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Using high-frequency vibrations and

non-linear inclusions to create metamaterials

with adjustable effective properties

B. S. Lazarov ∗ and J. J. Thomsen

Solid Mechanics, Department of Mechanical Engineering, Technical University of

Denmark, Nils Koppels Alle, Building 404, DK-2800 Kgs. Lyngby, Denmark

Abstract

We investigate how high-frequency (HF) excitation combined with strongly non-

linear elasticity may influence the effective properties for low-frequency wave propa-

gation. The HF effects are demonstrated for linear spring-mass chains with embed-

ded non-linear parts. The investigated mechanical systems can be viewed as a 1D

model of materials with non-linear inclusions. The presented analytical and numeri-

cal results show that effective material properties can be altered by establishing HF

standing waves in the non-linear regions of the chain. In addition, it is demonstrated

how true static displacements and forces can be created by using HF excitation with

structures having asymmetric displacement-force characteristics.
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1 Introduction

The purpose of this article is to investigate some of the possibilities to change

the effective material or structural properties for low frequency (LF) wave

propagation by using high-frequency (HF) external excitation combined with

strong non-linear elastic material behavior. The ability to create dynamical

changes in the materials can be utilized in many problems in structural and

mechanical engineering, e.g., creating elasto-mechanical filters, waveguides, ul-

trasonic devices, opto-mechanical components, sound and vibration isolation,

health monitoring. In addition studying further the HF effects of non-linear

systems can lead to an improved and safer design of mechanical systems and

components.

General HF effects in non-linear systems have been studied analytically, nu-

merically and experimentally in many scientific works, e.g., [2–4,6,9,10,12,14,15].

HF excitation can change various aspects of the system behavior. This work

utilizes the so-called stiffening effect [4], which results in changes of the effec-

tive stiffness for low frequency excitation and the natural frequencies of the

system. It can also influence the equilibrium states and their stability. A well

known example of the stiffening effect is the upside-down equilibrium stabi-

lization of the Kapitza pendulum on a vibrating support [16], which belongs

to the class of parametrically excited systems. The effects of HF parametric

excitation are well understood, and have been studied analytically and numer-

ically in many articles [12,6,4]. Experimental verification for various physical

systems is presented in [13,20,3,5]. Stiffening can also be observed in externally

excited non-linear systems. Analytical and numerical results for calculating the

Thomsen).
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averaged motion of an externally excited system are presented in [8]. A major

part of the references cited above addresses single degree of freedom systems.

HF effects for a general class of multi degree of freedom (MDOF) systems have

been studied in [2,4], and later for continuous systems in [3].

It has been suggested in recent works [2,17,7] to use modulation of the struc-

tural/material characteristics in space and time, in order to create materials

and structures with adjustable effective properties. Such materials are known

as dynamic materials [2,17]. In [19,18] HF parametric excitation has been

applied to control the effective material properties. In [7] by assuming the ex-

istence of a HF standing wave in a continuous non-linear systems, the effective

material properties for the LF motion (slow motion) are derived analytically.

Compared to the approaches in [19,18], where distributed actuation and con-

trol are used, the advantage of the approach in [7] is the use of a single excita-

tion source for generating the HF field. However, in contrast to the parametric

case, where the stiffness change depends on the frequency of the excitation,

for the externally excited non-linear system it does not depend on the fre-

quency of the excitation, and is proportional to the response amplitude and

the strength of the non-linearity. If the non-linearities are cubic, the change in

the effective material stiffness is predicted to be proportional to the square of

the HF response amplitude. The same effect for undamped Fermi-Pasta-Ulam

chains has also been predicted analytically in [24].

The stiffening can be amplified by increasing the amplitude of the HF standing

wave and/or by increasing the strength of the non-linearity. Establishing stable

finite amplitude waves in a non-linear medium is not a trivial matter in the

general case. Numerical and analytical studies of non-linear chains [21,22]

show, that the energy level per particle necessary to start chaotic behavior

3



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

increases with fewer particles in the chain, and thus stable standing waves are

easier to establish in shorter chains. This property, combined with the fact that

the waves with frequencies above a given threshold cannot propagate along

linear chains [1], is used in the present work, in order to create a HF standing

wave in a finite non-linear region around the location of the HF excitation. In

this way some of the problems related to stability of the HF response can be

avoided.

The system considered in the present study is shown in Figure 1. Short non-

linear chains shown with bold lines are embedded in a longer linear one, and

the HF excitation is explicitly applied in a non-parametric way in the regions

with non-linearities. The HF frequency is within the stop band of the linear

chain, and the HF response is localized around the location of the applied

excitation.

Various asymptotic methods have been used in the past, to analyze the HF

effects in linear and non-linear systems, e.g. [2–4,9,15]. The Method of Direct

Separation of Motion (MDSM) is utilized in this article. The method originates

from the work [16]. Later it was generalized by Blekhman [2], and is utilized

in [3–5,7,8,12,13,15] . The main assumption in MDSM is that the motion can

be represented as a superposition of fast and slow oscillations. The equations

for the slow motion are obtained by averaging.

The article is separated into two major parts - theoretical analysis and numer-

ical testing. After introducing the equations of motion for the chain shown in

Figure 1, the MDSM is used to obtain the equations governing the slow and

fast motions. The obtained analytical results and predictions for the stiffening

effect are tested later by numerical simulations.
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ujuj−1 uj+1

fHF fHF

Fig. 1. Spring mass system.

2 Mechanical model

The considered system, shown in Figure 1, consists of oscillators with mass

m, which are interconnected with springs. The oscillators are labeled with

an index j, and their displacements around the static equilibrium position

are denoted with ũj. The spring restoring forces are derived from a potential

which depends only on the relative distance between the neighbor masses. The

equation of motion for the jth mass can be written as:

m
d2ũj

dt̃2
+ c̃

(

2
dũj

dt̃
− dũj−1

dt̃
− dũj+1

dt̃

)

+ k
∂Ṽ

∂ũj

= f̃j(t) (1)

where f̃j(t) is the external excitation applied to mass j, and c is a linear viscous

damping coefficient, which is assumed to be small. By introducing normalized

time t = ω̃t̃, where ω̃ =
√

k/m, (1) becomes:

d2uj

dt2
+ c

(

2
duj

dt
− duj−1

dt
− duj+1

dt

)

+
∂V

∂uj

= fj(t) (2)

For a system with N masses, the equations of motion can be written in a

matrix form as:

d2u

dt2
+ C

du

dt
+ Φ (u) = f(t) (3)

where u(t) ∈ RN is a vector with an element j equal to the displacement of the

jth mass, and Φ (u) is a vector function of the displacements with elements

Φj = ∂V (u)/∂uj . The potential V is assumed to be in the form of power
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series:

V =
m
∑

k=1

N−1
∑

j=1

ak,j

k + 1
rj (u)k+1 + constant (4)

so that:

Φj =
∂V (u)

∂uj

=
m
∑

k=1

[

ak,j−1rj−1 (u)k − ak,jrj (u)k
]

, j = 1 . . .N − 1 (5)

where rj(u) = uj+1 − uj, u0 = 0 and uN = 0. The sum
∑m

k=1 ak,j−1rj−1 (u)k

represents the restoring force of the spring interconnecting masses j and j−1.

The external excitation f(t) is assumed to consist of low-frequency and zero

mean high frequency components:

f (ωt,Ωt) = fLF (ωt) + fHF (ωt,Ωt) ,Ω >> ω (6)

where the high frequency Ω is much larger than the low one ω. In addition,

the HF component is assumed to fulfill the following condition:

∫ τ0+2π

τ0

fHF (ts, τ) dτ = 0 (7)

where τ = Ωt and ts = ωt will be called fast and slow times respectively, and

ts is assumed independent from τ in the integration.

3 Approximate equations governing slow and fast motions

The focus is on the LF system response, and on how the HF excitation affects

the relevant system properties. Approximate equations governing the slow

motion are obtained by using the Method of Direct Separation of Motion

(MDSM) [2]. The solution of (3)-(7) is assumed to be in the form:

u = z (ts) +ψ (ts, τ) (8)
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where z is the slow or the averaged motion of the system and ψ is a fast

oscillatory function. The function ψ (ts, τ) is assumed to be periodic in τ with

period 2π, and is required to have a zero fast time average:

〈ψ (ts, τ)〉τ =
1

2π

∫ 2π

0
ψ(ts, τ) dτ = 0 (9)

By averaging (8) and using (9), the averaged solution 〈u (ts, τ)〉τ is equal to

the slow motion function z (ts). The averaging 〈·〉τ is a linear operator, and

given that (9) is fulfilled, the following relations are fulfilled as well:

〈ψ(ts, τ)
′〉τ = 〈ψ(ts, τ)

′′〉τ =
〈

ψ̇(ts, τ)
′

〉

τ
= 0 (10)

where {·}′ denotes differentiation with respect to τ , and ˙{·} denotes differen-

tiation with respect to ts.

By inserting (8) and (6) into the equations of motion (3), and averaging with

respect to the fast time, the equations for the slow motion are obtained in the

following form:

ω2z̈ + ωCż + 〈Φ (z +ψ)〉τ = fLF (ts) (11)

The expression for the averaged restoring force 〈Φ (z +ψ)〉τ in (11) is ob-

tained by using (5), and by expanding the result on LF and HF displacement

differences:

〈Φj〉τ = Φj (z) + 〈Φj (ψ)〉
τ

+
m−1
∑

k=1

m
∑

p=k+1

[

ck,p,j−1rj−1 (z)k + ck,p,jrj (z)k
]

(12)

ck,p,j =

(

p

k

)

ap,j

〈

rj (ψ)p−k
〉

τ
(13)
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Eq. (12) can also be written in the following form:

〈Φj〉τ = Φeq
j (z) + 〈Φj (ψ)〉

τ
(14)

Φeq
j (z) =

m
∑

k=1

[

aeq
k,j−1rj−1 (z)k + aeq

k,jrj (z)k
]

(15)

aeq
k,j = ak,j +

m
∑

p=k+1

ap,j

(

p

k

)

〈

rj (ψ)p−k
〉

τ
(16)

In the general case the term 〈Φj (ψ)〉
τ
6= 0 and on average the HF response

correspond to additional static forces in the equations governing the slow mo-

tion. The HF motion contributes to the effective stiffness and the coefficients

in front of all powers of rj (z). An important case can be distinguished when

the restoring forces of the springs are odd functions with respect to the relative

displacements rj, and the differences rj (ψ) as functions of the fast time are

odd functions with respect to a point in the interval (τ, τ + 2π]. In this case

the average of the odd powers
〈

rj (ψ)2k+1
〉

τ
, k = 0, 1, 2, . . . , is zero, as well as

the resulting coefficients in front of the even powers of ri(z). The equivalent

static force 〈Φj(ψ)〉
τ

also has a zero value. The slow motion is similar to the

response of the system without HF excitation.

An estimate of the HF response ψ is necessary, in order to evaluate the co-

efficients in the equations governing the slow system motion. The equations

governing the HF motion are obtained by inserting (8) into (3) and subtracting

(11), and read as follows:

dψ

dt2
+ C

dψ

dt
+ Φ (ψ) − 〈Φ (ψ)〉τ − V(ts) = fHF (ts, τ) (17)

where V(ts) represents the last two sums in (12). The two systems of integro-

differential equations (17) and (11) describe the motion of the original system

completely. However, their solution is not easier than the original equations

given by (3). Further simplifications can be achieved by making assumptions
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for the magnitude of the response. By inserting the following two expressions

for the fast motion derivatives:

d

dt
ψ = ωψ̇(ts, τ) + Ωψ′(ts, τ) (18)

d2

dt2
ψ = ω2ψ̈(ts, τ) + 2Ωωψ̇

′

(ts, τ) + Ω2ψ′′(ts, τ) (19)

into (17), dividing by Ω2, and rearranging the terms, the following equation

is obtained:

ψ′′+
1

Ω
Cψ′+

1

Ω2
[Φ (ψ) − 〈Φ (ψ)〉τ ]+

ω2

Ω2
ψ̈+2

ω

Ω
ψ̇

′

+
ω

Ω2
Cψ̇− 1

Ω2
V =

1

Ω2
fHF (ts, τ)

(20)

The order of the derivatives of the fast motion with respect to the slow and

the fast time is assumed to be the same:

O
(

ψ̇
)

∼ O (ψ′) ∼ O
(

ψ̇
′
)

∼ O
(

ψ̈
)

∼ O (ψ) (21)

Waves with frequency ω propagating along the chain have a relatively long

wave length compared to a fast wave with frequency Ω. Therefore the differ-

ences rj (z) and their powers have relatively small values, and thus the term

V (ts) /Ω
2 is assumed to be small. For a given response this assumption and

(21) can be checked a posteriori. Using the above arguments and the initial

assumption that Ω ≫ ω, the following simplified system of equations for the

fast motion is obtained:

ψ′′ + +
1

Ω
Cψ′ +

1

Ω2
[Φ (ψ) − 〈Φ (ψ)〉τ ] +O

(

ω

Ω

)

=
1

Ω2
fHF (ts, τ) (22)

In the case when Ω2 is much larger than the stiffness-to-mass ratio of the

springs interconnecting the masses, and there is a lack of resonance effects,

the damping and the restoring forces in (22) can be neglected, and the so-called

9
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inertial approximation [2] for the HF motion is obtained:

ψ′′ =
1

Ω2
fHF (ts, τ) (23)

A discussion on the applicability of the inertial approximation and a com-

parison with the results obtained by using (22) is given in Section 4 and is

discussed more generally in [5].

3.1 Example 1: Linear plus cubic non-linearity

Here the expression for the restoring force for mass j has the following form:

Φc
j (u) =

j
∑

i=j−1

a1,iri (u) + a3,ir
3
i (u) (24)

The resulting mechanical model corresponds to the Fermi-Pasta-Ulam chain

used in computational physics, e.g. [22]. The equivalent restoring force for the

equation governing the slow motion is obtained by using (14):

〈

Φc
j (u)

〉

τ
=
〈

Φc
j (ψ)

〉

τ
+

j
∑

i=j−1

aeq
1,iri (z) + aeq

3,ir
3
i (z) (25)

aeq
1,i = a1,i + 3a3,i

〈

r2
i (ψ)

〉

τ
(26)

aeq
3,i = a3,i (27)

It is assumed that (9) is fulfilled, and hence the coefficients in front of the

even powers of rj (z) will be zero. As it appears, for the slow motion, the HF

response results in an increase or a decrease of the linear stiffness of the springs

between the masses, depending on the sign of a3,i. The change is proportional

to the degree of the non-linearity and the square of the HF amplitude. Similar

result for a continuous system are obtained in [7]. The high order non-linear

terms in the restoring force are not affected.
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3.2 Example 2: Essentially cubic non-linearity

Here the coefficient a1,i in (24) is zero, and the equivalent coefficient (26)

becomes:

aeq
1,i = 3a3,i

〈

r2
i (ψ)

〉

τ
(28)

The HF response in this case results in a significant change of the system be-

havior. Slow waves with small amplitudes will propagate along the HF excited

chain in a similar way as in a linear chain with spring stiffness given by (28).

3.3 Example 3: Asymmetric non-linearity

Here the restoring force compared to (24) is extended with an even order

non-linear term and an additional fifth order term.

Φj (u) =
j
∑

i=j−1

a1,iri (u) + a2,ir
2
i (u) + a3,ir

3
i (u) + a5,ir

5
i (u) (29)

The equivalent coefficients in (15) become as follows:

aeq
1,i = a1,i + 3a3,i

〈

r2
i (ψ)

〉

τ
+ 5a5,i

〈

r4
i (ψ)

〉

τ
(30)

aeq
2,i = a2,j + 10a5,j

〈

r3
i (ψ)

〉

τ
(31)

aeq
3,i = a3,i + 10a5,i

〈

r2
i (ψ)

〉

τ
(32)

The stiffening effect compared to Example 1 is stronger for a HF response with

the same amplitude, due to the additional positive term in (31). In addition,

due to the even power in the restoring force, the average 〈Ψ (ψ)〉 6= 0 and

the HF motion will result in an additional equivalent static force for the slow

motion.
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3.4 Analytical predictions - summary

The analytical derivations show, that explicitly applied HF external excitation

causes changes in the effective stiffness for a LF wave propagation. The stiffness

change is proportional to the amplitude of the relative displacements and to

the strength of the nonlinearity. In chains with springs having essentially non-

linear behavior, the HF excitation adds effective linear stiffness for the LF

motion. The HF effects in nonlinear chains rely on the establishment of a stable

HF periodic motion with a large amplitude of the relative displacements.

4 Numerical simulations and examples

Numerical simulations are performed with a finite spring-mass chain, using

standard numerical integration routines from the SUNDIALS library [23], to

test the above analytical predictions. Alteration of the chain stiffness leads to

a change of the wave velocity along it. The stiffening effect can be observed by

registration of these changes for a system with applied HF excitation. The slow

motion has a relatively large wave length, and the contribution of the high-

order displacement differences to the restoring force can be neglected. Thus,

the wave propagation in the chain with a HF excitation can be compared

with the wave propagation in an equivalent linear system with parameters

estimated by using (16). For shorter waves with large amplitude it might be

necessary to take into account the high order terms in the equivalent restoring

force for the slow motion, however these cases are outside of the scope of this

article. The numerical tests are performed for stiffening non-linearity. In the

case of a softening, a decrease of the wave velocity can be observed. Depending

12
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on the HF response amplitude and the type of the softening non-linearity, the

HF excitation may also result in destabilization of the equilibrium position.

The simplest model to illustrate the predicted effects, from the numerical point

of view, would be a chain with repeatable non-linear springs and masses. Such

a system possesses rich dynamic behavior with multiple static and dynamic

equilibrium positions. The system response can easily approach chaotic regime.

It is demonstrated in [22,21], that the energy per mass, necessary for obtaining

chaotic behavior, is larger for shorter chains, i.e., for shorter chains a larger

relative displacement amplitude is necessary, to observe chaotic motion. There-

fore, high energy stable oscillatory response can be established by localizing

the HF response in short non-linear parts of the chain. Waves can propagate

unattenuated along linear chains within specific bands of frequencies called

propagation or pass bands, and attenuate within bands of frequencies called

stop bands, attenuation zones or band gaps [1]. By embedding the short non-

linear chain in a longer linear one and applying HF excitation with a frequency

within the stop bands of the linear chain, the HF response can be localized in

the non-linear inclusions.

The investigated system is a chain with 2000 masses. At both ends the dis-

placements are set to be zero. In every cell of twenty springs and twenty masses,

one pair of neighboring springs is elastically nonlinear, while the other springs

are linear (Figure 2). The HF response is generated by harmonic excitation

with amplitude raising slowly from zero to the final value AHF .

fHF = (1 − exp(t/C))AHF sin (Ωt) (33)

Initially, large damping is introduced in the system, as dashpots between the

13
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fHF fHF

Cell 1 Cell 2

fHF

Fig. 2. Part of spring mass system with non-linear inclusions.

masses, and the damping coefficients decrease slowly to a prescribed small

value with the same rate as the HF amplitude. In this way the transient HF

response is damped faster, and the contribution of the damping forces to the

dynamic equilibrium, when a steady state is reached, is small. The fast decay

of the transients helps the system to reach a steady state oscillatory motion,

rather than a complex quasiperiodic or chaotic response. Once a steady state

due to the HF excitation is reached, a Gaussian modulated pulse is generated

by prescribing the displacement at the left end of the chain:

u0(t) = exp (−α (t− tg))Aw cos (ωt− tg) (34)

where tg = 3500+3T , T = 2π/ω, Aw is the pulse amplitude, and ω is the slow

frequency. The wave velocity for the slow motion can be estimated by finding

the displacement maximum 〈uj〉max and 〈ui〉max, and by using the following

expression:

vw =
j − i

tj − ti
(35)

where tj and ti are the time instances, when mass j and mass i reach the max-

imum value of the displacements. For the equivalent linear undamped system

the group wave velocity can be calculated as a derivative of the dispersion

relation ν (ω) with respect to ω, where ν is the phase velocity of a harmonic

wave with frequency ω [1].

14



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1000  1200  1400  1600  1800  2000

u

n

Fig. 3. Plots of the displacement response for part of a chain with 2000 masses at

time t = 6400.4 with applied HF excitation (solid line) and without HF excitation

(dashed line).

4.1 Inclusions with linear plus cubic non-linear behavior

The stiffening effect is illustrated in Figure 3. Snapshots of the spatial dis-

placements of two chains, with and without HF excitation, are presented. A

Gaussian modulated pulse with frequency ω = 0.025 is generated by using

(34) in both chains. The pulse in the chain with the HF excitation propagates

faster than the one in a chain without it. The small spikes in the system with

HF excitation are due to the localized HF response in the non-linear inclusions.

A plot of the wave velocity versus the amplitude of the HF excitation, for a

chain with non-linear inclusions with restoring force given by (24), is shown in

Figure 4. An increase of the velocity, and hence, an increase of the equivalent

stiffness is observed, which is in line with the analytical prediction. The ve-

locity obtained by numerical simulations for the non-linear system coincides

very well with the one obtained from numerical simulations and analytical

calculations for the equivalent linear system. The equivalent parameters are

estimated by using (26) with HF response obtained from the numerical simu-

15



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0.73

 0.72

 0.71

 0.7

 0  0.1  0.2  0.3  0.4  0.5  0.6
v w

AHF

Fig. 4. Plots of the group wave velocity for a pulse with a base frequency ω = 0.025

in a chain with two non-linear inclusions on every 20 springs, and HF forces (ampli-

tude AHF , frequency Ω = π) applied on the masses between the neighbor non-linear

springs. The linear springs have stiffness a0 = 0.5, and the non-linear springs restor-

ing forces have parameters a1 = 0.4 and a3 = 0.4γ, where γ = 200 . The solid line is

obtained by numerical simulations with the non-linear inclusions, the dashed line -

by numerical simulations with the equivalent linear system obtained by replacement

of the non-linear springs with equivalent linear ones. The dotted line is obtained for

the equivalent system by using analytical prediction for the undamped system.

lations.

If the restoring and damping forces in (22) can be considered to be small

compared to the inertial force, the inertial approximation (23) for the HF

motion is obtained. An estimate of the wave velocity by using the inertial

approximation and numerical simulation with the non-linear system, is shown

in Figure 5. As the HF frequency increases, the inertial approximation gives

better results. For lower frequencies the estimation starts to deviate from

the numerical simulations when the amplitude of the excitation increases.

Increasing the amplitude of the excitation is leading to an increase of the

amplitude of the HF response, and thus, the restoring force term in (23) is

having large contribution to the force balance. Therefore, for highly non-linear
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Fig. 5. Comparison of the wave speed obtained by using inertial approximation and

numerical simulations for the same system as in Figure 4, and HF excitation with

frequency Ω = 1.5π, 1.8π, 2π shown with solid, dashed and dotted lines respectively.

The values obtained by the inertial approximation are shown with point markers.

systems, the inertial approximation will not lead to a good prediction, even

in the case when resonance effects are avoided. For weakly non-linear systems

it leads to very good results.

The wave speed in chains with inclusions having different strengths of the

non-linearity is shown in Figure 6. As the inertial term is dominant in the

equations of motion governing the HF motion, the increase of the excitation

amplitude leads to an increase of the amplitude of the HF motion, therefore,

stronger non-linearity will lead to a higher equivalent stiffness and a higher

wave speed, as shown in Figure 6.

4.2 Inclusions with essential non-linearity

HF excitation in combination with strong non-linearity can lead to qualitative

changes. If the inclusions in the chain are essentially non-linear (a1 = 0), it is

observed that a wave propagating along the chain will approach a shock wave

after passing through a few non-linear inclusions. If a HF excitation is applied,
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Fig. 6. The left plot shows the group wave velocity for pulse with base frequency

ω = 0.025 obtained by numerical simulation for the same system as in Figure 4

with HF excitation frequency Ω = π, and γ = 100, 50, 25, 10 for plots 1,2,3 and 4.

The second plot shows the equivalent stiffness increase of the non-linear spring with

respect to the amplitude of the excitation AHF .

the HF motion generates an equivalent linear stiffness, as shown by (28), and

the chain becomes transparent for long waves. Comparison of the wave velocity

for an equivalent linear system and numerical simulations with the non-linear

system, is shown in Figure 7. The amplitude of the generated long wave in this

case is Aw = 0.1. The system response does not show any unstable behavior

in the considered time/space interval, and the results obtained by using the

equivalent linear system coincide very well with those obtained by numerical

simulations for the non-linear system. The equivalent stiffness in this case can

be significantly altered due to the strong non-linearity.

4.3 Inclusions with high-order non-linearities

The results presented in Section 3 and derived with the polynomial form of

the potential are valid for a much wider class of systems. The equations (4)

and (5) can be viewed as a Taylor expansion of the actual potential or the

18
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Fig. 7. The left plot shows the group wave velocity for a pulse with base frequency

ω = 0.025 in a chain with two essentially non-linear inclusions on every 20 springs

and HF force (amplitude AHF , frequency Ω = π) applied on the mass between

the two non-linear springs. The non-linear springs have the following parameters -

a1 = 0.0 and a3 = 0.5γ, where γ = 200. The solid line is obtained by numerical

simulations with the non-linear system, the dashed line - by numerical simulations

with the equivalent linear system, and the dotted line - by analytical prediction for

the undamped system. The second plot shows the equivalent linear stiffness as a

function of the excitation amplitude.

restoring force. The wave velocity versus the amplitude of the HF excitation

for a system with 2 non-linear inclusions on every twenty springs are shown in

Figure 8. The restoring forces of the non-linear springs for the three presented

cases are given as:

fp =
a1

2n

(

1

(1 − r(u))n − 1

(1 + r(u))n

)

(36)

fe =
a1

2β

((

1 − e−βr(u)
)

e−βr(u) −
(

1 − eβr(u)
)

eβr(u)
)

(37)

fc = a1r(u) + a1
7β2

6
r(u)3 (38)

The values of the parameters β and n are chosen so that the coefficients in front

of the third power in the Taylor expansion are equal. The expression for the

cubic restoring force (38) is equal to the first two terms of the expansion into
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Taylor series of (37). For small amplitudes of the HF response the equivalent

wave speed in the chain is almost the same for all three restoring forces. As

the HF amplitude increases, the high order averaged terms start to have a

higher contribution to the equivalent coefficients, e.g. (30), and the equivalent

system becomes stiffer for stronger non-linearity.

Although the results demonstrated so far are for short non-linear embedded

chains consisting of two non-linear springs, the analytical predictions in Sec-

tion 3 are valid for longer non-linear inclusions, as long as the HF motion is

periodic or quasiperiodic, and the condition given by (9) is fulfilled. The wave

velocity versus the amplitude of the HF excitation in a chain with four and

five elements in the non-liner inclusion on every twenty springs is shown in

Figure 9. The non-linear restoring force of the spring is modeled by using (37)

with β =
√

66, and the equivalent linear stiffness is estimated by using (38)

and (26). The fast time average is estimated by numerical simulations. The

HF forces are applied to all masses in the non-linear inclusion with alternating

signs, in order to create higher displacement differences.

4.4 Generating a static force by means of HF vibrations

According to the analytical predictions in Section 3, a HF response combined

with elastic non-linearity can generate an equivalent static force, if the periodic

motion is not an odd function with respect to any point in the time interval

(τ, τ + 2π], or if the spring restoring forces are asymmetric with respect to

their static equilibrium. The solution to (3), when the external excitation is

a function of the fast time τ only, is sought in the form u(t) = z + ψ(τ). For

a prescribed HF response, which fulfills the condition given by (9), the new,
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Fig. 8. Plots of the group wave velocity for a pulse with a base frequency ω = 0.025 in

a chain with two non-linear inclusions on every 20 springs and a HF force (amplitude

AHF , frequency Ω = π) applied on the mass between two non-linear springs. The

restoring force f of the non-linear springs is shown in the second plot as a function

of the relative displacements r(u). Solid, dashed and dotted lines correspond to the

restoring forces given by equations (36), (37) and (38) respectively, with parameters

n = 12 and β =
√

26
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Fig. 9. Plots of the group wave velocity for a pulse with base frequency ω = 0.025,

in a chain with 3 (left) and 4(right) non-linear inclusions on every 20 springs, and

HF force (amplitude AHF , frequency Ω = π) applied to all masses between the

non-linear springs. The solid line shows the results obtained by numerical simula-

tions and the dashed line - the wave speed calculated analytically for the equivalent

linear system.
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Fig. 10. Spring mass system used for generating static force by means of HF exci-

tation.

equivalent static equilibrium position can be obtained by solving the following

algebraic equation for z.

Ψeq (z) + 〈Ψ (ψ)〉τ = 0 (39)

The possibility to generate an equivalent static force and a new equivalent

static equilibrium position, is verified here by using numerical simulations.

The investigated chain, shown in Figure 10, consists of two linear parts with

9 springs and in the middle, 2 non-linear springs shown in bold. The central

mass is excited by a harmonic HF force with a frequency in the stop band

of the chain, i.e., above the highest linear natural frequency. The stationary

HF response is localized around the location of the HF excitation, and the

response of the masses far from the excitation is non oscillatory. Therefore,

the new equilibrium is a true static equilibrium, and zero mean HF oscillatory

motion can be used for generating true static forces and displacements. It

should be pointed out that in the case of sub-harmonic resonance, the external

HF excitation may generate response within the pass band of the chain, and

then the new equilibrium will be static only in the average sense.

The restoring force for the non-linear springs is derived from the widely used

in particle simulations Morse potential (e.g. [21]):

VM (r) =
a1

2β2

(

1 − e−βr
)2

(40)
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with corresponding restoring force

fM (r) =
dVM (r)

dr
=
a1

β
e−βr

(

1 − e−βr
)

(41)

The strength of the non-linearity is controlled by the parameter β, and the

term 1/2β2 scales (40), so that the slope at r = 0 of the restoring spring

force fM (r) is a1. The numerical simulations are performed with excitation

frequency π and a restoring force for the non-linear springs given by (41). The

resulting pre-stressing force in the linear part of the system is compared to the

one obtained from the solution of (39) with equivalent parameters evaluated

for the Taylor expansion of (41) given as:

fM (r) ≈ a1

[

r − 3β

2
r2 +

7β2

6
r3 − 5β3

8
r4 +

31β4

120
r5

]

+O
(

r6
)

(42)

The time averaged powers of the HF response 〈ψn〉τ are estimated from the

numerical integration. The results are shown in the first plot in Figure 11.

The amplitude of the HF response is governed mainly by the inertial term for

HF excitation. The asymmetry in the force-displacement diagram is having

relatively low influence on the amplitude of the HF motion. The pre-stressing

force depends mainly on the fast time average 〈Ψ (ψ)〉τ , and it is decreasing

with the parameter β, as the major contribution to the fast time average

comes from the even powers of the relative displacements r. This can be seen

clearly in the second plot in Figure 11, where the three lines show the results

for β = 2.5, 5.0, 10.0.

23



Acc
ep

te
d m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 0

-0.001

-0.002
 0.6 0.4 0.2 0

F

AHF

 0

-0.001

-0.002
 0.6 0.4 0.2 0

F

AHF

Fig. 11. Plots of the pre-stressing force in the linear part of the chain, shown in

Figure 10, excited by HF harmonic force with amplitude AHF and frequency π. The

solid line shows the force obtained from numerical integration, and the dashed line

the force estimated by solving (39) with equivalent coefficients estimated by using

(42) and β =
√

66. The second plot shows the pre-stressing force for β = 2.5, 5, 10

with solid, dashed and dotted lines respectively.

5 Conclusions

Some possibilities of using HF excitation to alter the LF properties of 1D

mechanical systems have been demonstrated. It is shown analytically and

numerically that for chains with nonlinearities, non-parametric HF periodic

motion causes a change of the effective stiffness and the wave speed for LF

wave propagation. The change is proportional to the amplitude of the relative

displacements and the strength of the non-linearity. A stable periodic motion

with a large amplitude of the relative displacements is established by localizing

the HF response only in parts of the chain with non-linear behavior. The

localization is achieved by embedding short non-linear chains into a linear

one, and by using HF excitations with frequency within the stop band of the

linear chain. It has also been demonstrated that there is a possibility to create

true static displacements and forces by means of HF excitation, when the
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excitation frequency is above the pass band of the discrete structure, and the

restoring non-linear spring force is asymmetric. The idea can be applied to

continuous structures by creating a stop-band structure around the non-linear

inclusion, which acts as a HF filer.

Compared to the original idea [7] for a continuous nonlinear rod, where a sin-

gle source of the HF excitation is used, here multiple excitation sources are

needed, to control the effective material properties. Investigations of the sta-

bility properties of the HF response in the nonlinear inclusions, for particular

types of nonlinearities, are necessary, in order to utilize the stiffening effect

into practical applications. The HF response depends on the HF force ampli-

tude, therefore, resonance effects can also be exploited, in order to minimize

the need for a strong HF excitation. The energy required to change the effec-

tive material properties depends on the chosen control strategy, and optimal

control solutions will be presented in subsequent articles. The presented effects

for a 1D chain with non-linear inclusions and HF excitation can be used as

a base for developing more complex one, two and three dimensional material

models. The possibility to change the stiffness by a HF excitation in parts of

the chain can also be used in the design of adjustable band-gap filters for a

LF wave propagation.
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