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ASYMPTOTIC HEAT EQUATION FOR CROSSING
SUPERCONDUCTIVE THIN WALLS

ISABELLE GRUAIS ∗ AND DAN POLIŠEVSKI ∗∗

Abstract. This work deals with the homogenization of the nonstationary heat
conduction which takes place in a binary three-dimensional medium consisting of an
ambiental phase having conductivity of unity order and a set of highly conductive
thin walls crossing orthogonally and periodically. This situation covers in fact three
types of microstructures, usually called: box-type (or honeycomb), gridwork and
layered. The study is based on the energetic procedure of homogenization associated
to a control-zone method, specific to the geometry of the microstructure and to the
singularity of the conductivity coefficients. In the present case the main result is
the system that governs the asymptotic behaviour of the temperature distribution
in this binary medium. It displays a significant increase of the conductivity due to
the superconductive thin walls, revealing their seemingly paradoxal behaviour of
having an everlasting action on the environment, in spite of an obvious vanishing
volume. Moreover, the dependence of this behaviour with respect to the relative
thicknesses of the walls can be detailed.

Mathematical Subject Classification (2000). 35B27, 35K57, 76R50.
Keywords. homogenization, conduction, fine-scale, box-type structure.

1. Introduction

The foundations of homogenized layered materials were laid down by Murat and
Tartar in their pioneering work [11]. This method was still used by [10] in the
framework of weaker topologies. The case of BV -functions and sequences of mea-
sures is worked out in [6]. Many examples and applications may be found in [1].
The difficulties arising from the direct computation of the behaviour of these struc-
tures are twofold: the great number of cells and the small thickness of the material.
The periodic distribution classically suggests that the homogenization method for
perforated domains should be used as in [12], where the period ε and the thickness
δ of the material are considered as independent vanishing parameters. A classi-
cal issue is then to consider the problem of permuting both converging processes.
This is made in details in [12]. As the practical point of view favors geometric
consideration, measures provide a more general tool when they are confined to the
description of the critical part of a system, as in [2] and [3]. This approach was used
in [13], where the homogenization of elastic reticulated structures is performed for
an anisotropic material surrounded by an empty environment.

Our study is based on the control-zone method which was introduced and devel-
oped by [4]-[5] and [7]-[8], specific to the binary composition of the system, namely
the fine substructure and the ambiental phase. This procedure proved its efficiency

1

ha
l-0

04
87

72
8,

 v
er

si
on

 1
 - 

30
 M

ay
 2

01
0

http://hal.archives-ouvertes.fr/hal-00487728/fr/
http://hal.archives-ouvertes.fr


2 ISABELLE GRUAIS ∗ AND DAN POLIŠEVSKI ∗∗

in the modelling of fine substructures where concentrated material of high contri-
bution influences the behavior of the macroscopic problem in spite of its vanishing
volume. We are here in a case when the fine substructure does not have a macro-
scopic capacity. In the case when such a capacity exists, the coupling between the
fine substructure and the ambient is made through a so-called rarefying ratio γε,
which arises as a criterium for the existence of the two-temperature model. Here,
unlike the critical case studied in [5], the connections between the layers of the
reticulated structure annihilate the capacitary term limε→0 γε when it is defined.
This was also observed in [8] in the absence of connections. As the rarefaction
number is in fact zero, we obtain here a one-temperature macroscopic model. Nev-
ertheless, the consideration of a transmission problem between the two components
of our medium modifies the asymptotic behaviour in a way that cannot be antici-
pated from [12]-[13], because the sequence of problems under consideration behaves
singularly with respect to the period of the structure.

The present paper is organized as follows:
Section 2 is devoted to the main notations and to the study of the governing

problem. We set the functional framework for which the existence and uniqueness
of the solution can be established.

In Section 3 we present two operators that have a localizing effect and that we
use in order to obtain the specific inequalities related to the box-type structure.
Considering natural control zones, we define the specific caracterizing functions
and the step approximation operators which are associated to it.

Section 4 deals with the homogenization process, overcoming the singular behav-
ior of the energy term when ε tends to zero. We obtain the homogenized equation
which presents an explicit formula for the effective conductivity coefficients. It
displays a significant increase of the conductivity due to the superconductive thin
walls, revealing their seemingly paradoxal behaviour of having an everlasting action
on the environment, in spite of an obvious vanishing volume. Moreover, the depen-
dence of this behaviour with respect to the relative thicknesses of the walls can be
detailed. The proof relies on the energetic method adapted to our control-zone con-
text. No critical thickness of the layers appears and the intersections of the layers
have no distinct influence upon the asymptotic behaviour of the temperature.

2. Setting of the problem

Let L > 0, T > 0, Ω =
]
−L

2
,
L

2

[3

, I =
]
−1

2
,

1
2

[
and n ∈ N. From now on we

use the notations

ε =
L

2n+ 1
, Zε = {k ∈ Z, |k| ≤ n} and Ik

ε = εk + εI, k ∈ Zε. (1)

Obviously, card Zε = L/ε and x ∈
]
−L

2
,
L

2

[
if and only if there exists k ∈ Zε

such that x ∈ Ik

ε .

For any i ∈ {1, 2, 3}, we consider rε
i ≥ 0, rε

i << ε, that is
rε
i

ε
→ 0 when ε → 0.

For any k ∈ Zε and i ∈ {1, 2, 3}, we define:

Di
ε,k = {x = (xi, x2, x3) ∈ Ω, |xi − εk| < rε

i }, (2)

Dε = ∪3
i=1D

i
ε, Di

ε = ∪k∈Zε
Di

ε,k. (3)
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ASYMPTOTIC HEAT EQUATION FOR CROSSING SUPERCONDUCTIVE THIN WALLS 3

We consider that Ω is occupied by two materials with highly different conduc-
tivities; one is highly conductive and it is concentrated in the vanishing domain Dε

(notice that |Di
ε| = O(rε

i /ε)) and the other lies in Ωε := Ω\Dε and has conductivity
of unity order.

We study the asymptotic behaviour with respect to ε (ε→0) of the nonstation-
ary heat conduction process in Ω. Assuming that we know the densities and the
conductivities of the two materials, the source term and the initial distribution of
the temperature, the problem that the temperature uε satisfies in some sense is the
following:

To find uε solution of

ρε ∂u
ε

∂t
− div(kε∇uε) = fε in ΩT (4)

[uε]ε = 0 on (∂Dε \ ∂Ω)T (5)

[kε∇uε]εn = 0 on (∂Dε \ ∂Ω)T (6)

uε = 0 on (∂Ω)T (7)

uε(0) = uε
0 in Ω (8)

where [·]ε is the jump across the interface ∂Dε, n is the normal on ∂Dε in the
outward direction,

fε ⇀ f weakly in L2(0, T ;H−1(Ω)) (9)

uε
0 ⇀ u0 weakly in L2(Ω) (10)

ρε(x) =
{
ρa if x ∈ Ωε (ρa > 0)
ρb if x ∈ Dε (ρb > 0) (11)

kε
ij(x) =


aij(x) if x ∈ Ωε

1
|Dε|

3∑
k=1

bk(x)δikδjk if x ∈ Dε,
(12)

where bk ∈ C2(Ω), bk(x) > 0, ∀x ∈ Ω, and aij ∈ L∞(Ω) with the property that
there exists α > 0 such that

aij(x)ξiξj ≥ α|ξ|2, ∀ξ ∈ RN and for a.a. x ∈ Ω. (13)

Throughout this paper, we use the following compact notation for the cylindrical
time-domain, as we already did in (4)–(7):

ET := E×]0, T [, ∀E ⊆ Ω. (14)

Let Hε be the Hilbert space L2(Ω) endowed with the scalar product

(u, v)Hε
:= (ρεu, v)Ω. (15)

As H1
0 (Ω) is dense in Hε for any fixed ε > 0, we can set

H1
0 (Ω) ⊆ Hε ' H ′ε ⊆ H−1(Ω) (16)

with continuous embeddings.
Now, we can present the variational formulation of the problem (4)-(8).
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4 ISABELLE GRUAIS ∗ AND DAN POLIŠEVSKI ∗∗

To find uε ∈ L2(0, T ;H1
0 (Ω))∩L∞(0, T ;Hε) satisfying (in some sense) the initial

condition (8) and the following equation

d

ds
(uε, w)Hε

+ (kε∇uε,∇w)Ω = 〈fε, w〉 in D′(0, T ), ∀w ∈ H1
0 (Ω) (17)

where 〈·, ·〉 denotes the duality product between H−1(Ω) and H1
0 (Ω).

Theorem 2.1. Under the above hypotheses and notations, problem (17) has a

unique solution. Moreover,
duε

ds
∈ L2(0, T ;H−1(Ω)) and hence, uε is equal almost

everywhere to a function of C0([0, T ];Hε); this is the sense of the initial condition
(8).

From now on, for any E ⊂ Ω, we use the notations

| · |E := | · |L2(E) and
∫
−

E

· dx :=
1
|E|

∫
E

· dx (18)

Proposition 2.2. Recalling the definition (1) of ε, we have

(uε)ε>0 is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). (19)

Moreover, there exists C > 0, independent of ε, such that∫ T

0

∫
−

Dε

|∇uε|2 ≤ C. (20)

Proof. If we substitute w = uε in the variational problem (17), integrate over (0, t)
for any t ∈]0, T [, use (13) and denote β = min{minΩ bk, 1 ≤ k ≤ 3}, as β > 0, then
we get:

1
2
(
ρa|uε(t)|2Ωε

+ ρb|uε(t)|2Dε

)
+ α

∫ t

0

|∇uε|2Ωε
ds+ β

∫ t

0

∫
−

Dε

|∇uε|2ds ≤

≤
∫ t

0

〈fε(s), uε(s)〉ds+
1
2
(
ρa|uε

0|2Ωε
+ ρb|uε

0|2Dε

)
. (21)

Using the boundedness properties that follow from (9) and (10), we obtain easily:

|uε(t)|2Ω +
∫ t

0

|∇uε|2Ωds ≤ C,

which proves (19). The proof is completed by recalling (21).

3. The control-zone tools

Definition 3.1. For any u ∈ L2(0, T ;H1(Ω)), i ∈ {1, 2, 3} and k ∈ Zε we define
Gi

ε,k(u) ∈ L2(0, T ;H1/2(Ω′)) and Gi
ε(u) ∈ L2(ΩT ) by

Gi
ε,k(u)(t, x′i) =

1
2

(u (t, εk − rε
i , x
′
i) + u (t, εk + rε

i , x
′
i)) , (22)

Gi
ε(u)(t, xi, x

′
i) =

∑
k∈Zε

Gi
ε,k(u)(t, x′i)1Ik

ε
(xi), (23)

where t ∈ [0, T ], xi ∈
]
−L

2
,
L

2

[
and x′i := (· · · , 6 xi, · · · ) ∈ Ω′ :=

]
−L

2
,
L

2

[2

.
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ASYMPTOTIC HEAT EQUATION FOR CROSSING SUPERCONDUCTIVE THIN WALLS 5

Proposition 3.2. For any u ∈ L2(0, T ;H1(Ω)) and i ∈ {1, 2, 3}, we have:∫ T

0

∫
−

Di
ε

|Gi
ε(u)|2 =

∫
−

Ω

|Gi
ε(u)|2. (24)

Proof. For almost all t ∈]0, T [, we have∫
Ω

|Gi
ε(u)|2 =

∑
k∈Zε

∫
I×Ω′

|Gi
rε

i ,k(u)(s, x′i)|21Ik
ε

= ε
∑

k∈Zε

∫
Ω′
|Gi

rε
i ,k(u)|2.

Moreover:∫
−

Di
ε

|Gi
ε(u)|2 =

1
2cardZεrε

i |Ω′|
∑

k∈Zε

∫
Ik

rε
×Ω′
|Gi

rε
i ,k(u)|2(t, x′i)1Ik

ε
(xi) =

=
ε

L|Ω′|
∑

k∈Zε

∫
Ω′
|Gi

rε
i ,k(u)|2.

This achieves the proof.

Proposition 3.3. There exists C > 0 independent of ε such that, for any u ∈
L2(0, T ;H1(Ω)), i ∈ {1, 2, 3} and k ∈ Zε, there holds:

|u−Gi
ε,k(u)|L2(0,T ;Ik

ε×Ω′) ≤ Cε
∣∣∣∣ ∂u∂xi

∣∣∣∣
L2(0,T ;Ik

ε×Ω′)

(25)

|u−Gi
ε,k(u)|L2(0,T ;Ik

rε
i
×Ω′) ≤ Crε

i

∣∣∣∣ ∂u∂xi

∣∣∣∣
L2(0,T ;Ik

rε
i
×Ω′)

(26)

where x = (xi, x
′
i) ∈ Ik

ε × Ω′ and Ik
rε

i
= εk + 2rε

i I.

Proof. Obviously, it is sufficient to prove that we have similar uniform inequalities
in H1(Ω). First, for any u ∈ H1(Ω), we consider the following quantity:

Jk
ε =

∫
Ik

ε×Ω′
|u−Gi

ε,k(u)|2.

As we have

Jk
ε =

∫
Ik

ε

dxi

∫
Ω′

∣∣∣∣u(xi, x
′
i)−

1
2

(u (εk − rε
i , x
′
i) + u (εk + rε

i , x
′
i))
∣∣∣∣2 dx′i =

=
1
4

∫
Ik

ε

dxi

∫
Ω′

∣∣∣∣∣
∫ xi

εk−rε
i

∂u

∂xi
(s, x′i)ds−

∫ εk+rε
i

xi

∂u

∂xi
(s, x′i)ds

∣∣∣∣∣
2

dx′i ≤

≤ 1
2

∫
Ik

ε

dxi

∫
Ω′

∣∣∣∣∣
∫ xi

εk−rε
i

∂u

∂xi
(s, x′i)ds

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ εk+rε

i

xi

∂u

∂xi
(s, x′i)ds

∣∣∣∣∣
2
 dx′i ≤

≤ 1
2

∫
Ik

ε

dxi

∫
Ω′

[
(xi−εk+rε

i )
∫ xi

εk−rε
i

∣∣∣∣ ∂u∂xi
(s, x′i)

∣∣∣∣2ds+(εk+rε
i−xi)

∫ εk+rε
i

xi

∣∣∣∣ ∂u∂xi
(s, x′i)

∣∣∣∣2ds
]
dx′i,

there results

Jk
ε ≤

ε

2

∫
Ik

ε

dxi

∫
Ω′
dx′i

∫ εk+ ε
2

εk− ε
2

∣∣∣∣ ∂u∂xi
(s, x′i)

∣∣∣∣2 ds︸ ︷︷ ︸
independent of xi

=
ε2

2

∫
Ik

ε×Ω′

∣∣∣∣ ∂u∂xi

∣∣∣∣2 ,
from which (25) follows.
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6 ISABELLE GRUAIS ∗ AND DAN POLIŠEVSKI ∗∗

Second, still for u ∈ H1(Ω), we have∫
Ik

rε
i
×Ω′
|u−Gi

ε,k(u)|2 =
∫

Ik
rε

i

dxi

∫
Ω′

∣∣∣∣u(xi, x
′
i)−

1
2

(u (εk−rε
i , x
′
i)+u (εk+rε

i , x
′
i))
∣∣∣∣2dx′idxi ≤

≤ 1
2

∫
Ik

rε
i

∫
Ω′

∣∣∣∣∣
∫ xi

εk−rε
i

∂u

∂xi
(s, x′i)ds

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ εk+rε

i

xi

∂u

∂xi
(s, x′i)ds

∣∣∣∣∣
2
dx′i ≤ 2(rε

i )2

∫
Ik

rε
i
×Ω′

∣∣∣∣ ∂u∂xi

∣∣∣∣2 ,
which is sufficient to prove (26).

Proposition 3.3 has a straightforward consequence:

Proposition 3.4. For any u ∈ L2(0, T ;H1(Ω)) and i ∈ {1, 2, 3}, we have∫ T

0

∫
−

Di
ε

|Gi
ε(u)− u|2 ≤ εri

ε

∣∣∣∣ ∂u∂xi

∣∣∣∣2
L2((Di

ε)T )

(27)

|Gi
ε(u)− u|L2(ΩT ) ≤ ε

∣∣∣∣ ∂u∂xi

∣∣∣∣
L2(ΩT )

(28)

Definition 3.5. For every ϕ ∈ L2(0, T ;C(Ω) ∩H1
0 (Ω)), define

Mrε
i
(ϕ) =

∑
k∈Zε

(∫
−

Ik
ε

ϕ(s, x′i)ds

)
1Ik

rε
(xi) ∈ L2((Di

ε)T )

Proposition 3.6. For every ϕ ∈ L2(0, T ;C(Ω) ∩H1
0 (Ω)), there holds

lim
ε→0

∫ T

0

∫
−

Di
ε

|ϕ−Mrε
i
(ϕ)|2 = 0. (29)

Proof. Let ϕ ∈ L2(0, T ;C(Ω) ∩H1
0 (Ω)) and let δ > 0. The uniform continuity of

ϕ yields the existence of some ε0 > 0 such that for almost all t ∈ [0, T ] we have:∫
Ik

rε

|ϕ(t, xi, x
′
i)−

∫
−

Ik
ε

ϕ(t, s, x′i)ds|2 < δ, ∀x′i ∈ Ω′, ∀k ∈ Zε, ∀ε ∈ (0, ε0).

There results∫
−

Di
ε

|ϕ−Mrε
i
(ϕ)| = 1

|Di
ε|
∑

k∈Zε

∫
Ik

rε
×Ω′
|ϕ(t, xi, x

′
i)−
∫
−

Ik
ε

ϕ(t, s, x′i)ds| ≤ δ, ∀ε ∈ (0, ε0).

Proposition 3.7. There holds∫
−

Di
ε

Gi
ε(uε)Mrε

i
(ϕ) =

∫
−

Ω

Gi
ε(uε)ϕ, ∀ϕ ∈ L2(0, T ;C(Ω) ∩H1

0 (Ω)). (30)

Proof. Let ϕ ∈ L2(0, T ;C(Ω) ∩H1
0 (Ω)). Uniformly with respect to t ∈ [0, T ], we

have:∫
−

Di
ε

Gi
ε(uε)Mrε

i
(ϕ) =

1
|Di

ε|
∑

k∈Zε

∫
Ik

rε
×Ω′

Gi
ε,k(uε)(x′i)

(∫
−

Ik
ε

ϕ(s, x′i)ds

)
dx =

=
1

εcardZε|Ω′|
∑

k∈Zε

∫
Ik

ε×Ω′
Gi

ε,k(uε)(x′i)ϕ(s, x′i)dx
′
ids =

1
L|Ω′|

∫
Ω

Gi
ε(uε)ϕ.
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ASYMPTOTIC HEAT EQUATION FOR CROSSING SUPERCONDUCTIVE THIN WALLS 7

Corresponding to the inequalities that have already been proved in H1
0 (Ω), (see

[2], [5], [8] and [9]), we have:

Proposition 3.8. There exists C > 0, independent of ε, such that, for any u ∈
L2(0, T ;H1

0 (Ω)) and any i, j ∈ {1, 2, 3}, we have∫ T

0

∫
−

Di
ε

|u|2 ≤ C|∇u|2L2(ΩT ) (31)

∫ T

0

∫
−

Dij
ε

|u|2 ≤ C max

(
1, ε2 ln

1
rε
i

, ε2 ln
1
rε
j

)
|∇u|2L2(ΩT ) (32)

∫ T

0

∫
−

D0
ε

|u|2 ≤ C max
k=1,2,3

(
1,
ε3

rε
k

)
|∇u|2L2(ΩT ) (33)

where
Dij

ε = Di
ε ∩Dj

ε, D0
ε = ∩3

i=1D
i
ε. (34)

One of the main properties of this box-type microstructure is the following:

Theorem 3.9. There exists C > 0, independent of ε, such that∫
−

Dε

|u|2 ≤ C|∇u|2L2(ΩT ), ∀u ∈ L2(0, T ;H1
0 (Ω)). (35)

Proof. Let us notice that∫
−

Dε

|u|2 ≤
3∑

i=1

∫
−

Di
ε

|u|2 ≤ 2
3∑

i=1

∫
−

Di
ε

(
|Gi

ε(u)− u|2 + |Gi
ε(u)|2

)
.

Using (27) and (24), it yields∫
−

Dε

|u|2 ≤ 2 ( max
i=1,2,3

ri
ε) |∇u|2Ω + 4

2∑
i=1

(
|Gi

ε(u)− u|2Ω + |u|2Ω
)

and the proof is completed by (28) and the Poincaré-Friedrichs inequality in Ω.

As the vanishing highly conductive walls have thicknesses of size rε
i , 0 < rε

i << ε,
we find the asymptotic behaviour of uε by applying a control-zone method, that is
an energetic method using test-functions associated to a set of much thicker layers
which includes the walls but which is still a vanishing set.

More precisely, for any i ∈ {1, 2, 3}, let (Rε
i )ε such that rε

i << Rε
i << ε; we

define the control-zone of the present problem by

Cε = ∪3
i=1Ci

ε, Ci
ε = ∪k∈ZεCi

ε,k, (36)

where for any k ∈ Zε we have

Ci
ε,k = {x = (xi, x2, x3) ∈ Ω, |xi − εk| < Rε

i }. (37)

We associate to our control-zone the following functions wi
ε ∈W 1,∞(Ω):

wi
ε(x) =


1− rε

i

Rε
i

if x = (xi, x2, x3) ∈ Di
ε

1− |xi − εk|
Rε

i

if x ∈ (Ci
ε,k \Di

ε,k) for some k ∈ Zε

0 if x ∈ Ω \ Ci
ε.

(38)
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8 ISABELLE GRUAIS ∗ AND DAN POLIŠEVSKI ∗∗

Also, to any ϕ ∈ D(Ω) we associate a step approximation function ϕε
i ∈ L∞(Ω)

defined with respect to the control-zone:

ϕε
i (xi, x2, x3) =

∑
k∈Zε

ϕ |xi=εk(x′i) 1Ik
Rε

i

(xi), (39)

where Ik
Rε

i
:= εk + 2Rε

i I.
The basic properties of these functions can be easily obtained:

|∇wi
ε|Cε
≤
(

2|Ω|
εRε

i

)1/2

(40)

|ϕ− ϕε
i |L∞(Ci

ε) ≤ Rε
i |∇ϕ|L∞(Ω). (41)

|∇ϕε
i |Ci

ε
≤
(

2|Ω|R
ε
i

ε

)1/2

|∇ϕ|L∞(Ω). (42)

4. The homogenization procedure

For any i ∈ {1, 2, 3} we assume that there exist

mi = lim
ε→0

|Di
ε|

|Dε|
∈ [0, 1]. (43)

Obviously, we have
m1 +m2 +m3 = 1.

This situation covers all the following three types of structures: honeycomb,
gridwork and layered (see [12]).

We can present now the preliminary convergence results:

Proposition 4.1. There exists u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) such that,

on some subsequence,
uε ?
⇀ u in L∞(0, T ;L2(Ω)) (44)

uε ⇀ u in L2(0, T ;H1
0 (Ω)) (45)

Gi
ε(uε)→ u in L2(ΩT ), ∀i ∈ {1, 2, 3} (46)∫ T

0

∫
−

Dε

uεv →
∫ T

0

∫
−

Ω

uv, ∀v ∈ L2(0, T ;H1
0 (Ω)) (47)

Moreover, for any i ∈ {1, 2, 3} we have:∫ T

0

∫
−

Di
ε

∂uε

∂xj
v →

∫ T

0

∫
−

Ω

∂u

∂xj
v, ∀v ∈ L2(0, T ;H1

0 (Ω)), ∀j ∈ {1, 2, 3}, j 6= i. (48)

Proof. The weak convergences (44)–(45) follow from (19). As H1
0 (Ω) is compactly

embedded in L2(Ω), the strong convergence (46) is obtained by using (28) and (45).
In order to prove (47) we remark that∫ T

0

∫
−

Dε

uεv =
|D0

ε |
|Dε|

∫ T

0

∫
−

D0
ε

uεv−
∑

1≤i<j≤3

|Dij
ε |
|Dε|

∫ T

0

∫
−

Dij
ε

uεv+
3∑

i=1

|Di
ε|

|Dε|

∫ T

0

∫
−

Di
ε

uεv. (49)
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ASYMPTOTIC HEAT EQUATION FOR CROSSING SUPERCONDUCTIVE THIN WALLS 9

Using (20), (32) and (33), we prove that the first two terms of (49) are converging
to zero, as follows:∣∣∣∣∣ |D0

ε |
|Dε|

∫ T

0

∫
−

D0
ε

uεv

∣∣∣∣∣ ≤ C |D0
ε |

|Dε|
max

(
1,
ε3

rε

)
|∇v|Ω → 0,∣∣∣∣∣ |Dij

ε |
|Dε|

∫ T

0

∫
−

Dij
ε

uεv

∣∣∣∣∣ ≤ C |Dij
ε |
|Dε|

max
(

1, ε2 ln
1
ri
ε

, ε2 ln
1
rj
ε

)
|∇v|Ω → 0.

It follows that

lim
ε→0

∫ T

0

∫
−

Dε

uεv =
3∑

i=1

mi lim
ε→0

∫ T

0

∫
−

Di
ε

uεv (50)

Let ϕ ∈ L2(0, T ;D(Ω)). We have∫ T

0

∫
−

Di
ε

uεϕ =
∫ T

0

∫
−

Di
ε

(uε−Gi
ε(uε))ϕ+

∫ T

0

∫
−

Di
ε

Gi
ε(uε)(ϕ−Mrε

i
(ϕ))+

∫ T

0

∫
−

Di
ε

Gi
ε(uε)Mrε

i
(ϕ).

Taking into account (26) and (29), we have:∣∣∣∣∣
∫ T

0

∫
−

Di
ε

(uε −Gi
ε(uε))ϕ

∣∣∣∣∣ ≤ Crε
i

(∫ T

0

∫
−

Di
ε

∣∣∣∣∂uε

∂xi

∣∣∣∣2
)1/2

|ϕ|L2(0,T ;L∞(Ω)) ≤ Crε
i → 0

∣∣∣∣∣
∫ T

0

∫
−

Di
ε

Gi
ε(uε)(ϕ−Mrε

i
(ϕ))

∣∣∣∣∣ ≤ |Gi
ε(uε)|L2(ΩT )

(∫ T

0

∫
−

Di
ε

|ϕ−Mrε
i
(ϕ)|2

)1/2

→ 0.

Then, using (30), we get

lim
ε→0

∫ T

0

∫
−

Di
ε

uεϕ = lim
ε→0

∫ T

0

∫
−

Ω

Gi
ε(uε)ϕ =

∫ T

0

∫
−

Ω

uϕ. (51)

In order to conclude with (47), we notice that L2(0, T ;D(Ω)) is dense in L2(0, T ;H1
0 (Ω))

and that the following estimate proves the continuity of the mapping ϕ 7→
∫ T

0

∫
−

Di
ε
uεϕ:∣∣∣∣∣

∫ T

0

∫
−

Di
ε

uεϕ

∣∣∣∣∣ ≤
(∫ T

0

∫
−

Di
ε

|uε|2
)1/2(∫ T

0

∫
−

Di
ε

|ϕ|2
)1/2

≤ C|∇ϕ|L2(ΩT ).

Next, let again ϕ ∈ L2(0, T ;D(Ω)) and i ∈ {1, 2, 3}. Denoting by ν = (ν1, ν2, ν3)
the outward normal to ∂Dε we obviously have ϕνj = 0 on (∂Di

ε)T (j 6= i) and
therefore: ∫ T

0

∫
−

Di
ε

∂uε

∂xj
ϕ = −

∫ T

0

∫
−

Di
ε

uε ∂ϕ

∂xj
.

Using (51), from the previous relation it follows:∫ T

0

∫
−

Di
ε

∂uε

∂xj
ϕ→ −

∫ T

0

∫
−

Ω

u
∂ϕ

∂xj
=
∫ T

0

∫
−

Ω

∂u

∂xj
ϕ.

The proof of (48) is completed by continuity, using (20) and (35).

Now we can present our main result.

Theorem 4.2. Assume that

uε
0 ⇀ u0 in L2(Ω) (52)

fε ⇀ f in L2(0, T ;H−1(Ω)). (53)
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10 ISABELLE GRUAIS ∗ AND DAN POLIŠEVSKI ∗∗

Then, there exists u ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) such that

u
?
⇀ u in L∞(0, T ;L2(Ω)) (54)

u ⇀ u in L2(0, T ;H1
0 (Ω)). (55)

The limit u ∈ L2(0, T ;H1
0 (Ω)) is the only solution of the equation

ρa
∂u

∂t
−

3∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
−

3∑
i=1

(1−mi)
|Ω|

∂

∂xi

(
bi
∂u

∂xi

)
= f in L2(0, T ;H−1(Ω))

(56)
u(0) = u0 in L2(Ω) (57)

Proof. Let η ∈ D([0, T [), v ∈ H1
0 (Ω). We have

−
∫ T

0

η′
∫

Ω\Dε

ρau
εv +

3∑
i,j=1

∫ T

0

η

∫
Ω\Dε

aij
∂uε

∂xj

∂v

∂xi
+
∫ T

0

η

∫
−

Dε

(
3∑

k=1

bk
∂uε

∂xk

∂v

∂xk

)
=

=
∫ T

0

η′
∫

Dε

ρbu
εv+η(0)

∫
Ω\Dε

ρau
ε
0v+η(0)

∫
Dε

ρbu
ε
0v+

∫ T

0

η〈fε, v〉H−1,H1
0 (Ω). (58)

Recalling (19) and (20) we find that on some subsequence each of the following
terms has a limit, defined by

Bi = lim
ε→0

∫ T

0

η

∫
−

Di
ε

(
3∑

k=1

bk
∂uε

∂xk

∂v

∂xk

)
, i ∈ {1, 2, 3}. (59)

Taking the limit of (58), ε→ 0, we immediately obtain:

−
∫ T

0

η′
∫

Ω

ρauv +
3∑

i,j=1

∫ T

0

η

∫
Ω

aij
∂u

∂xj

∂v

∂xi
+

3∑
i=1

miBi =

= η(0)
∫

Ω

ρau
ε
0v +

∫ T

0

η〈f, v〉H−1,H1
0 (Ω). (60)

It remains to identify Bi.
Let ϕ ∈ D(Ω). For any i ∈ {1, 2, 3}, we set v = vε

i := (ϕ− ϕε
i )wε

i in (60).
Let us remark that vε

i → 0 strongly in H1
0 (Ω), as a straightforward consequence of

the following estimate∫
Ω

|∇vε
i |2 ≤ 2

∫
Ci

ε

|∇wε
i |2|ϕ− ϕε

i |2 + 2
∫
Ci

ε

|wε
i |2|∇(ϕ− ϕε

i )|2 ≤ C
(
Rε

i

ε

)
. (61)

After substitution of v = vε
i in (60) and taking advantage of the property that

vε
i 6= 0 only in Ci

ε, we obtain

mi lim
ε→0

∫ T

0

η

∫
−

Di
ε

(
3∑

k=1

bk
∂uε

∂xk

∂(ϕ− ϕε
i )

∂xk

)
= 0 (62)

that is,

miBi = mi lim
ε→0

∑
h∈Zε

ε

∫ T

0

η

∫
−

Di
ε,h

 3∑
k=1
k 6=i

bk
∂uε

∂xk

∂ϕ

∂xk
(εh, x′i)

 =

= mi lim
ε→0

∫ T

0

η

∫
−

Di
ε

 3∑
k=1
k 6=i

bk
∂uε

∂xk

∂ϕ

∂xk

 =
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ASYMPTOTIC HEAT EQUATION FOR CROSSING SUPERCONDUCTIVE THIN WALLS 11

= −mi lim
ε→0

∫ T

0

η

∫
−

Di
ε

 3∑
k=1
k 6=i

uε ∂

∂xk

(
bk
∂ϕ

∂xk

) . (63)

The regularity property bk ∈ C2(Ω) for every k ∈ {1, 2, 3} implies that
∂

∂xk

(
bk
∂ϕ

∂xk

)
∈ H1

0 (Ω) (64)

and that integration by parts holds true, thus yielding

miBi = −mi

∫ T

0

η

∫
−

Ω

3∑
k=1
k 6=i

u
∂

∂xk

(
bk
∂ϕ

∂xk

)
= mi

∫ T

0

η

∫
−

Ω

3∑
k=1
k 6=i

bk
∂u

∂xk

∂ϕ

∂xk
. (65)

Summing over i ∈ {1, 2, 3}, we obtain:
3∑

i=1

miBi =
3∑

i=1

mi

∫ T

0

η

∫
−

Ω

3∑
k=1
k 6=i

bk
∂u

∂xk

∂ϕ

∂xk
=
∫ T

0

η

∫
−

Ω

3∑
k=1

bk
∂u

∂xk

∂ϕ

∂xk
−

−
3∑

i=1

mi

∫ T

0

η

∫
−

Ω

bi
∂u

∂xi

∂ϕ

∂xi
=

3∑
i=1

(1−mi)
∫ T

0

η

∫
−

Ω

bi
∂u

∂xi

∂ϕ

∂xi
(66)

Substituting (66) into (60) and using the density of D(Ω) in H1
0 (Ω), we obtain by

continuity:

−
∫ T

0

η′
∫

Ω\Dε

ρauv +
3∑

i,j=1

∫ T

0

η

∫
Ω

aij
∂u

∂xj

∂v

∂xi
+

3∑
i=1

(1−mi)
∫ T

0

η

∫
−

Ω

bi
∂u

∂xi

∂v

∂xi
=

= η(0)
∫

Ω

ρau
ε
0v +

∫ T

0

η 〈f, v〉H−1,H1
0 (Ω). (67)

which obviously completes the proof.

Remark 4.3. The reticulated domain occupied by all the intersections of the layers
has no distinct influence upon the asymptotic distribution of the temperature. For
i < j and h ∈ {i, j}, this follows from∣∣∣∣∣ 1
|Dε|

∫
Dij

ε

3∑
k=1

bk
∂uε

∂xk

∂ϕε
h

∂xk

∣∣∣∣∣ ≤ C|∇ϕ|L∞(Ω)

(
1
|Dε|

∫
Dij

ε

|∇uε|2
) 1

2
(
|Dij

ε |
|Dε|

) 1
2

≤

≤ C|∇ϕ|L∞(Ω)

(rε
ε

) 1
2 → 0,

(68)
where we have used (32).

Remark 4.4. Our main result works for any mi ≥ 0, that is, it covers the three
main structures of this type:

• the honeycomb (box-type) structures, which correspond to the case when
mi > 0, ∀i ∈ {1, 2, 3},
• the gridworks, which correspond to the case when only one of the mi’s is

zero,
• the layered structures which correspond to the case when two of the mi’s

are zero.

ha
l-0

04
87

72
8,

 v
er

si
on

 1
 - 

30
 M

ay
 2

01
0



12 ISABELLE GRUAIS ∗ AND DAN POLIŠEVSKI ∗∗
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