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Summary. Schwarz domain decomposition methods can be analyzed both at the

continuous and discrete level. For consistent discretizations, one would naturally

expect that the discretized method performs as predicted by the continuous analysis.

We show in this short note for two model problems that this is not always the case,

and that the discretization can both increase and decrease the convergence speed

predicted by the continuous analysis.

1 Introduction

Classical Schwarz methods have been analyzed historically both at the con-
tinuous and the discrete level, see for example Schwarz [1870], Lions [1988,
1989, 1990], Quarteroni and Valli [1999] and references therein for contin-
uous analysis, Dryja and Widlund [1987], Toselli and Widlund [2004] and
references therein for analysis at the discrete level. Over the last decade, op-
timized Schwarz methods have been extensively developed at the continuous
level. These methods converge significantly faster than the classical Schwarz
methods, see for example Gander [2006], and references therein. More recently,
Schwarz methods have also been developed for systems of partial differential
equations, see for example Dolean et al. [2004] for Euler equations, Dolean
and Gander [2008] for the Cauchy-Riemann equations, or Alonso Rodŕıguez
and Gerardo-Giorda [2006], Dolean et al. [2009] for Maxwell’s equations, and
it was observed in two particular cases that a discretized Schwarz method
converged faster than predicted by the continuous analysis. The purpose of
this note is to explain this observation for the case of the Cauchy-Riemann
equations, and also to reveal a previously not observed discrepancy for the
case of the positive definite Helmholtz operator, η − ∆, η > 0.
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2 The Cauchy-Riemann Equations

Classical and optimized Schwarz methods have been analyzed in Dolean and
Gander [2008] at the continuous level for the Cauchy Riemann equations,

Lu :=
√

ηu + A∂xu + B∂yu = f , A =

[

−1 0
0 1

]

, B =

[

0 1
1 0

]

, (1)

and it was observed in the classical Schwarz case that the discretized algo-
rithms converged faster than predicted by the continuous analysis. The finite
volume discretization used in these experiments was on a Cartesian mesh with
mesh points xlm = (l∆x,m∆y), l,m ∈ Z, namely

Lul,m :=

(

L1ul,m

L2ul,m

)

=

(

fl,m

gl,m

)

=: f l,m,

L1ul,m :=
√

ηul,m + (−D+
x − D+

y −D−

y

2 )ul,m +
D+

y +D−

y

2 vl,m,

L2ul,m :=
√

ηvl,m + (D−
x − D+

y −D−

y

2 )vl,m +
D+

y +D−

y

2 ul,m,

(2)

where D±
x and D±

y are the usual finite difference operators in x and y di-
rections. We consider now a decomposition of Ω = R

2 into two subdomains
Ω1 = (−∞, a) × R and Ω2 = (b,∞) × R. In the interior of Ω1 the equation
(2) is verified for all l < l1 and for Ω2, it is verified for all l > l2. A discrete
Schwarz algorithm with general transmission conditions is

Lu
1,n
l,m = f l,m, l < l1,

L2ul1,m = gl1,m,

u1,n
l1,m + S1v1,n

l1,m = u2,n−1
l1,m + S1v2,n−1

l1,m ,

Lu
2,n
l,m = f l,m, l > l2,

L1ul2,m = fl2,m,

v2,n
l2,m + S2u2,n

l2,m = v1,n−1
l2,m + S2u1,n

l2,m.

(3)
where l1, l2 are the indices of the interface points, and S1,2 are finite differ-
ence operators that may contain parameters chosen in order to obtain better
convergence than with the classical algorithm. If only information following
the characteristics are exchanged, S1,2 ≡ 0, we obtain the classical Schwarz
algorithm, see Dolean and Gander [2008].

To simplify the analysis, we use the same discretization step in the x and y
direction, h := ∆x = ∆y. We denote the overlap parameter by δ := l1−l2, and
use a discrete Fourier transform to study convergence properties of algorithm
(3). Since we study the evolution of the error, it is sufficient to study the
homogeneous counterpart of (3), and we look for the solutions of the form

u
j,n
l,m =

∑

k

αj,n(k)elhλ(k)eikmh

(

ûj,n
k,m

v̂j,n
k,m

)

, (4)

where j = 1, 2 denotes the subdomain index and n the iteration number of
the Schwarz algorithm. At each iteration and in each subdomain, the iterates
satisfy for each discrete frequency k the system of equations
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√
ηûk,m − eλ(k)h−1

h ûk,m + 2−eikh−e−ikh

2h ûk,m + eikh−e−ikh

2h v̂k,m = 0,
√

ηv̂k,m + 1−e−λ(k)h

h v̂k,m + 2−eikh−e−ikh

2h v̂k,m + eikh−e−ikh

2h ûk,m = 0.
(5)

If we denote by φ := eλ(k)h−1
h and by ŵ :=

v̂k,m

ûk,m
, we obtain from the first

equation of (5) that

φ =
√

η +
akh

2
+ bkŵ, (6)

where bk = i sin(kh)
h = ik + O(h) and ak = 2(1−cos(kh))

h2 = k2 + O(h) are the
symbols of the discrete first and second order derivative with respect to y.
Replacing this result into the second equation of (5) we obtain an equation
for ŵ,

bk

((√
η + akh

2

)

h + 1
)

ŵ2 +
((√

η + akh
2

) ((√
η + akh

2

)

h + 2
)

+ b2
kh
)

ŵ

+ bk

((√
η + akh

2

)

h + 1
)

= 0.

This equation has solutions ŵ1,2, which give two corresponding values of φ1,2

with opposite signs, whose asymptotic behavior for h small is

φ1,2(k, h) = ±
√

η + k2 + O(h).

Since subdomain solutions need to remain bounded, they must be of the form

u
j,n
l,m =

∑

k

αj,n(k)(φjh + 1)leikmh

(

ûj,n
k,m

v̂j,n
k,m

)

. (7)

If we denote by σ1,2 the Fourier symbols of the operators S1,2, and insert (7)
into the interface conditions of algorithm (3), we obtain for each frequency k

α1,n(k)(û1
k,m + σ1v̂

1
k,m)(φ1h + 1)l1 = α2,n−1(k)(û2

k,m + σ1v̂
2
k,m)(φ2h + 1)l1 ,

α2,n(k)(v̂2
k,m + σ2û

2
k,m)(φ2h + 1)l2 = α1,n−1(k)(v̂1

k,m + σ2û
1
k,m)(φ1h + 1)l2 .

Taking into account that ŵ =
v̂k,m

ûk,m
and using (6), the convergence factor of

algorithm (3) is

ρ(k, η, δ, h) =
(

α2,n

α2,n−2

)
1
2

=
(

1+σ1v̂2

1+σ1v̂1
· σ2+v̂1

σ2+v̂2

)
1
2 ·
(

φ2h+1
φ1h+1

)
δ
2

=

(

bk+σ1

“

φ2−
√

η− akh

2

”

bk+σ1

“

φ1−
√

η− akh

2

” ·
bkσ2+

“

φ1−
√

η− akh

2

”

bkσ2+
“

φ2−
√

η− akh

2

”

)

1
2

·
(

φ2h+1
φ1h+1

)
δ
2

.

(8)

The maximum ρmax of this convergence factor over all relevant frequencies
k ∈ [0, kmax], with the estimate kmax = π

h , determines the overall contraction
factor of the method, and hence the rate of convergence of the associated algo-
rithm. Different classes of interface conditions were studied at the continuous
level in Dolean and Gander [2008]:

Case 1: σ1 = σ2 = 0. This case corresponds to the classical Schwarz
algorithm which exchanges characteristic information at the interfaces.
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Proposition 1. Let σ1 = σ2 = 0. In the non-overlapping case of algorithm
(3) , δ = 0, the convergence factor attains its maximum for h small at kb =

2
1
2 · 3− 1

4 η
1
8 · h− 3

4 , which leads to the overall contraction factor

ρmax := ρ(kb, η, 0, h) = 1 − 2
3
2 · 3− 3

4 η
3
8 h

3
4 + O(h).

In the overlapping case of algorithm (3) , we have for

δ = 1 : kb = η
1
4 · h− 1

2 , ρmax = 1 − 2η
1
4 · h 1

2 + O(h),

δ = 2 : kb = η
1
4 · 2− 1

2 · h− 1
2 , ρmax = 1 − 2

3
2 η

1
4 · h 1

2 + O(h).
(9)

Remark 1. In the non-overlapping case, the convergence factor predicted by
the continuous analysis in Dolean and Gander [2008] was 1−O(h), but faster
convergence was observed numerically, a gap closed by the present analysis.
In the overlapping case however, for δ = 1, 2 and probably also bigger δ, the
convergence factors from the discrete and continuous analysis have the same
asymptotic behavior, see Dolean and Gander [2008].

Case 2: σ1 = bk√
η+p , σ2 =

√
η−p

bk
, a case with one parameter p > 0 to

choose for best performance. Since bk is the discrete symbol of the tangen-
tial derivative, this case corresponds to the optimized algorithm where local
operators are used in the transmission conditions expressed with first order
derivatives. Note that even if we have bk in the denominator, it suffices to
multiply both sides of the transmission conditions with bk in order to obtain
local operators.

Proposition 2. Let σ1 = bk√
η+p and σ2 =

√
η−p

bk
. In the non-overlapping case

of algorithm (3), δ = 0, the optimized parameter p∗ is for h small solution of

ρ(k1(p), η, 0, h, p) = ρ(kmax, η, 0, h, p), (10)

where k1(p) is a maximum of ρ, and we have the asymptotic result

k1 =
Ck1

h
, p∗ =

Cp√
h

, ρmax = 1 − 1

4Cp
· (3C2

p + 8
√

η)
√

h + O(h).

The constants Ck1
and Cp can be explicitly computed: if θ denotes the real

root of 6x3 − 20x2 + 19x − 3 = 0, then we get Ck1
= arccos(θ) = 1.373593,

and

Cp = 2/(−3 · cos(Ck1
)3 + 6 · cos(Ck1

)2 + 3 · cos(Ck1
) − 6

+16 · ((−1 + cos(Ck1
)) · (3 · cos(Ck1

) − 5))1/2) · (−(6 · cos(Ck1
)3

−12 · cos(Ck1)
2 − 6 · cos(Ck1) + 12

−32 · ((−1 + cos(Ck1
)) · (3 · cos(Ck1

) − 5))1/2) · η1/2 · (cos(Ck1
)3

−2 · cos(Ck1
)2 − cos(Ck1

) + 2))1/2

= 0.7460898 · η 1
4 .
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Proposition 3. Let σ1 = bk√
η+p and σ2 =

√
η−p

bk
. In the overlapping case,

δ = 1, the optimized parameter p∗ is for h small solution of the equation

ρ(k1(p), η, δ, h, p) = ρ(kmin, η, δ, h, p), (11)

where again k1(p) is a maximum of ρ, and kmin ≥ 0 is the minimum frequency
on the interface, and we have asymptotically

p∗ = 2−
1
3 · (k2

min + η)
1
3 · h− 1

3 , k1 = 2
1
3 · (k2

min + η)
1
6 · h− 2

3 ,

ρmax = 1 − 4 · (η + k2
min)

1
6 · 2 1

3 · h 1
3 + O(h).

The same asymptotic behavior is also obtained for bigger overlap, δ > 1.

Remark 2. In both Propositions 2 and 3, the asymptotic analysis of the dis-
cretized algorithm presented here and the continuous algorithm from Dolean
and Gander [2008] predict the same asymptotic performance.

Case 3: σ1 = σ2 = σ = bk√
η+p , where we can again choose p > 0 for best

performance.

Proposition 4. The optimized parameter p∗ is for h small solution of the
equation

ρ(k1(p), η, δ, h, p) = ρ(k2(p), η, δ, h, p), (12)

where k1(p) and k2(p) are maxima of ρ. In the case δ ≤ 3, which means no
or small overlap (at most 3 mesh cells), we have the asymptotic result

p∗ =
Cp

h
, k1 =

Ck1√
h

, k2 =
Ck2

h
,

ρmax = 1 − 2
2C2

k1
+ Cp

√
η + δC2

k1
Cp

CpCk1

√
h + O(h).

In the case with more overlap, δ ≥ 4, we obtain for h small

p∗ =
Cp√

h
, k1 =

Ck1

h
1
4

, k2 =
Ck2

h
3
4

,

ρmax = 1 − 2
2C2

k1
+ Cp

√
η

CpCk1

h
1
4 + O(h

1
2 ).

The constants can again be computed: for example for the zero or small over-
lapping case, we obtain

δ = 0 : Cp = 0.383205, Ck1
= 0.437724η

1
4 , Ck2

= 2.29295,

δ = 1 : Cp = 0.068781, Ck1 = 0.182338η
1
4 , Ck2 = 2.71717,

(13)

and for a case with bigger overlap, δ = 4, we get

Cp =
1

2
η

1
4 , Ck1 =

1

2
η

3
8 , Ck2 =

1

2
η

1
8 . (14)

We observed that for δ > 4 the factor one half in the constants (14) is replaced
by a factor that becomes smaller and smaller, as δ becomes larger.
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Remark 3. Again there is a substantial difference between the continuous anal-
ysis from Dolean and Gander [2008] and the discrete analysis presented here:

the continuous analysis predicted the convergence factor 1 − O(h
1
3 ) without

overlap, and 1 −O(h
1
4 ) with overlap.

Such differences are not only restricted to the somewhat exotic example
of the Cauchy-Riemann equations, they were also observed when the classical
Schwarz method is applied to Maxwell’s equations, see Dolean et al. [2009],
and we will show in the next section that even in the case of simple positive
definite scalar partial differential equations such differences can occur.

3 The Positive Definite Helmholtz Equation

Optimized Schwarz methods have been analyzed thoroughly for the positive
definite Helmholtz equation at the continuous level in Gander [2006], and
extensive numerical tests have been presented which illustrate the performance
predicted by the continuous analysis. We show in this section that there are
certain, quite natural discretizations which can lead again to differences in
the performance.

We use the same Cartesian mesh on Ω = R
2 with mesh points xl,m =

(l∆x,m∆y), l,m ∈ Z, and we consider the five point finite difference dis-
cretization of the positive definite Helmholtz equation (η − ∆)u = f ,

Lul,m :=
(

η − D+
x D−

x − D+
y D−

y

)

ul,m = fl,m. (15)

With the same decomposition as in section 2, a general discrete Schwarz al-
gorithm applied to (15) is

Lu1,n
l,m = fl,m, l < l1, Lu2,n

l,m = fl,m, l > l2,

B1u
1,n
l1,m = B1u

2,n−1
l1,m , j ∈ Z, B2u

2,n
l2,m = B2u

1,n−1
l2,m , j ∈ Z,

(16)

where B1,2 denote the discrete transmission conditions (Dirichlet or Robin).
We set again h := ∆x = ∆y and δ := l1 − l2 for the overlap. Using a discrete
Fourier analysis in the y direction, one can show the following results:

Proposition 5. For Dirichlet transmission conditions, B1,2 = Id, and one
mesh size overlap, δ = 1, the asymptotic convergence factor of algorithm (16)
for h small is given by

ρmax = 1 −√
ηh + O(h2),

which is identical to the result obtained from a continuous analysis.

Proposition 6. For Robin transmission conditions discretized by one-sided
finite differences, B1 := D−

x + p and B2 := D+
x − p, the optimized Robin
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parameter and asymptotic convergence factor of algorithm (16) for h small
are given by

δ = 1: p∗ = 2
1
4 η

1
4 h− 1

2 , ρmax = 1 − η
1
4 2

3
4

√
h + O(h),

δ = 2: p∗ = 2−
1
3 η

1
3 h− 1

3 , ρmax = 1 − 2η
1
6 2

1
3 h

1
3 + O(h

2
3 ).

(17)

Remark 4. In the case δ = 2 with overlap 2h, and one-sided finite difference
discretization of the normal derivative, the asymptotic performance of the
discretized algorithm is as predicted by the continuous analysis, see Gander
[2006]. However with δ = 1, which means minimal overlap, the asymptotic
performance of the discretized overlapping algorithm is worse, like predicted
for the non-overlapping algorithm by the continuous analysis in Gander [2006].
The benefit of the overlap is thus lost with this discretization!

For Robin transmission conditions obtained by centered finite differences,
the algorithm (16) is given by

Lu1,n
l,m = fl,m, l < l1, j ∈ Z,

(D−
x +(η−D+

y D−
y )h

2 +p)u1,n
l1,m = (D+

x −(η−D+
y D−

y )h
2 +p)u2,n−1

l1,m +hfl1,m,

Lu2,n
l,m = fl,m, l > l2, j ∈ Z,

(D+
x −(η−D+

y D−
y )h

2 −p)u2,n
l2,m = (D−

x +(η−D+
y D−

y )h
2 −p)u1,n−1

l2,m −hfl2,m.

(18)

Proposition 7. For the discrete optimized Schwarz algorithm (18), the op-
timized Robin parameter and asymptotic convergence factor are for h small
given by

δ = 0 : p∗ = 2
1
4

√

2
1
2 +1

4+3·2
1
2
η

1
4 h− 1

2 , ρmax = 1 − 2η
1
4 (2 + 3 · 2− 1

2 )
1
2

√
h + O(h),

δ = 1 : p∗ = 2−
1
3 η

1
3 h− 1

3 , ρmax = 1 − 4η
1
6 2

1
3 h

1
3 + O(h

2
3 ).

(19)

Remark 5. With the centered finite difference approximation of the normal
derivative, the discretized optimized Schwarz algorithm for the positive def-
inite Helmholtz equation has the same asymptotic convergence behavior as
predicted by the continuous analysis in Gander [2006].

4 Conclusions

As we have seen, the discretization can modify the convergence behavior of
Schwarz algorithms, compared to the predicted behavior by a continuous anal-
ysis. We note however that in all cases we have analyzed, different behavior
is only observed when the overlap is sufficiently small. In the case of enough
overlap, the results of the discrete and continuous analysis are consistent.
This observation suggests that the reason for possibly different behavior of
the discrete algorithm could lie in the fact that the physical properties are in
those cases not well enough resolved in the overlapping region of very few grid
points.
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