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Nonholonomic mechanics: A geometrical treatment of general coupled rolling motion

In the presented paper, a problem of nonholonomic constrained mechanical systems is treated. New methods in nonholonomic mechanics are applied to a problem of a general coupled rolling motion. Two goals are stressed.

The first of them lies in the solution of an originally formulated problem of rolling motion of two rigid cylindrical bodies in the homogeneous gravitational field leading typically to nonlinear equations of motion. A solid cylinder can roll inside a ring under the static frictional force assuring rolling without slipping, the ring rolls again without slipping along a generally shaped terrain formed by hills and valleys. "Surprising behaviour" of the mechanical system which permits interesting applications is studied and discussed.

The second purpose of the paper is to show that the geometrical theory of nonholonomic constrained systems on fibered manifolds proposed and developed in the last decade by Krupková and others is an effective tool for solving nonholonomic mechanical problems. A comparison of this method to alternative methods is given and the benefits of coordinate-free formulation are mentioned.

In this paper, the geometrical theory is applied to the above mentioned mechanical problem. Both types of equations of motion resulting from the theory -deformed equations with the so called Chetaev type constraint forces containing Lagrange multipliers, and reduced equations free from multipliers -are found and discussed. Numerical solutions for two particular cases of the motion of the cylindrical system along a cylindrical surface are presented.

Introduction

The motion of mechanical systems is frequently subjected to various constraint conditions, holonomic or nonholonomic. Nonholonomic constraints lead typically to non-linear equations of motion of constrained system. While theories of holonomic or some special types of linear nonholonomic constraints are already well elaborated for quite general situations (see e.g. [START_REF] Brdička | Theoretical Mechanics (Teoretická mechanika[END_REF]), various theoretical approaches to general nonholonomic mechanics occur up to now, from the physical point of view on the one hand, and from the geometrical point of view on the other. As for physical approach we can mention the problem on a rotating table [START_REF] Ju | Dynamics of Nonholonomic Systems[END_REF], [START_REF] Swaczyna | Variational aspects of non-holonomic mechanical systems[END_REF] the pursuit problem e.g. in [START_REF] Janová | Geometrická teorie mechanických soustav s neholonomními vazbami (Geometrical theory of mechanical systems with nonholonomic constraints[END_REF] or [START_REF] Volný | Nonholonmic systems[END_REF], problem of knife in a paper e.g. in [START_REF] Ju | Dynamics of Nonholonomic Systems[END_REF], [START_REF] Volný | Nonholonmic systems[END_REF], or the problem of thin rolling disc on a horizontal plane in [START_REF] Brdička | Theoretical Mechanics (Teoretická mechanika[END_REF], [START_REF] Ju | Dynamics of Nonholonomic Systems[END_REF], [START_REF] Monforte | Geometric, Control and Numerical Aspects of Nonholonomic systems[END_REF] and recently in [START_REF] Batista | Steady motion of a rigid disc of finite thickness on horizontal plane[END_REF]. Various geometrical treatments can be found e.g. in [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF] - [START_REF] Sarlet | A geometrical framework for the study of nonholonomic Lagrangian systems II[END_REF] and many others.

On the other hand, in the last decade, and especially in last few years, alternative approaches were developed. In [START_REF] Udwadia | Equations of motion for mechanical systems: a unified approach[END_REF], a unified approach to mechanical systems with constraints non-linear in generalized velocities is given, leading to the Lagrange equations and the Gibbs-Appell equations. In [START_REF] Udwadia | On the foundations of analytical dynamics[END_REF], a completely general approach to nonholonomic systems is presented for second order equations of motion, the constrained equations being given in the explicit form. The advantage of the method lies in the fact that it is not based on the principle of virtual work in its common sense, i.e., the constraints need not obey the d'Alembert's principle. Thus, the method admits a wide variety of constraint forces. Moreover in [START_REF] Udwadia | On the foundations of analytical dynamics[END_REF], the authors formulate a generalized d'Alembert's principle. The theory is formulated exclusively in coordinates.

A geometrical derivation of Lagrange equations for a system of rigid bodies subject to general holonomic and nonholonomic constraints was given in [START_REF] Casey | Geometrical derivation of Lagrange's equations for a system of rigid bodies Math[END_REF]. There, the system is represented by an abstract particle P moving in a multidimensional Euclidean space, called Hertzian space,
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with the metric determined by the radius of gyration of the physical system. The holonomic constraints confine P to move in a Riemannian manifold (the configuration manifold of the constrained system) embedded in Hertzian space. Euler's laws for linear and angular momenta are expressed as a single balance equation in Hertzian space and Lagrange's equations emerge as covariant components of this equation taken along the coordinate directions in the configuration manifold. No appeal is made to variational principles or to notions of virtual work.

In [START_REF] Lauderdale | A method for relaxing parameter constraints in rigid body dynamics[END_REF], the theory of a pseudo-rigid body is used to establish equations of motion (free from parameter constraints) governing the motion of homogenously deforming body, which can be used to approximate the motion of a rigid body.

The geometrical theory used in the presented paper was presented for first order mechanical problems in [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF] and then generalized for higher order case in [START_REF] Krupková | Higher order mechanical systems with constraints[END_REF] brings an appropriate tool for constructing certain type of equations of motion of nonholonomic mechanical systems subjected to quite general constraints (an application to typically non-linear constraint see in [START_REF] Krupková | The relativistic particle as a mechanical system with nonlinear constraints[END_REF]). Let us give in this introductory section only a brief commentary to main ideas of the theory (for more details see Sec. 2) and its comparison with the above mentioned approaches [START_REF] Udwadia | Equations of motion for mechanical systems: a unified approach[END_REF], [START_REF] Udwadia | On the foundations of analytical dynamics[END_REF], [START_REF] Casey | Geometrical derivation of Lagrange's equations for a system of rigid bodies Math[END_REF] and [START_REF] Lauderdale | A method for relaxing parameter constraints in rigid body dynamics[END_REF].

The theory is developed on fibered manifolds and their jet prolongations as underlying geometrical structures, naturally related to the character of physical problems. The main physical idea of the theory is based on the concept of Chetaev-type constraint forces introduced in analogy to "classical" Chetaev forces (see [START_REF] Chetaev | On the Gauss principle (in Russian)[END_REF]). Equations of corresponding unconstrained motion are connected with so called dynamical form and they define the components of this form. Using equations of constraints a special canonical distribution on first jet prolongation of the underlying manifold (corresponds to the phase space) can be constructed. Then first prolongations of admissible trajectories of the constrained motion are just integral sections of this distribution. By adding Chetaev-type forces (with Lagrange multipliers) to equations of motion, a dynamical form of the constrained problem is obtained and deformed equations of motion are constructed. These equations together with constraint conditions give the system of differential equations for unknown constrained trajectories and Lagrange multipliers. Another possible approach to the problem within the same theory starts from its description by so called Lepage class of forms instead the dynamical form itself. The Lepage class is, of course, closely related to the dynamical form, and it is obtained by the factorization of modules of forms by special submodules irrelevant from the point of view of the problem. This procedure leads to so called reduced equations of motion containing no Lagrange multipliers and giving the system of differential equations for constrained trajectories only. Nevertheless, constraint forces can be then obtained from deformed equations.

Note that the geometrical theory is effective not only for a wide class of "true" non-holonomic problems with non-linear or linear non-integrable constraints (such a problem cannot be solved by classical methods), but it can be directly applied to semiholonomic (integrable) constraints without the necessity to find the corresponding integrated constraint (which could require tedious technical calculations).

The method that we use, as well as that given in [START_REF] Udwadia | On the foundations of analytical dynamics[END_REF], admits quite general nonholonomic constraints. On the other hand, our geometrical description of the situation with such completely general constraints is based, compared with [START_REF] Udwadia | Equations of motion for mechanical systems: a unified approach[END_REF] and [START_REF] Udwadia | On the foundations of analytical dynamics[END_REF], on to some extent specific choice of constraint forces assuring the motion with desired constraints -the Chetaev-type forces. However, they represent a satisfactorily wide variety of constraint forces as for the possibility to obtain the description of a nonholonomic system realistic from the physical point of view, as shown e.g. in [START_REF] Krupková | The relativistic particle as a mechanical system with nonlinear constraints[END_REF] or [START_REF] Czudková | Non-holonomic mechanical systems and variational principle[END_REF], and they represent a generalization of d'Alembert's principle for constraints depending on velocities. Being geometrical, i.e. coordinate free, the method used in our paper gives a good understanding of geometrical structures naturally connected with nonholonomic constrained systems in general. Thus it can be used not only for second order mechanics, but it allows the immediate extension to higher order mechanics or field theory, taking into account higher jet prolongations of the underlying fibered manifold with the one-
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dimensional or multidimensional base, respectively. Such generalization is presented e.g. in [START_REF] Krupková | Higher order mechanical systems with constraints[END_REF] for higher order mechanics and in [START_REF] Krupková | Partial differential equations with differential constraints[END_REF] (general theory), [START_REF] Czudková | Non-holonomic constraint forces in field theory (geometrical theory applied)[END_REF] (a practical example) and [START_REF] Vankerschaver | Geometric aspects of nonholonomic field theories[END_REF] (theory and application) for the field theory. The method is also applicable to an arbitrary nonholonomic system of particles (mechanics) or continuum (field theory), including a system of rigid bodies such as studied in [START_REF] Casey | Geometrical derivation of Lagrange's equations for a system of rigid bodies Math[END_REF] and [START_REF] Lauderdale | A method for relaxing parameter constraints in rigid body dynamics[END_REF]. In addition, on the base of the geometrical theory with Chetaev-type constraint forces, one can formulate a constraint variational principle and solve the corresponding constraint inverse variational problem (see e.g. [START_REF] Krupková | Non-holonomic variational systems[END_REF]), as well as study symmetries of constrained systems. Symmetries and arising first integrals may then essentially simplify integration of the resulting constrained equations of motion, see e.g. [START_REF] Swaczyna | Variational aspects of non-holonomic mechanical systems[END_REF].(Nevertheless, in the present paper no attention is paid to higher order theories, field theories and the constraint variational problem.) Of course, the calculation procedure itself is made in coordinates. Its practical advantage lies in the possibility to choose appropriate coordinates, and also in two equivalent alternatives of solving the problem. The first of them is based on the solution of reduced equations of motion free of Lagrange multipliers and additional computation of these multipliers and corresponding constraint forces from dynamical equations, or alternatively, the direct solution of dynamical equations containing Lagrange multipliers. The decision between these two procedures is influenced by the concrete physical problem.

We discuss the following case of rolling motion: A smaller solid cylinder is put inside a ring and it can roll there without slipping. The ring can roll, again without slipping, along a generally shaped terrain in homogeneous Earth field with intensity (or gravitational acceleration) g. Even though the corresponding constraint is semiholonomic and thus it could be in principle treated by classical methods of Lagrange multipliers (for details concerning the method in general see e.g. the classical textbook of analytical mechanics [START_REF] Brdička | Theoretical Mechanics (Teoretická mechanika[END_REF]), the direct application of the Krupková's geometrical theory is very effective in this situation. As observed by the authors in a simple illustrative experiment (see figure 1), the proposed mechanical system generates different types of complicated motion depending on initial conditions: when placed on a horizontal plane and caused to roll without slipping, it sometimes begins to oscillate, sometimes rolls unevenly, stops, and then starts rolling in the direction opposite to that associated with the original motion. Moreover in this paper, we study theoretically a more complicated situation, when the system is placed on generally shaped terrain.

The studied system can be used as a model case for simulating real rolling and oscillatory motions of parts of machines in engineering. Moreover, according to the nature of its motion the studied mechanical system can be declared as the system with "surprising behaviour", as e.g. that shown in [START_REF] Kane | Realistic mathematical modeling of the rattleback[END_REF]. Note that apart from other possibilities, such systems can be effectively used as instructive examples.

The mentioned example has not been solved up to now for a generally shaped terrain: rolling without slipping is usually studied for a single body on an inclined or horizontal plane. The model of two cylinders (outer one and inner one) on an inclined plane is mentioned but not
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solved in [START_REF] Ju | Dynamics of Nonholonomic Systems[END_REF]. The aim of this paper is to use the geometrical theory for obtaining non-linear equations of motion of the above exposed mechanical problem and find their solution in some particular cases. This is made in Sec. 3, where both respective sets of equations of motion (reduced and deformed) are derived and graphical outputs of numerical solution are presented, whereas in Sec. 2 a brief review of ideas and results of the geometrical theory is presented, as necessary for its practical use.

Geometrical theory of nonholonomic mechanical systems: Ideas and results

Let us briefly recall the main results of the geometrical theory of nonholonomic constrained mechanical systems presented in [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF], [START_REF] Krupková | On the geometry of non-holonomic mechanical systems[END_REF], [START_REF] Krupková | Recent results in the geometry of constrained systems[END_REF]. Some simple physical examples of using this theory can be found in [START_REF] Janová | Geometrická teorie mechanických soustav s neholonomními vazbami (Geometrical theory of mechanical systems with nonholonomic constraints[END_REF], [START_REF] Volný | Nonholonmic systems[END_REF] or [START_REF] Janová | Mechanika neholonomně vázaných systému (Mechanics of nonholonomic constrained systems[END_REF].

Geometrical structures for unconstrained mechanical systems

Throughout the paper the standard notation of geometrical objects is used. As an underlying geometrical structure a (m+ 1)-dimensional fibered manifold (Y, π, X) with the one-dimensional base X is considered, (t ∈ X being time in non-relativistic mechanics), m-dimensional fibers (configuration space), and its jet prolongations (J s Y, π s , X) with s = 1, 2 for typical physical cases (a fiber of J 1 Y over t ∈ X represents the phase space). We denote (V, Ψ), Ψ = (t, q σ ),

1 ≤ σ ≤ m, a fibered chart on Y , (U, φ), U = π(V ), φ = (t), the associated chart on X and (V s , Ψ s ), V s = π -1
s (U), Ψ s = (t, q σ , q σ s ) the associated fibered chart on J s Y , where q σ 1 = qσ and q σ 2 = qσ . Moreover, denote by π r,s :

J r Y → J s Y , 0 ≤ s < r ≤ 2, J 0 Y = Y , canonical projections. A section of fibered manifold (Y, π, X) is a smooth mapping γ : I → Y , such that γ • π = id I , I ⊂ X being an open set. Analogously sections of (J r Y, π r , X) are defined. A section δ of (J r Y, π r , X) is called holonomic if it is of the form δ = J r γ,
where γ is a section of (Y, π, X).

Recall that a vector field ξ on J r Y is called π r -projectable if there exists a vector field ξ 0 on X such that T π r ξ = ξ 0 • π r . A vector field ξ is called π r -vertical if T π r ξ = 0. A form η on J r Y is called π r -horizontal if its contraction by an arbitrary chosen π r -vertical vector field ξ vanishes, i.e. it holds i ξ η = 0. A form η is called contact if J r γ * η = 0 for all sections γ of (Y, π, X). Concepts of π r,s -projectable vector field, π r,s -vertical vector field, and π r,s -horizontal form are defined by the quite analogous way. Moreover, for every k-form η on J r Y there exists the unique decomposition into its q-contact components, 0 ≤ q ≤ k, π * r+1,r η = k q=0 p q η, the 0-contact component p 0 η = hη is called also the horizontal one.

From the point of view of physics, all possible trajectories of a so-called first order unconstrained mechanical system on a fibered manifold are given just by sections γ of (Y, π, X) such that they are solutions of the system of m second order ordinary differential equations of motion (affine in accelerations),

E σ • J 2 γ = 0, E σ = A σ (t, q λ , qλ ) + B σν (t, q λ , qλ )q ν , ( 1 
)
where 1 ≤ λ ≤ m and Einstein summation is used. Consider the 1-contact π 2,0 -horizontal 2-form on J 2 Y , E = E σ ω σ ∧ dt, called dynamical form. A solution γ of equations ( 1) is called a path of E. We define the Lepage class [α] of E by the requirement p 1 α = E (see [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF] or [START_REF] Krupková | The Geometry of Ordinary Variational Equations[END_REF]). The class [α] is called also the mechanical system. Every representative of this class is of the form

α = A σ ω σ ∧ dt + B σν ω σ ∧ d qν + F σν ω σ ∧ ω ν ,
where ω σ = dq σqσ dt are contact 1-forms forming the basis of 1-forms (dt, ω σ , qσ ) on J 1 Y adapted to the contact structure. So, [α] = α mod 2-contact forms. The following proposition was proved (see [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF] or [START_REF] Krupková | The Geometry of Ordinary Variational Equations[END_REF]):
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A section γ of (Y, π, X) is a path of the dynamical form E if and only if

J 1 γ * i ξ α = 0. ( 2 
)
for every π 1 -vertical vector field ξ on J 1 Y .

Geometry of nonholonomic constrained systems

A nonholonomic constrained mechanical system is defined on the (2m + 1k)-dimensional constraint submanifold Q ⊂ J 1 Y fibered over Y and given by k equations (1 ≤ k ≤ m -1)

f i (t, q σ , qσ ) = 0, such that rank ∂f i ∂ qσ = k, 1 ≤ i ≤ k, or in the explicit normal form qm-k+i -g i (t, q σ , ql ), 1 ≤ l ≤ m -k. ( 3 
)
It is evident that only admissible trajectories of a nonholonomic mechanical system are such sections γ :

I t → Y for which J 1 γ(t) ∈ Q for all t ∈ I, i.e. f i • J 1 γ = 0 for 1 ≤ i ≤ k (so-called Q-admissible sections).
The constraint (3) gives rise to the canonical distribution C of codimension k on Q. Its annihilator is of the form

C 0 = span{ϕ i }, ϕ i = - ∂g i ∂ ql ω l + ι * ω m-k+i , ( 4 
)
where ι : Q → J 1 Y is the canonical embedding. The canonical distribution is closely related to the constraint ideal I(C 0 )

I(C 0 ) = {ϕ i ∧ χ i |χ i is a form on Q}, (5) 
where ϕ i are 1-forms on Q called canonical constraint 1-forms. The importance of the canonical distribution is evident from its following property (see [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF], [START_REF] Swaczyna | Variational aspects of non-holonomic mechanical systems[END_REF]):

A section γ of Y is Q-admissible if and only if J 1 γ is an integral section of the canonical distribution.

We have already mentioned in Sec. 1 that there are two possible equivalent approaches to the description of non-holonomic mechanical systems -one of them, called physical, is based on deformed equations with constraint forces and Lagrange multipliers and the other, geometrical one, uses reduced equations.

Geometrical approach introduces the constrained mechanical system related to the mechanical system [α] by the equivalence relation

[α Q ] = [ι * α] mod I(C 0 ). (6) 
A Q-admissible section γ of (Y, π, X) is called a path of the constrained system [α Q ] if for every π 1 -vertical vector field ξ belonging to the canonical distribution it holds

J 1 γ * i ξ α = 0. ( 7 
)
The following proposition can be formulated (see again [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF]):

Proposition. A section γ of (Y, π, X) is a path of the deformed system [α Φ ] if and only if for every π 1 -vertical vector field ξ belonging to C holds

f i • J 1 γ = 0, Āl + Bls qs • J 2 γ = 0, ( 8 
)
where
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Āl = A l + k j=1 A m-k+j ∂g j ∂ ql + k i=1 B l,m-k+i + k j=1 B m-k+j,m-k+i ∂g j ∂ ql • • ∂g i ∂t + ∂g i ∂q σ qσ • ι, (9) 
Bls = B ls + k i=1 B l,m-k+i ∂g i ∂ qs + B m-k+i,s ∂g i ∂ ql + B m-k+j,m-k+i ∂g j ∂ ql ∂g i ∂ qs • ι . ( 10 
)
Relations (8) represent the system of reduced equations for m unknown functions q σ γ (k of them are first order and (mk) second order ordinary differential equations).

Physical approach is based on Chetaev-type constraint forces. Such a force is given by the constraint itself, in analogy with holonomic situations. It is expressed by the dynamical form

Φ = Φ σ ω σ ∧ dt = μ i ∂f i ∂ qσ ω σ ∧ dt, 1 ≤ i ≤ k, ( 11 
)
where functions μ i (t, q λ , qλ ) are Lagrange multipliers.

(Note that such a dynamical form satisfies the generalized principle of virtual work i ξ Φ| U = 0 for every π 1 -vertical vector field ξ belonging to the constraint distribution

C U , C 0 U = span{ϕ i , df i , 1 ≤ i ≤ k}, U, U ∩ Q = ∅ being an open set of a chart on J 1 Y , see [9].) Denote [α Φ ] = [α-Φ], α Φ = A σ -μ i ∂f i ∂ qσ ω σ ∧ dt+B σν ω σ ∧ d qν +F σν ω σ ∧ ω ν . ( 12 
)
The equivalence class [α Φ ] is called the

deformed mechanical system. A Q-admissible section γ of (Y, π, X) is called a path of [α Φ ] if (E σ -Φ σ ) • J 2 γ.
The following proposition holds (see [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF], [START_REF] Krupková | On the geometry of non-holonomic mechanical systems[END_REF]):

Proposition. A section γ of Y is a path of the deformed system [α Φ ] if and only if for every π 1 -vertical vector field ξ on J 1 Y it holds

J 1 γ * i ξ α Φ = 0 or equivalently A σ +B σν qν = μ i ∂f i qσ , and f i • J 1 γ = 0 . ( 13 
)
System ( 13) is given by k first order and m second order ordinary differential equations for unknown functions μ i and q σ γ and it represents the deformed equations.

Semiholonomic constraints:

Let us now describe a special type of nonholonomic constraints, called semiholonomic. Such conditions usually take place for rolling of rigid bodies without slipping. A system of constraints ( 3) is called semiholonomic if the constraint ideal ( 5) is differential, i.e. the canonical distribution ( 4) is completely integrable (see e.g. [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF]). This means that dϕ ∈ I(C 0 ) and thus following conditions hold

∂ c g i ∂q l - d c dt ∂g i ∂ ql = 0, ∂ 2 g i ∂ qs ∂ ql = 0, 1 ≤ l, s ≤ m -k, 1 ≤ i ≤ k, ( 14 
)
where

∂ c ∂q l = ∂ ∂q l + ∂g j ∂ ql ∂ ∂q m-k+j , d c dt = ∂ ∂t + ql ∂ ∂q l + g j ∂ ∂q m-k+j .
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In the following section we apply the obtained equations ( 8) and ( 13) obtained for general nonholonomic mechanical system to the example of two rolling cylinders mentioned in Sec. 1. Let < O; x, y, z > be a fixed cartesian system of coordinates with z-axis directed vertically upward (oppositely to gravitational acceleration g). Let V be a very thin ring of radius R and mass M. It can roll on the terrain without slipping.

General coupled rolling of ring and cylinder

The mechanical model

Suppose that the terrain is generally shaped by a function z(x), i.e. it is formed by hills and valleys in < O; x, z >. Thus, the ring moves by such a way that it touches the terrain in the surface line parallel to the y-axis. Denote as ϕ the angle formed by the coordinate plane < O; x, y > and the plane tangent to both the terrain and the ring surface at the line of contact. Thus ϕ can be in principle considered as a known function of X and Z coordinates of centre of mass of the ring V.

A solid cylinder W of mass m and radius r, r < R, is placed to V and it can roll inside without slipping (see figure 2).

The momenta of inertia of cylinders V and W with respect to their symmetry axes in both cases are J M = MR 2 and J m = 1/2mr 2 , respectively. Moreover, let us suppose that none of the cylinders can move along the y-axis and thus the y-coordinates of their centres of mass are constant.

Unconstrained mechanical system

Using the geometrical theory of nonholonomic system mentioned in Sec. 2 we define the structure of mechanical system as follows:

There are six degrees of freedom of the corresponding unconstrained mechanical system, i.e. m = 6. Thus, the fibered manifold of the problem is (R × R 6 , pr 1 , R), where pr 1 is the cartesian projection on the first factor.

We choose the fibered chart on Y as (V, Ψ), where V is an open set V ⊂ Y and Ψ = (t, q 1 , q 2 , q 3 , q 4 , q 5 , q 6 ) = ( t,ψ,β,x,z,X,Z). The associated chart on the base is (pr 1 , Φ), Φ = (t), where t is the time coordinate, and associated fibered chart on ψ,β,x,z,X,Z,ψ,β,ẋ,ż,Ẋ,Ż). Coordinates (X, Z) and (x, z) define the position of center of mass of V and W in < O; x, z >plane, respectively. The variables β and ψ represent angles of rotation of V and W, respectively (see figure 3).

J 1 Y = R × R 6 × R 6 is (V 1 , Ψ 1 ), V 1 = pr -1 (V ), Ψ 1 ), Ψ 1 = (t, q σ , qσ ), 1 ≤ σ ≤ 6, i.e. Ψ 1 = (t,
The Lagrange function of unconstrained mechanical system is given by

L = 1 2 m( ẋ2 + ż2 ) + 1 2 M( Ẋ2 + Ż2 ) + 1 2 J m ψ2 + 1 2 J M β2 -mgz -MgZ.
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Figure 3: The scheme of the the ring and the cylinder

x z ϕ v V ψ β R r
Then the corresponding Euler-Lagrange equations of motion ( 1) are

E 1 ≡ -J m ψ = 0, E 2 ≡ -J M β = 0, E 3 ≡ -mẍ = 0, E 4 ≡ -mz -mg = 0, E 5 ≡ -M Ẍ = 0, E 6 ≡ -M Z -Mg = 0.
The Lepage class of the unconstrained mechanical system is thus given by the representative

α = -mgω 4 ∧ dt -Mgω 6 ∧ dt -J m ω 1 ∧ d ψ -J M ω 2 ∧ d β - -m(ω 3 ∧ d ẋ + ω 4 ∧ d ż) -M(ω 5 ∧ d Ẋ + ω 6 ∧ d Ż),
where ω 1 = dψ -ψdt, ω 2 = dβ -βdt, ω 3 = dxẋdt, ω 4 = dzżdt, ω 5 = dX -Ẋdt, ω 6 = dZ -Żdt.

The constraint

The nonholonomic constraint is given by conditions of rolling without slipping required for both bodies, the ring and the cylinder. The equations of the constraint are as follows:

ẋ ≡ g 1 = ẋ1 + R β cos ϕ, ( 15 
) ż ≡ g 2 = ẏ1 + R β sin ϕ, ( 16 
) Ẋ ≡ g 3 = R β cos ϕ, ( 17 
) Ż ≡ g 4 = R β sin ϕ, ( 18 
)
where v 1 = ( ẋ1 , 0, ż1 ) = ( ẋ -Ẋ, 0, ż -Ż) is the relative velocity of centers of mass (W with respect to V) and ϕ = ϕ(X, Z) is known function. Conditions ( 15) and ( 16) represent the fact that the cylinder W rolls without slipping inside the ring V, conditions [START_REF] Sarlet | A geometrical framework for the study of nonholonomic Lagrangian systems[END_REF] and [START_REF] Sarlet | A geometrical framework for the study of nonholonomic Lagrangian systems II[END_REF] ensure the rolling of the ring V on the terrain. The sense of second two conditions is immediately clear from two facts: the velocity V = ( Ẋ, 0, Ż) is parallel with the tangent plane to the terrain profile, and for rolling without slipping it holds V = R β, β being the angular speed of V. Let us perform a derivation of constraints ( 15) and ( 16) (see figure [START_REF] Janová | Geometrická teorie mechanických soustav s neholonomními vazbami (Geometrical theory of mechanical systems with nonholonomic constraints[END_REF]). The components of the relative velocity vector v 1 are

v 1 = ( ẋ1 , 0, ż1 ) = v 1 (cos χ, 0, sin χ),
where the speed v 1 is a function of ψ and β. The angle χ determines the location of the small cylinder on the interior face of the ring (see figure [START_REF] Janová | Geometrická teorie mechanických soustav s neholonomními vazbami (Geometrical theory of mechanical systems with nonholonomic constraints[END_REF]). The cylinder W rolls without slipping and thus it holds

v 1 = (R -r) χ, i.e. ẋ1 = (R -r) χ cos χ, ż1 = (R -r) χ sin χ. ( 19 
)
Figure [START_REF] Janová | Geometrická teorie mechanických soustav s neholonomními vazbami (Geometrical theory of mechanical systems with nonholonomic constraints[END_REF] shows an additional angle δ, which determines a total rotation angle of the cylinder W with respect to the ring V. It holds

δ = ψ + χ, rδ = R(β + χ) and then χ = r R -r ψ - R R -r β. ( 20 
)
Denoting

C = cos χ = cos r R -r ψ - R R -r β , S = sin χ = sin r R -r ψ - R R -r β . ( 21 
)
and substituting χ given by [START_REF] Udwadia | On the foundations of analytical dynamics[END_REF] into equations [START_REF] Udwadia | Equations of motion for mechanical systems: a unified approach[END_REF] we have

ẋ1 = (r ψ -R β) C, ż1 = (r ψ -R β) S. (22) 
Substituting ( 22) into ( 15) and ( 16) and adding conditions ( 17) and ( 18) we get the constraint equations in the form:

ẋ ≡ g 1 = (r ψ -R β) C + R β cos ϕ, ż ≡ g 2 = (r ψ -R β) S + R β sin ϕ, ( 23 
) Ẋ ≡ g 3 = R β cos ϕ, Ż ≡ g 4 = R β sin ϕ.
These four nonholonomic conditions define the constraint submanifold Q of dimension dimQ = 9. The constraint [START_REF] Krupková | The relativistic particle as a mechanical system with nonlinear constraints[END_REF] obeys conditions [START_REF] Ch | Reduction of constrained mechanical systems and stability of relative equilibria[END_REF], i.e. it is semiholonomic. The geometric theory enables us to solve such a problem immediately, without integrating the constraint.

A c c e p t e d m
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Constrained mechanical system -reduced equations

The geometrical approach described in Sec. 2, eqs. ( 8), ( 9), [START_REF] Krupková | Higher order mechanical systems with constraints[END_REF], applied to our problem leads to the constrained mechanical system [α Q ] related to the unconstrained mechanical system [α].

The class [α Q ] is generated e.g. by the following representative:

α Q = Ā1 ω 1 ∧ dt + Ā2 ω 2 ∧ dt + B11 ω 1 ∧ d ψ + B22 ω 2 ∧ d β + B12 ω 1 ∧ d β + B21 ω 2 ∧ d ψ, where Ā1 = -mgr S -mSrR 2 β2 cos ϕ ∂ϕ ∂X + sin ϕ ∂ϕ ∂Z , Ā2 = gR{m S -(M + m) sin ϕ} + + mSR (r ψ -R β) 2 R -r + R 2 β2 cos ϕ ∂ϕ ∂X + sin ϕ ∂ϕ ∂Z , B11 = -mr 2 -J m , B22 = -MR 2 -J M -2mR 2 (1 -C), ( 24 
) B12 = B21 = mrR(1 -C),
and quantities C = cos χ, S = sin χ are given by relations [START_REF] Casey | Geometrical derivation of Lagrange's equations for a system of rigid bodies Math[END_REF], while C = cos (χ + ϕ), S = sin (χ + ϕ).

The reduced equations are of the form:

( Ā1 + B11 ψ + B12 β) • J 2 γ = 0, ( Ā2 + B22 β + B21 ψ) • J 2 γ = 0 ẋ -(r ψ -R β) C -R β cos ϕ = 0, (25) 
ż

-(r ψ -R β) S -R β sin ϕ = 0, Ẋ -R β cos ϕ = 0, Ż -R β sin ϕ = 0.
There is no analytical solution of reduced equations of motion, in general situation.

Constrained mechanical system -deformed equations

Deformed equations are obtained by the physical approach described in Sec. 2 and based on Chetaev-type constraint forces. Such a force is in our case given by Φ = Φ 1 + Φ 2 + Φ 3 + Φ 4 , where

Φ 1 = μ 1 (-r C, R C -R cos ϕ, 1, 0, 0, 0), Φ 2 = μ 2 (-r S, R S -R sin ϕ, 0, 1, 0, 0), Φ 3 = μ 3 (0, -R cos ϕ, 0, 0, 1, 0), Φ 4 = μ 4 (0, -R sin ϕ, 0, 0, 0, 1).
Deformed equations of motion are: 

-J m ψ + μ 1 r C + μ 2 r S = 0, -J M β -μ 1 R C -R cos ϕ - -μ 2 R S -R sin ϕ + μ 3 R cos ϕ + μ 4 R sin ϕ = 0, -mẍ -μ 1 = 0, -mz -mg -μ 2 = 0, ( 26 
) -M Ẍ -μ 3 = 0, -M Z -Mg -μ 4 = 0.
(0) = 0 x(0) = √ 0.51(Q -R), z(0) = 0.7(R -Q) -(R -r), X(0) = √ 0.51(Q -R), Z(0) = 0.7(R -Q), ψ(0) = 0, β(0) = 0, ψ(0) = 0, β(0) = 0.
The first set of initial conditions means that at the time t = 0s the small cylinder W lies at the bottom of the ring V, and V lies at the bottom of the fixed ring and begins to move left. The second set corresponds to the fact that at the time t = 0s the small cylinder W lies at the bottom of the ring V, and V is sticked on the right side of the hollow and at the time t = 0s is unsticked.

Numerical solutions was made with help of the program Maple. The results for individual choices of initial conditions are presented in figures 5, 6, 7 and 8, 9, 10. 

Conclusion

The mechanical problem of general coupled rolling of ring and cylinder itself enlarges the "reservoir" of solved non-linear mechanical problems. Moreover, the presented results show the effectiveness of the geometrical theory [START_REF] Krupková | Mechanical systems with nonholonomic constraints[END_REF] of nonholonomic constraints for formulating equations of motion of concrete nonholonomic mechanical systems with constraints based on the assumption of rolling without slipping. For semiholonomic (integrable) constraints an advantage of the theory lies also in the possibility to include the constraint directly into the equations of motion. Then it appears that the model of Chetaev-type forces is appropriate for describing the studied type of the constraint from the point of view of physics. 
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 546 Figure 5: Numerical solution for initial conditions (a), X(t) and x(t)
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 7789 Figure 7: Numerical solution for initial conditions (a), β(t) a ψ(t)
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 10 Figure 10: Numerical solution for initial conditions (b), β(t) a ψ(t)
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From the physical point of view it is evident that Chetaev forces would have the character of normal stress forces and statical frictional forces. Let us write down Newton equations of motion for completeness.

Let us denote N = (N x , N y , N z ) and -N = (-N x , -N y , -N z ) the sum of statical frictional and stress forces acting in the contact point on cylinder W and V, respectively. Let P = (P x , P y , P z ) is the sum of stress and statical frictional forces of the terrain acting on V.

We require N y = 0, P y = 0. Let us denote M W the torque of the force N with respect to center of mass of W and M V1 and M V2 torques of forces -N and P , respectively, with respect to center of mass of V. Denoting r = r( S, 0, -C), R 2 = R(sin ϕ, 0,cos ϕ) we have

Taking into account that Y = y = const, we obtain corresponding Newton equations:

The constraint conditions are the same as in Sec. 3.3, i.e. ( 15), ( 16), ( 17), [START_REF] Sarlet | A geometrical framework for the study of nonholonomic Lagrangian systems II[END_REF]. Comparing the obtained Newton equations with the system of deformed equations of motion [START_REF] Krupková | Partial differential equations with differential constraints[END_REF] we can see that μ 1 = -N x , μ 2 = -N z , μ 3 = N x -P x , μ 4 = N z -P z . Hence Chetaev constraint force has the meaning of the generalized physical forces (i.e. forces and torques).

Numerical solution of reduced equations of motion

Suppose that the terrain profile is cylindrical, i.e. the body V can roll inside a grater fixed ring with radius Q. The axes of all cylinders are parallel. Let the axis of the fixed cylinder go through coordinate origin. Then it holds

In such a case the reduced equations take the form [START_REF] Czudková | Non-holonomic mechanical systems and variational principle[END_REF] with

Quantities C = cos χ, S = sin χ are again given by relations [START_REF] Casey | Geometrical derivation of Lagrange's equations for a system of rigid bodies Math[END_REF], and C = cos (χ + ϕ), S = sin (χ + ϕ), The numerical solution of reduced equations was made under following conditions:

Parameters of the mechanical system: M = 1.0kg, m = 0.1kg, R = 1.0m, r = 0.6m, Q = 6.0m.

Two cases of initial conditions (lengths in meters, time in seconds):

(a) x(0) = 0, z(0) = -Q + r, X(0) = 0, Z(0) = -Q + R, ψ(0) = 0, β(0) = 0, ψ(0) = 0, β(0) = -0.35,