1 is compact), and one
should be able to adapt the different lemmas as we did for the space of functions
with bounded variation. Finally, our method would probably give a different (and
worse) estimate of the essential spectral radius of the Perron-Frobenius operator,
such as (we take t = α and p = 1 in Theorem 1.3):

ρess ≤ lim
n→+∞

(Db
n)

1

n · λ
−α

n
n

B. Saussol also gives a lower bound on the spectral gap via the study of the
cones in Vα (for another example of cone contraction method, see e.g. [Bal00]),
and an upper bound on the number of ergodic physical measures. Such features
could perhaps be adapted to our current setting, with Sobolev spaces or the space
of functions with bounded variation.
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