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1 Introduction

The study of optimized Schwarz methods for Maxwell’s equations started
with the Helmholtz equation, see [3, 4, 2, 11]. For the rot-rot formulation of
Maxwell’s equations, optimized Schwarz methods were developed in [1], and
for the more general form in [9, 10]. An entire hierarchy of families of optimized
Schwarz methods was analyzed in [8], see also [5] for discontinuous Galerkin
discretizations and large scale experiments. We present in this paper a first
analysis of optimized Schwarz methods for Maxwell’s equations with non-
zero electric conductivity. This is an important case for real applications, and
requires a new, and fundamentally different optimization of the transmission
conditions. We illustrate our analysis with numerical experiments.

2 Schwarz Methods for Maxwell’s Equations

The time dependent Maxwell equations are

−ε∂E
∂t

+ curl H − σE = J , µ
∂H
∂t

+ curl E = 0, (1)

where E = (E1, E2, E3)T and H = (H1,H2,H3)T denote the electric and mag-
netic fields, respectively, ε is the electric permittivity, µ is the magnetic per-
meability, σ is the electric conductivity and J is the applied current density.
We assume the applied current density to be divergence free, divJ = 0.

One can show, see for example [8] for the context of domain decomposition
methods, that the time dependent Maxwell equations (1) are a system of
hyperbolic partial differential equations. This hyperbolic system has for any
interface two incoming and two outgoing characteristics. Imposing incoming
characteristics is equivalent to imposing the impedance condition
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Bn(E , H) := n × E
Z

+ n × (H × n) = s. (2)

We consider in this paper the time-harmonic Maxwell equations,

−iωεE + curl H − σE = J , iωµH + curl E = 0. (3)

A family of Schwarz methods for (3) with a possibly non-overlapping decom-
position of the domain Ω into Ω1 and Ω2, with interfaces Γ12 := ∂Ω1 ∩ Ω2

and Γ21 := ∂Ω2 ∩Ω1, is given by

−iωεE1,n+curl H1,n−σE1,n = J in Ω1,
iωµH1,n + curl E1,n = 0 in Ω1,

(Bn1 +S1Bn2)(E
1,n, H1,n) = (Bn1 +S1Bn2)(E

2,n−1, H2,n−1) on Γ12,
−iωεE2,n+curl H2,n−σE2,n = J in Ω2,

iωµH2,n + curl E2,n = 0 in Ω2,
(Bn2 +S2Bn1)(E

2,n, H2,n) = (Bn2 +S2Bn1)(E
1,n−1, H1,n−1) on Γ21,

(4)

where Sj , j = 1, 2 are tangential, possibly pseudo-differential operators. Dif-
ferent choices of Sj , j = 1, 2 lead to different parallel solvers for Maxwell’s
equations, see [8]. The classical Schwarz method is exchanging characteris-
tic information at the interfaces between subdomains, which means Sj = 0,
j = 1, 2. For the case of constant coefficients and the domain Ω = R3, with
the Silver-Müller radiation condition

lim
r→∞

r (H × n − E) = 0, (5)

and the two subdomains

Ω1 = (0,∞) × R2, Ω2 = (−∞, L) × R2, L ≥ 0, (6)

the following convergence result was obtained in [8] using Fourier analysis:
Theorem 1. For any (E1,0; H1,0) ∈ (L2(Ω1))6, (E2,0; H2,0) ∈ (L2(Ω2))6,
the classical algorithm with σ > 0 converges in (L2(Ω1))6 × (L2(Ω2))6. The
convergence factor for each Fourier mode k := (ky, kz) with |k|2 := k2

y + k2
z is

ρcla(k, ω̃,σ, Z, L) =

∣∣∣∣∣

√
|k|2 − ω̃2 + iω̃σZ − iω̃√
|k|2 − ω̃2 + iω̃σZ + iω̃

e−
√

|k|2−ω̃2+iω̃σZL

∣∣∣∣∣ ,

where ω̃ := ω
√
εµ, and Z :=

√µ
ε .

This result shows that if σ > 0, the method converges, also without overlap,
L = 0, which is unusual for classical Schwarz methods, but normal for opti-
mized ones, for an explanation, see [6]. If however the electric conductivity
σ = 0, then for |k|2 = ω̃2 the convergence factor equals 1, and the method
is stagnating for this frequency, and thus by continuity slow for nearby fre-
quencies. In addition, if there is no overlap, L = 0, we have ρcla(k) < 1 only
for the propagative modes, |k|2 < ω̃2, and ρcla(k) = 1 for evanescent modes,
i.e. when |k|2 ≥ ω̃2; the method is now stagnating for all evanescent modes.
Hence for σ = 0, better transmission conditions were developed in [8]. The
analysis in [8] does however not apply if the electric conductivity σ > 0.
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3 Analysis for Non-Zero Electric Conductivity

We present now an analysis of algorithm (4), (6) for the case where the electric
conductivity is non-zero, σ > 0, in the special case of the two dimensional
transverse magnetic Maxwell equations. For these equations, the unknowns
are independent of z, and we have E = (0, 0, Ez) and H = (Hx, Hy, 0). The
results are again based on Fourier transforms, here in the y direction with
Fourier variable k.

Theorem 2. For σ > 0, if Sj, j = 1, 2 have the constant Fourier symbol

σj = F(Sj) = −s − iω̃

s + iω̃
, s ∈ C, (7)

then the optimized Schwarz method (4), (6) has the convergence factor

ρσ(ω̃, Z,σ, L, k, s) =

∣∣∣∣∣

(√
k2 − ω̃2 + iω̃σZ − s√
k2 − ω̃2 + iω̃σZ + s

)
e−

√
k2−ω̃2+iω̃σZL

∣∣∣∣∣ . (8)

Proof. Taking a Fourier transform in the y variable of (4) with J = 0, the
so-called error equations, we get

∂x

(
Êj,n

z

Ĥj,n
y

)
=

(
0 iωµ

k2−ω2εµ+iωµσ
iωµ 0

) (
Êj,n

z

Ĥj,n
y

)
=: M

(
Êj,n

z

Ĥj,n
y

)
, j = 1, 2. (9)

The eigenvalues of the matrix M , and their corresponding eigenvectors are

λj = ±λ = ±
√

k − ω̃2 + iω̃σZ, vj =
(
∓ iωµ

λ
1

)
, j = 1, 2, (10)

and therefore the solutions of (9) are given by
(
Ê1,n

z , Ĥ1,n
y

)
= αn

1 v1e
λx + αn

2 v2e
−λx,

(
Ê2,n

z , Ĥ2,n
y

)
= βn

1 v1e
λx + βn

2 v2e
−λx.

Using the Silver-Müller radiation condition (5), we have αn
2 = βn

1 = 0, and
inserting the solutions into the interface conditions in (4), we get

αn
1 = Aβn−1

2 e−λL, βn
2 = Aαn−1

1 e−λL, with A :=
λ− s

λ+ s
,

and the definition ρσ(ω̃, Z,σ, L, k, s) :=
∣∣∣ αn

1
αn−2

1

∣∣∣
1
2

leads to the result (8).

In a numerical implementation, the range of frequencies is bounded, k ∈
K := [kmin, kmax], where the minimum frequency kmin > 0 is a constant
depending on the geometry, and the maximum numerical frequency that can
be represented on a mesh is kmax = C

h where C is a constant. From Theorem 2,
we can immediately get a convergence result for the classical Schwarz method
that uses characteristic transmission conditions.
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Corollary 1. For σ > 0, in the case of the classical Schwarz method, σj = 0,
j = 1, 2, the asymptotic convergence factor for small mesh size h is

ρ̄σ := max
k∈K

(ρσ) =

{
1 − 4

3

(
9ω4σ2µ3εC6

L

) 1
8 h

3
4 + O(h 5

4 ), L = CLh,

1 − ω2σ
√

µ3ε
C3 h3 + O(h5), L = 0.

(11)

Proof. The proof is obtained by inserting s = iω̃ into (8), and then expanding
the maximum of ρσ over k ∈ K for h small.

In order to obtain a more efficient algorithm, we choose σj , j = 1, 2 such that
ρσ is minimal over the range of frequencies k ∈ K. We look for s of the form
s = p(1 + i), such that p is solution of the min-max problem

min
p≥0

(
max
k∈K

ρσ(ω̃, Z,σ, L, k, p(1 + i))
)

. (12)

Theorem 3. For σ > 0, and the non-overlapping case, L = 0, the solution of
the minmax problem (12) is for h sufficiently small given by

p∗ =
(ωσµ)

1
4
√

C

2 1
4
√

h
and ρ∗σ = 1 − 2 3

4 (ωσµ)
1
4
√

h√
C

+ O(h). (13)

Proof. We assume that p ≥ pc :=
√

3σωµ
2 , a hypothesis that can be removed

with an additional analysis, which is too long however for this short paper.
Using the change of variables ξ(k) := )

(√
k2 − ω2εµ + iσωµ

)
and y := σωµ,

the convergence factor simplifies to

ρσ(ω̃, Z,σ, 0, k, p(1 + i)) =

√
4ξ2(ξ − p)2 + (y − 2ξp)2

4ξ2(ξ + p)2 + (y + 2ξp)2
=: R(ξ, y, p).

Since the mapping k *→ ξ(k) is increasing in k for k ≥ 0, we have

min
p≥0

(
max

kmin≤k≤kmax

ρσ(ω̃, Z,σ, 0, k, p(1 + i))
)

= min
p≥0

(
max

ξ0≤ξ≤ξmax

R(ξ, y, p)
)

,

where ξ0 = ξ(kmin) and ξmax = ξ(kmax). We start by studying the variation
of R for fixed p; the polynomial

P (ξ) = (ξ2 − 1
2
y)(8ξ4 + 16ξ2(y − p2) + 2y2)

is the numerator of the partial derivative of R with respect to ξ. P has at
most three positive roots, and ξ2 =

√y
2 is always a root. We now show that

for p ≥ pc, ξ2 is a maximum and the other two roots of P can not be maxima.
The second partial derivative of R with respect to ξ evaluated at ξ2 is
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∂2R

∂ξ2
(ξ2, y, p) = −4

√
2
y

(2p2 − 3y)p
|
√

2p −√
y|(

√
2p + √

y)3
.

Since for p ≥ pc by assumption, ∂2R
∂ξ2 (ξ2, y, p) ≤ 0, ξ2 is a local maximum.

Since R(ξ0, y, p) ≤ 1 and limξ→+∞ R(ξ, y, p) = 1, the other two roots of
P can not be maxima if p ≥ pc. Therefore the maximum of R is either at
ξ0, ξ2 or ξmax. But we also find that R(ξ0, y, p) ≤ R(ξ2, y, p) for p ≥ pc,
which excludes ξ0 as a candidate for the maximum. Moreover, for ξmax suf-
ficiently large we have R(ξ2, y, pc) ≤ R(ξmax, y, pc), and for p large, we have
R(ξ2, y, p) ≥ R(ξmax, y, p). By continuity, there exists at least one p∗ such
that R(ξ2, y, p∗) = R(ξmax, y, p∗). Moreover, the computation of

∂R

∂p
(ξ, y, p) = − 1

R(ξ, y, p)
(p2 − 1

8
4ξ4+y2

ξ2 )
(4ξ4 + 8ξ3p + 8ξ2p2 + y2 + 4yξp)2

shows that the function p *→ R(ξ2, y, p) is monotonically increasing, and p *→
R(ξmax, y, p) is monotonically decreasing for ξmax sufficiently large. Hence p∗

is unique and therefore the unique solution of the min-max problem. As we
have

R (ξ2, y, p∗) = R (ξmax, y, p∗) =⇒ p∗ =
4
√

2y
√
ξmax

(
y + 2ξmax

2 + ξmax

√
2√y

)

2ξmax
,

by expanding p∗ for h small, (ξmax = ξ(C/h)), we get the desired result.

A numerical example of the convergence factor is shown in Figure 1. We can
see that for σ > 0, the classical Schwarz algorithm does not have convergence
problems any more close to the resonance frequency. Increasing σ further
improves the performance, since the maximum of the convergence factor de-
creases. We also see that the optimization, which is based on equioscillation,
leads to a uniformly small contraction factor when σ > 0, whereas in the case
σ = 0 a small region close to the resonance frequency needs to be excluded in
order to minimized the convergence factor for the remaining frequencies.
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Fig. 1. Convergence factors as function of the frequency parameter |k|
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4 Numerical Results

We present now some numerical tests in order to illustrate the performance
of the algorithms. The domain Ω is partitioned into several subdomains Ωj .
In each subdomain, we use a discontinuous Galerkin method (DG), see [5].

We first test the propagation of a plane wave in a homogeneous medium.
The domain is Ω = (0, 1)2, and the parameters are constant in Ω, with
ε = µ = 1, σ = 5 and ω = 2π. We impose on the boundary an incident
field W inc = (Hinc

x , Hinc
y , Einc

z ) = ( ky

µω , −kx
µω , 1)e−ik·x with k = (kx, ky) =

(ω
√
ε− i σ

ω , 0), x = (x, y). The domain Ω is decomposed into two subdo-
mains Ω1 = (0, 1/2)× (0, 1) and Ω2 = (1/2, 1)× (0, 1). For this test case, the
DG method is used with a uniform polynomial approximation of order one,
two and three, denoted by DG-P1, DG-P2 and DG-P3. The performance of
the algorithm is shown in Figure 2. These results are in good agreement with

10−2 10−1
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Optimized DG−P1
Optimized DG−P2
Optimized DG−P3
O(h−1/2)
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O(h−3)

it
er

at
io

n
s

h

h
1
10

1
20

1
40

1
80

Optimized Schwarz algorithm :
DG-P1 32 46 64 89
DG-P2 40 56 78 108
DG-P3 46 64 89 124

Classical Schwarz algorithm :
DG-P1 488 1990 8000 31821
DG-P2 2038 8419 34262 15E04
DG-P3 4066 16875 89486 30E04

Fig. 2. Number of iterations against the mesh size h, to attain a relative residual
reduction of 10−8 obtained with the classical and optimized Schwarz algorithm

the theoretical result in Theorem 3: the curves fit nicely the dependence on
h predicted, i.e they behave like h−0.5. We also see the tremendous improve-
ment of the optimized Schwarz method over the classical Schwarz method,
which nevertheless performs a bit better than predicted in Corollary 1, the
dependence on h measured is O(h−2), instead of O(h−3); for an explanation,
see [7].

The second test problem is a simplified model of the propagation of an
electromagnetic wave, emitted by a localized source, in the head tissues. The
geometric configuration is given in Figure 3. The electromagnetic parameters
of the material in the head tissues are: µ = 1 in the whole domain, ε = 43.85,
σ = 1.23 ·120π for the skin, ε = 15.56, σ = 0.43 ·120π for the skull, ε = 67.20,
σ = 2.92 · 120π for the cerebrospinal fluid and ε = 43.55, σ = 1.15 · 120π for
the brain. The antenna is modeled by two perfectly conducting rods (with
base section of 0.252cm2) and between these rods a current density Jz is
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Fig. 3. Model of the different layers of a skull
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Fig. 4. Decomposition into subdomains and solution

applied. The computational domain is decomposed into several subdomains
(a decomposition into eight subdomains is shown for example in Figure 4 on
the left). We compare in this test the performance of the classical Schwarz
and the new optimized Schwarz algorithm for a decomposition into two, four,
eight and sixteen subdmains. In Table 1, we show the number of iterations
needed for convergence, i.e to attain a relative residual of 10−8, depending on
the number of subdomains. These results show that the optimized Schwarz
algorithm converges much faster than the classical Schwarz algorithm. Here
we used a Krylov method (BiCGStab) for the solution of the linear system,
preconditioned with the classical and optimized Schwarz preconditioner.

Number of subdomains 2 4 8 16

Classical Schwarz 94 197 179 174
Optimized Schwarz 69 92 82 85

Table 1. Iteration number comparison for the cell phone antenna problem
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5 Conclusion

We analyzed an optimized Schwarz method for the two dimensional Maxwell
equations with non-zero electric conductivity. The new method performs much
better than the classical one, and our theoretical results are well confirmed
by the numerical experiments presented, also for a non-trivial test case.
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