
HAL Id: hal-00487370
https://hal.science/hal-00487370

Submitted on 28 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Existence of a global weak solution to one model of
Compressible Primitive Equations

Mehmet Ersoy, Timack Ngom

To cite this version:
Mehmet Ersoy, Timack Ngom. Existence of a global weak solution to one model of Com-
pressible Primitive Equations. Comptes Rendus. Mathématique, 2012, 350 (1), pp.379-382.
�10.1016/j.crma.2012.04.013�. �hal-00487370�

https://hal.science/hal-00487370
https://hal.archives-ouvertes.fr


Existence of a global weak solution to one model of

Compressible Primitive Equations.

Mehmet Ersoya, Timack Ngoma,b
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Abstract

In this note, we show a global weak existence result for a two dimensionnal
Compressible Primitive Equations for atmosphere dynamics modeling.
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1. Introduction

The Primitive Equations (PEs) of the atmosphere modeling are fundamental
equations of geophysical fluid mechanics (see e.g. [5]). In the hierarchy of
models for geophysical flow, the PEs are situated between the so-called non
hydrostatic models and shallow water models. They are generally derived from
the full set of geophysical fluid equations. Owing to the difference of the depth
and length scale, the derivation consists to replace the momentum conservation
equation for the vertical velocity by the hydrostatic equation, in the same spirit
of the derivation of the shallow water equations ([2, 4]). We refer to [3] for
the mathematical formulation and existence results for these equations. We
investigate a simple version of the Compressible Primitive Equations (CPEs)
for atmosphere dynamics where we do not deal with complexe phenomena as
solar heating effects or the amount of water in the air (as done in [6]). This
model is already introduced in [1], and they obtain a global existence theorem for
weak solutions for a model, called model problem, close to the one presented in
this note. As a straightforward consequence of the existence result [1], we prove
the global solvability of the initial boundary value problem for the simplified
CPEs.
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2. A global existence result for the simplified CPEs

We start with the simplified version of CPEs which, in cartesian coordinates,
is written:







∂tρ+ ∂x(ρu) + ∂y(ρv) = 0,
∂t(ρu) + ∂x(ρu

2) + ∂y(ρuv) + ∂xp = ∂x(ν1(ρ)∂xu) + ∂y(ν2(ρ)∂yu),
∂yp = −ρg

(1)
where x, y stand for the horizontal space and vertical variable. ρ is the density,
u = (u, v) is the velocity of the fluid with u (resp. v) the horizontal (resp.
vertical) component, p is the pressure given by the equation of state:

p(ρ) = c2ρ for some given constant c, (2)

The constant c is c2 = RT where R is the specific gas constant for the air and T

the temperature, assumed constant. The turbulence viscosities are (ν1, ν2) for
the horizontal and vertical direction and is written:

ν1(t, x, y) = ν0e
−g/c2y for some given constant ν0,

ν2 any given function.
(3)

We assume that the motion of the medium occurs in a rectangular domain

Ω = {(x, y); 0 < x < l, 0 < y < h}

and we prescribe the following boundary conditions as:

u|x=0 = u|x=l = 0,
v|y=0 = v|y=h = 0,
∂yu|y=0 = ∂yu|y=h = 0

(4)

and the initial conditions as:

u|t=0 = u0(x, y),

ρ|t=0 = ξ0(x)e
−g/c2y (5)

where ξ0 is assumed to be a bounded strictly positive function:

0 < m 6 ξ0 6 M < ∞.

Then, we state the main result:

Theorem 1. Suppose that initial data (ξ0, u0) have the properties:

(ξ0, u0) ∈ W 1
2 (Ω), u0|x=0 = u0|x=l = 0.

Then ρ(t, x, y) is a bounded strictly positive function and (1)-(4) has a weak
solution in the following sense: a weak solution of (1)-(4) is a collection (ρ, u, v)
of functions such that ρ > 0 and

ρ ∈ L∞(0, T ;W 1
2 (Ω)), ∂tρ ∈ L2(0, T ;L2(Ω)), (6)
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u ∈ L2(0, T ;W 2
2 (Ω)) ∩W 1

2 (0, T ;L
2(Ω)), v ∈ L2(0, T ;L2(Ω)) (7)

which satisfies (1) in the distribution sense; in particular, the integral identity
holds for all φ|t=T = 0 with compact support:

∫ T

0

∫

Ω

ρu∂tφ+ ρu2∂xφ+ ρuv∂zφ+ ρ∂xφdx+ ρvφdzdt

= −

∫ T

0

∫

Ω

u∆φdxdzdt+

∫

Ω

u0ξ0φ|t=0 dxdz

(8)

Proof of Theorem 1: For simplicity, we assume that l = h = 1, g = c2,
ν1(t, x, y) = e−y and ν2(t, x, y) = ey. Then using the hydrostatic approximation
∂yp = −ρ, the pressure p can be written as a tensorial product as follows;

p(ρ(t, x, y)) = ρ(t, x, y) = ξ(t, x)e−y (9)

where ξ is an unknown function. Then, Equation (9) provides a stratified struc-
ture to the density ρ. Indeed, assume ξ known, then the structure of ρ is given
as a function of y variable only. Thus, this fact suggests to use the following
change of variables:

z = 1− e−y. (10)

As we will see, this change of variables (10) allows to write the initial model (1) of
unknowns (ρ(t, x, y), u(t, x, y), v(t, x, y)) as a model more simple with unknowns
(ξ(t, x, y), u(t, x, y), w(t, x, y)) where w defines the vertical velocity in the new
coordinates as

w(t, x, z) = e−yv(t, x, y). (11)

Multiplying Equations (1) by ey and using the change of variables (10) provides
the model, called model problem by the authors [1]:







∂tξ + ∂x(ξu) + ∂z(ξw) = 0
∂t(ξu) + ∂x(ξu

2) + ∂z(ξuw) + ∂xξ = ∂x(∂xu) + ∂z(∂zu)
∂zξ = 0

(12)

where w is defined as (11). This is exactly the model studied by Gatapov et al
[1], derived from Equations (1) by neglecting some terms, in which they provide
the following global existence result:

Theorem 2 (B. Gatapov and A.V. Kazhikhov 2005). Suppose that ini-
tial data (ξ0, u0) have the properties:

(ξ0, u0) ∈ W 1
2 (Ω), u0|x=0 = u0|x=1 = 0.

Then ξ(t, x) is a bounded strictly positive function and (12) has a weak solution
in the following sense: a weak solution of (12) satisfying the boundary conditions

u|x=0 = u|x=1 = 0,
w|y=0 = w|y=1 = 0,
∂zu|z=0 = ∂zu|z=1 = 0,
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is a collection (ξ, u, w) of functions such that ξ > 0 and

ξ ∈ L∞(0, T ;W 1
2 (0, 1)), ∂tξ ∈ L2(0, T ;L2(0, 1)), (13)

u ∈ L2(0, T ;W 2
2 (Ω)) ∩W 1

2 (0, T ;L
2(Ω)), w ∈ L2(0, T ;L2(Ω)) (14)

which statisfy (12) in the distribution sense; in particular, the integral identity
holds for all φ|t=T = 0 with compact support:

∫ T

0

∫

Ω

ξu∂tφ+ ξu2∂xφ+ ξuw∂zφ+ ξ∂xφdxdzdt

= −

∫ T

0

∫

Ω

u∆φdxdzdt+

∫

Ω

u0ξ0φ|t=0 dxdz

(15)

Now, assume that initial data (ξ0, u0) have the properties:

(ξ0, u0) ∈ W 1
2 (Ω), u0|x=0 = u0|x=1 = 0,

then ξ(t, x) is a bounded strictly positive function and there exist (ξ, u, w) such
as:

ξ ∈ L∞(0, T ;W 1
2 (0, 1)), ∂tξ ∈ L2(0, T ;L2(0, 1)),

u ∈ L2(0, T ;W 2
2 (Ω)) ∩W 1

2 (0, T ;L
2(Ω)), w ∈ L2(0, T ;L2(Ω))

which statisfy (12) in the distribution sense. Moreover, by a simple change of
variables z = 1− e−y in integrals, we have the following properties:

• ||ρ||L2(Ω) = α||ξ||L2(Ω),

• ||∇xρ||L2(Ω) = α||∇xξ||L2(Ω),

• ||∂yρ||L2(Ω) = α||ξ||L2(Ω)

where

α =

∫ 1−e−1

0

(1 − z) dz.

We deduce then,
||ρ||W 1

2
(Ω) = αW 1

2 (Ω)

which provides
ρ ∈ L∞(0, T ;W 1

2 (Ω))

and
∂tρ ∈ L2(0, T ;L2(Ω)).

Estimates on u remains true. Again, by a simple change of variables in integrals,
the fact that v ∈ L2(0, T ;L2(Ω)) is obtained from the inequality:

||v||L2(Ω) =

∫ 1

0

∫ 1

0

|v(t, x, y)|2 dy dx =

∫ 1

0

∫ 1

0

|eyw(t, x, y)|2 dy dx

=

∫ 1

0

∫ 1−e−1

0

(

1

1− z

)3

|w(t, x, z)|2 dz dx

<

(

1

1− h

)3

||w||L2(Ω).
�
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