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We consider the model: Y = X + , where X and are independent random variables. The density of is known whereas the one of X is a finite mixture with unknown components. Considering the "ordinary smooth case" on the density of , we want to estimate a component of this mixture. To reach this goal, we develop two wavelet estimators: a nonadaptive based on a projection and an adaptive based on a hard thresholding rule. We evaluate their performances by taking the minimax approach under the mean integrated squared error over Besov balls. We prove that the adaptive one attains a sharp rate of convergence.

Motivations

We consider the following model:

Y v = X v + v , v ∈ {1, . . . , n}, n ∈ N * , (1) 
where X 1 , . . . , X n are independent random variables and 1 , . . . , n are i.i.d. random variables. The density of 1 is denoted g and, for any v ∈ {1, . . . , n}, the density of X v is the finite mixture:

h v (x) = m d=1 w d (v)f d (x), x ∈ R,
where m ∈ N * , Laboratoire de Mathématiques Nicolas Oresme, Université de Caen Basse-Normandie, Campus II, Science 3, 14032 Caen, France. E-mail: chesneau@math.unicaen.fr In the literature, the model (1) has been recently described for a particular mixture in [START_REF] Lee | Direct deconvolution density estimation of a mixture, distribution motivated by mutation effects distribution[END_REF]. In the simplest case where m = 1, w 1 (1) = . . . = w 1 (n) = 1 and f d * = f 1 = f , (1) becomes the standard convolution density model. See e.g. [START_REF] Hall | Optimal rates of convergence for deconvolving a density[END_REF], [START_REF] Devroye | Consistent deconvolution in density estimation[END_REF], [START_REF] Fan | On the optimal rates of convergence for nonparametric deconvolution problem[END_REF], [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF], [START_REF] Fan | Wavelet deconvolution[END_REF], [START_REF] Butucea | Minimax estimation of the noise level and of the signal density in a semiparametric convolution model[END_REF], [START_REF] Comte | Penalized contrast estimator for density deconvolution[END_REF] and [START_REF] Lacour | Rates of convergence for nonparametric deconvolution[END_REF]. The estimation of f d * when only X 1 , . . . , X n are observed has been investigated in some papers. See e.g. [START_REF] Maiboroda | Estimators of components of a mixture with varying concentrations[END_REF], [START_REF] Hall | Nonparametric estimation of component distributions in a multivariate mixture[END_REF], [START_REF] Pokhyl'ko | Wavelet estimators of a density constructed from observations of a mixture[END_REF] and Prakasa [START_REF] Rao | Wavelet linear estimation for derivatives of a density from observations of mixtures with varying mixing proportions[END_REF]. However, to the best of our knowledge, the estimation of f d * from Y 1 , . . . , Y n is a new challenge.

Considering the ordinary smooth case on g (see ( 3)), we estimate f d * by two wavelet estimators: a linear nonadaptive and a nonlinear adaptive based on the hard thresholding rule. The construction of our adaptive estimator is "similar" to the one of [START_REF] Pensky | Adaptive wavelet estimator for nonparametric density deconvolution[END_REF] and [START_REF] Fan | Wavelet deconvolution[END_REF]. It has the originality to include some technical tools on mixture and a new version of the "observations thresholding" introduced in wavelet estimation theory by [START_REF] Delyon | On minimax wavelet estimators[END_REF] in the context of the nonparametric regression. The performances of our estimators are evaluated via the minimax approach under the mean integrated squared error (MISE) over a wide class of functions: the Besov balls B s p,r (M ) (to be defined in Section 3). In particular, under mild assumptions on the weights of the mixture, we prove that our adaptive estimator attains the rate of convergence:

r n = z n ln(n/z n ) n 2s/(2s+2δ+1)
, where z n depends on these weights and δ is a factor related to the ordinary smooth case. This rate of convergence is sharp in the sense that it is the one attains by the best nonrealistic linear wavelet estimator up to a logarithmic term.

The paper is organized as follows. Assumptions on the model and some notations are introduced in Section 2. Section 3 briefly describes the wavelet basis and the Besov balls. The estimators are presented in Section 4. The minimax results are set in Section 5. Technical proofs are given in Section 6.

Assumptions and notations

Assumption on f d * . Without loss of generality, we assume that the support of

f d * is [0, 1].
Assumptions on g. We suppose that there exists a constant C * > 0 such that

sup x∈R g(x) ≤ C * < ∞. (2) 
We define the Fourier transform of a function h by

F(h)(x) = ∞ -∞ h(y)e -ixy dy, x ∈ R,
whenever this integral exists. The notation • will be used for the complex conjugate.

We consider the ordinary smooth case on g: there exist two constants, c * > 0 and δ > 1, such that, for any

x ∈ R, F(g)(x) satisfies | F(g)(x)| ≥ c * (1 + x 2 ) δ/2 .
(3)

This assumption controls the decay of the Fourier coefficients of g, and thus the smoothness of g.

Example: for any v ∈ {1, . . . , n}, suppose that v = p u=1 ε u,v , where p ∈ N * and (ε u,v ) (u,v)∈{1,...,p}×{1,...,n} are i.i.d. random variables having the Laplace density: 3) is satisfied with c * = 1 and δ = 2p. Assumptions on the weights. We suppose that the matrix

f (x) = (1/2)e -|x| , x ∈ R. Then | F(g)(x)| = 1/(1 + x 2 ) p . Therefore (
Γ n = 1 n n v=1 w k (v)w (v) (k, )∈{1,...,m} 2
is nonsingular i.e. det(Γ n ) > 0. For the considered d * and any v ∈ {1, . . . , n}, we set

a d * (v) = 1 det(Γ n ) m k=1 (-1) k+d * γ n d * ,k w k (v), (4) 
where γ n d * ,k denotes the determinant of the minor (d * , k) of the matrix Γ n . Then, for any k ∈ {1, . . . , m},

1 n n v=1 a d * (v)w k (v) =            1 if k = d * , 0 otherwise, (5) and (a d * (1), . . . , a d * (n)) = argmin (b1,...,bn)∈R n 1 n n v=1 b 2 v .
Technical details can be found in [START_REF] Maiboroda | Estimators of components of a mixture with varying concentrations[END_REF].

We set

z n = 1 n n v=1 a 2 d * (v) (6)
and, for technical reasons, we suppose that z n < n/e.

3 Wavelets and Besov balls Wavelet basis. Let N ∈ N * , φ be a father wavelet of a multiresolution analysis on R and ψ be the associated mother wavelet. Assume that

-supp(φ) = supp(ψ) = [1 -N, N ], - N 1-N φ(x)dx = 1, -for any v ∈ {0, . . . , N -1}, N 1-N x v ψ(x)dx = 0, -φ and ψ are of class C υ , υ > 1 + δ,
where δ is the one in (3). (For instance, the Daubechies wavelets). Set

φ j,k (x) = 2 j/2 φ(2 j x -k), ψ j,k (x) = 2 j/2 ψ(2 j x -k).
Then there exists an integer τ satisfying 2 τ ≥ 2N such that the collection

B = {φ τ,k (.), k ∈ {0, . . . , 2 τ -1}; ψ j,k (.); j ∈ N-{0, . . . , τ -1}, k ∈ {0, . . . , 2 j -1}},
(with an appropriate treatments at the boundaries) is an orthonormal basis of

L 2 ([0, 1]) = {h : [0, 1] → R; 1 0 h 2 (x)dx < ∞}.
We refer to [START_REF] Cohen | Wavelets on the interval and fast wavelet transforms[END_REF]. For any integer ≥ τ , any h ∈ L 2 ([0, 1]) can be expanded on B as

h(x) = 2 -1 k=0 α ,k φ ,k (x) + ∞ j= 2 j -1 k=0 β j,k ψ j,k (x),
where α j,k and β j,k are the wavelet coefficients of h defined by

α j,k = 1 0 h(x)φ j,k (x)dx, β j,k = 1 0 h(x)ψ j,k (x)dx. ( 7 
)
Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs to the Besov balls B s p,r (M ) if and only if there exists a constant M * > 0 (depending on M ) such that the associated wavelet coefficients (7) satisfy

   ∞ j=τ -1   2 j(s+1/2-1/p)   2 j -1 k=0 |β j,k | p   1/p    r    1/r ≤ M * .
(We set β τ -1,k = α τ,k ). In this expression, s is a smoothness parameter and p and r are norm parameters. For a particular choice of s, p and r, B s p,r (M ) contain the Hölder and Sobolev balls. See [START_REF] Meyer | Wavelets and Operators[END_REF].

Estimators

Wavelet coefficients estimators. The first step to estimate f d * consists in expanding f d * on B and estimating its unknown wavelet coefficients.

For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, we estimate α j,k =

1 0 f d * (x)φ j,k (x)dx by α j,k = 1 2πn n v=1 a d * (v) ∞ -∞ F (φ j,k )(x) F(g)(x) e -ixYv dx, (8) 
and

β j,k = 1 0 f d * (x)ψ j,k (x)dx by β j,k = 1 n n v=1 G v 1 {|Gv|≤ηj } , (9) 
where

G v = 1 2π a d * (v) ∞ -∞ F (ψ j,k )(x) F(g)(x) e -ixYv dx, (10) 
for any random event A, 1 A is the indicator function on A, a d * (v) is defined by ( 4),

η j = θ2 δj nz n ln(n/z n ) , z n is defined by (6) and θ = (C * /2πc 2 * ) ∞ -∞ (1 + x 2 ) δ |F (ψ) (x)| 2 dx (C * ,
c * and δ are those in (2) and ( 3)). Note that, since ψ ∈ C υ , there exists a constant [START_REF] Meyer | Wavelets and Operators[END_REF]). Therefore, since υ > 1 + δ,

C > 0 such that |F (ψ) (x)| ≤ C(1 + |x|) -υ , x ∈ R (see
∞ -∞ (1 + x 2 ) δ |F (ψ) (x)| 2 dx ≤ C 2 ∞ -∞ (1 + x 2 ) δ (1 + |x|) -2υ dx < ∞ and θ exists.
The idea of the thresholding in ( 9) is to do a selection on the observations: when, for v ∈ {1, . . . , n}, G v is too large, the observation Y v is neglected. From a technical point of view, this allows us to estimate β j,k in an optimal way under mild assumptions on (a d * (v)) v∈{1,...,n} (and, a fortiori, on the weights of the mixture). Such a thresholding method has been introduced by [START_REF] Delyon | On minimax wavelet estimators[END_REF] for regression wavelet estimation. Statistical properties of α j,k and β j,k are investigated in Propositions 1, 2, 3 and 4.

Linear estimator. Assuming that f d * ∈ B s p,r (M ) with p ≥ 2, we define the linear estimator f L by

f L (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x), (11) 
where α j,k is defined by ( 8), j 0 is the integer satisfying

1 2 n z n 1/(2s+2δ+1) < 2 j0 ≤ n z n 1/(2s+2δ+1)
, z n is defined by ( 6) and δ is the one in (3). Note that f L is not adaptive since it depends on s, the smoothness parameter of f d * .

Hard thresholding estimator. We define the hard thresholding estimator

f H by f H (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + j1 j=τ 2 j -1 k=0 β j,k 1 {| β j,k |≥κλj } ψ j,k (x), (12) 
where α τ,k and β j,k are defined by ( 8) and ( 9), j 1 is the integer satisfying

1 2 n z n 1/(2δ+1) < 2 j1 ≤ n z n 1/(2δ+1)
, κ ≥ 8/3 + 2 + 2 16/9 + 4, λ j is the threshold

λ j = θ2 δj z n ln(n/z n ) n ,
z n is defined by (6) and δ is the one in (3). Contrary to f L , f H is adaptive. The feature of the hard thresholding estimator is to only estimate the "large" unknown wavelets coefficients of f d * (those which contain the main characteristics of f d * ). Hard thresholding estimators for other deconvolution problems than (1) can be found in [START_REF] Fan | Wavelet deconvolution[END_REF], [START_REF] Johnstone | Wavelet deconvolution in a periodic setting[END_REF], [START_REF] Willer | Deconvolution in white noise with a random blurring effect[END_REF] and [START_REF] Cavalier | Wavelet deconvolution with noisy eigenvalues[END_REF].

Minimax results

Upper bounds for f L and f H are given in Theorems 1 and 2 below. Further details on the minimax approach (and rates of convergence for various models) can be found in [START_REF] Tsybakov | Introduction à l'estimation nonparametrique[END_REF].

Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that f d * ∈ B s p,r (M ) with s > 0, p ≥ 2 and r ≥ 1. Let f L be (11). Then there exists a constant C > 0 such that

E 1 0 f L (x) -f d * (x) 2 dx ≤ C z n n 2s/(2s+2δ+1)
.

The proof of Theorem 1 uses a moment inequality on (8) and a suitable decomposition of the MISE. Note that f L is constructed to minimize the MISE as much as possible. For this reason, our benchmark will be the rate of convergence: (z n /n) 2s/(2s+2δ+1) .

Theorem 2 Consider (1) under the assumptions of Section 2. Let f H be (12). Suppose that

f d * ∈ B s p,r (M ) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2
) and s > (2δ + 1)/p}. Then there exists a constant C > 0 such that

E 1 0 f H (x) -f d * (x) 2 dx ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1)
.

The proof of Theorem 2 is based on several probability results (moment inequalities, concentration inequality,. . . ) and a suitable decomposition of the MISE.

Theorem 2 shows that, besides being adaptive, f H attains the same rate of convergence than the one of f L up to the logarithmic term (ln(n/z n )) 2s/(2s+2δ+1) . Naturally, in the simplest case where m = 1, w 1 (1) = . . . = w 1 (n) = 1, z n = 1 and f d * = f 1 = f , the rate of convergence attained by f H becomes the standard one for the classical convolution density model: (ln n/n) 2s/(2s+2δ+1) . See (Fan and Koo 2002, Theorem 2).

Main conclusion and perspectives. We have developed a new adaptive estimator f H for f d * under mild assumption on the weights of the mixture. It is based on wavelet and thresholding. It has "near-optimal" minimax properties for a wide class of functions f d * . Possible perspectives of this work are -to investigate the case where the weights of the mixture are unknown, -to potentially improve the estimation of f d * by considering other kinds of thresholding rules as the block thresholding one (BlockJS, . . . ). See e.g. [START_REF] Cai | Adaptive Wavelet Estimation: A Block Thresholding And Oracle Inequality Approach[END_REF], [START_REF] Cai | On adaptive wavelet estimation of a derivative and other related linear inverse problems[END_REF], [START_REF] Pensky | Functional deconvolution in a periodic setting: Uniform Case[END_REF], [START_REF] Petsa | Minimax convergence rates under the L p -risk in the functional deconvolution model[END_REF] and [START_REF] Chesneau | Stein block thresholding for image denoising[END_REF].

Proofs

In this section, C represents a positive constant which may differ from one term to another.

Auxiliary results

Proposition 1 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let α j,k and β j,k be the wavelet coefficients (7) of f d * . Then α j,k defined by ( 8) is an unbiased estimator of α j,k , for (G v ) v∈{1,...,n} defined by (10), we have

E 1 n n v=1 G v = β j,k .
Proof of Proposition 1. Since X v and v are independent, for any x ∈ R, we have

E e -ixYv = E e -ixXv E e -ix v = F(h v )(x)F(g)(x) = m d=1 w d (v)F(f d )(x)F(g)(x). ( 13 
)
It follows from ( 13), ( 5) and the Plancherel-Parseval theorem that

E ( α j,k ) = 1 2πn n v=1 a d * (v) ∞ -∞ F (φ j,k )(x) F(g)(x) E e -ixYv dx = 1 2πn n v=1 a d * (v) ∞ -∞ F (φ j,k )(x) F(g)(x) m d=1 w d (v)F(f d )(x)F(g)(x)dx = m d=1 1 2π ∞ -∞ F (φ j,k )(x)F(f d )(x)dx 1 n n v=1 a d * (v)w d (v) = 1 2π ∞ -∞ F (φ j,k )(x)F(f d * )(x)dx = 1 0 φ j,k (x)f d * (x)dx = α j,k .
Similarly, taking ψ instead of φ, we prove that

E 1 n n v=1 G v = 1 2πn n v=1 a d * (v) ∞ -∞ F (ψ j,k )(x) F(g)(x) E e -ixYv dx = β j,k .
This complete the proof of Proposition 1.

Proposition 2 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let α j,k be the wavelet coefficient (7) of f d * and α j,k be (8). Then there exists a constant C > 0 such that

E ( α j,k -α j,k ) 2 ≤ C2 2δj z n n .
Proof of Proposition 2. By Proposition 1, α j,k is an unbiased estimator of α j,k . Therefore, using the independence of Y 1 , . . . , Y n , we obtain

E ( α j,k -α j,k ) 2 = V ( α j,k ) = 1 (2π) 2 n 2 n v=1 a 2 d * (v)V ∞ -∞ F (φ j,k )(x) F(g)(x) e -ixYv dx . (14) 
For any v ∈ {1, . . . , n}, we have

V ∞ -∞ F (φ j,k )(x) F(g)(x) e -ixYv dx ≤ E   ∞ -∞ F (φ j,k )(x) F(g)(x) e -ixYv dx 2   . ( 15 
)
Since X v and v are independent, the density of Y v is The Plancherel-Parseval theorem and (3) imply that

w v (x) = (h v g)(x) = ∞ -∞ h v (t)g(x -t)dt, x ∈ R. Therefore E   ∞ -∞ F (φ j,k )(x) F(g)(x) e -ixYv dx 2   = ∞ -∞ ∞ -∞ F (φ j,k )(x) F(g)(x) e -ixy dx 2 w v (y)dy = ∞ -∞ F F (φ j,k )(.) F(g)(.) (y 
∞ -∞ F F (φ j,k )(.) F(g)(.) (y) 2 w v (y)dy ≤ C * ∞ -∞ F F (φ j,k )(.) F(g)(.) (y) 2 dy = 2πC * ∞ -∞ F (φ j,k )(x) F(g)(x) 2 dx ≤ 2π C * c 2 * ∞ -∞ (1 + x 2 ) δ |F (φ j,k ) (x)| 2 dx. (17) 
Since |F (φ j,k ) (x)| = 2 -j/2 F (φ) (x/2 j ) , by a change of variables, we have

∞ -∞ (1 + x 2 ) δ |F (φ j,k ) (x)| 2 dx = 2 -j ∞ -∞ (1 + x 2 ) δ F (φ) (x/2 j ) 2 dx = ∞ -∞ (1 + 2 2j x 2 ) δ |F (φ) (x)| 2 dx ≤ 2 2δj ∞ -∞ (1 + x 2 ) δ |F (φ) (x)| 2 dx. ( 18 
)
It follows from ( 16), ( 17) and ( 18) that

E   ∞ -∞ F (φ j,k )(x) F(g)(x) e -ixYv dx 2   ≤ θ * 2 2δj , (19) 
with

θ * = 2π(C * /c 2 * ) ∞ -∞ (1 + x 2 ) δ |F (φ) (x)| 2 dx
. By ( 14), ( 15) and ( 19), we obtain

E ( α j,k -α j,k ) 2 ≤ θ * 2 2δj 1 (2π) 2 n 1 n n v=1 a 2 d * (v) ≤ C2 2δj z n n .
The proof of Proposition 2 is complete.

Proposition 3 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (7) of f d * and β j,k be (9). Then there exists a constant C > 0 such that

E β j,k -β j,k 4 ≤ C2 4δj (z n ln(n/z n )) 2 n 2 .
Proof of Proposition 3. Thanks to Proposition 1, we have

β j,k = E 1 n n v=1 G v = 1 n n v=1 E(G v 1 {|Gv|≤ηj } ) + 1 n n v=1 E(G v 1 {|Gv|>ηj } ). (20) Hence E β j,k -β j,k 4 = E   1 n n v=1 G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } - 1 n n v=1 E(G v 1 {|Gv|>ηj } ) 4   ≤ 8(A + B), (21) 
where

A = E   1 n n v=1 G v 1 {|Gv|≤ηj } -E(G v 1 {|Gv|≤ηj } ) 4   and B = 1 n n v=1 E(G v 1 {|Gv|>ηj } ) 4 .
Let us bound A and B, in turn. To bound A, we need the Rosenthal inequality presented in lemma below (see [START_REF] Rosenthal | On the subspaces of L p (p ≥ 2) spanned by sequences of independent random variables[END_REF]).

Lemma 1 (Rosenthal's inequality) Let p ≥ 2, n ∈ N * and (U v ) v∈{1,...,n} be n zero mean independent random variables such that, for any v ∈ {1, . . . , n},

E(|U v | p ) < ∞.
Then there exists a constant C > 0 such that

E n v=1 U v p ≤ C max   n v=1 E (|U v | p ) , n v=1 E U 2 v p/2   .
Applying the Rosenthal inequality with p = 4 and, for any v ∈ {1, . . . , n},

U v = G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } ,
we obtain

A = 1 n 4 E   n v=1 U v 4   ≤ C 1 n 4 max   n v=1 E U 4 v , n v=1 E U 2 v 2   .
Using ( 19) with ψ instead of φ, we have, for any a ∈ {2, 4} and any v ∈ {1, . . . , n},

E (U a v ) ≤ 2 a E G a v 1 {|Gv|≤ηj } ≤ 2 a η a-2 j E G 2 v ≤ 2 a θ 2 η a-2 j 2 2δj a 2 d * (v).
Hence, since z n < n/e,

A ≤ C 1 n 4 max   2 4 θ 2 η 2 j 2 2δj n v=1 a 2 d * (v), 2 2 θ 2 2 2δj n v=1 a 2 d * (v) 2   ≤ C 1 n 4 max 2 4δj n 2 z 2 n ln(n/z n ) , 2 4δj n 2 z 2 n = C2 4δj z 2 n n 2 . ( 22 
)
Let us now bound B. Using the inequality: , and again (19) with ψ instead of φ, we obtain

1 {|Gv|>ηj } ≤ (1/η j )|G v |
1 n n v=1 E |G v |1 {|Gv|>ηj } ≤ 1 η j 1 n n v=1 E G 2 v ≤ 1 θ2 δj ln(n/z n ) nz n θ 2 2 2δj z n = θ2 δj z n ln(n/z n ) n . ( 23 
) Hence B ≤ C2 4δj (z n ln(n/z n )) 2 n 2 . ( 24 
)
It follows from ( 21), ( 22), ( 24) and z n < n/e that

E β j,k -β j,k 4 ≤ C 2 4δj z 2 n n 2 + 2 4δj (z n ln(n/z n )) 2 n 2 ≤ C2 4δj (z n ln(n/z n )) 2 n 2 .
This complete the proof of Proposition 3.

Proposition 4 For any integer j ≥ τ and any k ∈ {0, . . . , 2 j -1}, let β j,k be the wavelet coefficient (7) of f d * and β j,k be (9). Then, for any κ ≥ 8/3 + 2 + 2 16/9 + 4,

P | β j,k -β j,k | ≥ κλ j /2 ≤ 2 z n n 2 .
Proof of Proposition 4. Using (20), we have

| β j,k -β j,k | = 1 n n v=1 G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } - 1 n n v=1 E G v 1 {|Gv|>ηj } ≤ 1 n n v=1 G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } + 1 n n v=1 E |G v |1 {|Gv|>ηj } .
By ( 23) we obtain

1 n n v=1 E |G v |1 {|Gv|>ηj } ≤ θ2 δj z n ln(n/z n ) n = λ j .
Hence

S = P | β j,k -β j,k | ≥ κλ j /2 ≤ P 1 n n v=1 G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } ≥ (κ/2 -1)λ j .
Let us now present the Bernstein inequality (see [START_REF] Petrov | Limit Theorems of Probability Theory: Sequences of Independent Random Variables[END_REF]).

Lemma 2 (Bernstein's inequality) Let n ∈ N * and (U v ) v∈{1,...,n} be n zero mean independent random variables such that there exists a constant M > 0 satisfying, for any v ∈ {1, . . . , n}, |U v | ≤ M < ∞. Then, for any λ > 0, we have

P n v=1 U v ≥ λ ≤ 2 exp - λ 2 2 n v=1 E (U 2 v ) + λM 3 .
Let us set, for any v ∈ {1, . . . , n},

U v = G v 1 {|Gv|≤ηj } -E G v 1 {|Gv|≤ηj } . Then E(U v ) = 0, |U v | ≤ |G v | 1 {|Gv|≤ηj } + E |G v |1 {|Gv|≤ηj } ≤ 2η j
and, using again ( 19) with ψ instead of φ,

n v=1 E U 2 v = n v=1 V G v 1 {|Gv|≤ηj } ≤ n v=1 E G 2 v ≤ θ 2 2 2δj n v=1 a 2 d * (v) ≤ θ 2 2 2δj nz n .
It follows from the Bernstein inequality that

S ≤ 2 exp   - n 2 (κ/2 -1) 2 λ 2 j 2 θ 2 2 2δj nz n + 2n(κ/2-1)λj ηj 3   .
Since

λ j η j = θ2 δj z n ln(n/z n ) n θ2 δj nz n ln(n/z n ) = θ 2 2 2δj z n and λ 2 j = θ 2 2 2δj z n ln(n/z n ) n ,
for any κ ≥ 8/3 + 2 + 2 16/9 + 4, we have

S ≤ 2 exp   - (κ/2 -1) 2 ln(n/z n ) 2 1 + 2(κ/2-1) 3   = 2 n z n - (κ/2-1) 2 2 ( 1+ 2(κ/2-1) 3 ) ≤ 2 z n n 2 .
This complete the proof of Proposition 4.

Proofs of the main results

Proof of Theorem 1. We expand the function f d * on B as

f d * (x) = 2 j 0 -1 k=0 α j0,k φ j0,k (x) + ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x),
where

α j0,k = 1 0 f d * (x)φ j0,k (x)dx, β j,k = 1 0 f d * (x)ψ j,k (x)dx.
We have

f L (x) -f d * (x) = 2 j 0 -1 k=0 ( α j0,k -α j0,k ) φ j0,k (x) - ∞ j=j0 2 j -1 k=0 β j,k ψ j,k (x).
Since B is an orthonormal basis of L 2 ([0, 1]), we have

E 1 0 f L (x) -f d * (x) 2 dx = A + B,
where

A = 2 j 0 -1 k=0 E ( α j0,k -α j0,k ) 2 , B = ∞ j=j0 2 j -1 k=0 β 2 j,k .
Using Proposition 2, we obtain

A ≤ C2 j0(1+2δ) z n n ≤ C z n n 2s/(2s+2δ+1)
.

Since p ≥ 2, we have

B s p,r (M ) ⊆ B s 2,∞ (M ). Hence B ≤ C2 -2j0s ≤ C z n n 2s/(2s+2δ+1)
.

Therefore

E 1 0 f L (x) -f d * (x) 2 dx ≤ C z n n 2s/(2s+2δ+1)
.

The proof of Theorem 1 is complete.

Proof of Theorem 2. We expand the function f d * on B as

f d * (x) = 2 τ -1 k=0 α τ,k φ τ,k (x) + ∞ j=τ 2 j -1 k=0 β j,k ψ j,k (x),
where

α τ,k = 1 0 f d * (x)φ τ,k (x)dx, β j,k = 1 0 f d * (x)ψ j,k (x)dx.
We have

f H (x) -f d * (x) = 2 τ -1 k=0 ( α τ,k -α τ,k )φ τ,k (x) + j1 j=τ 2 j -1 k=0 β j,k 1 {| β j,k |≥κλj } -β j,k ψ j,k (x) - ∞ j=j1+1 2 j -1 k=0 β j,k ψ j,k (x).
Since B is an orthonormal basis of L 2 ([0, 1]), we have

E 1 0 f H (x) -f d * (x) 2 dx = R + S + T, (25) 
where

R = 2 τ -1 k=0 E ( α τ,k -α τ,k ) 2 , S = j1 j=τ 2 j -1 k=0 E β j,k 1 {| β j,k |≥κλj } -β j,k 2 and T = ∞ j=j1+1 2 j -1 k=0 β 2 j,k .
Let us bound R, T and S, in turn.

Using Proposition 2 and the inequalities: z n < n/e, z n ln(n/z n ) < n and 2s/(2s + 2δ + 1) < 1, we obtain

R ≤ C2 τ (1+2δ) z n n ≤ C z n n ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1) . ( 26 
)
For r ≥ 1 and p ≥ 2, we have B s p,r (M ) ⊆ B s 2,∞ (M ). Since z n ln(n/z n ) < n and 2s/(2s + 2δ + 1) < 2s/(2δ + 1), we have

T ≤ C ∞ j=j1+1 2 -2js ≤ C2 -2j1s ≤ C z n ln(n/z n ) n 2s/(2δ+1) ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1)
.

For r ≥ 1 and p ∈ [1, 2), we have B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ (M ). Since s > (2δ + 1)/p, we have (s + 1/2 -1/p)/(2δ + 1) > s/(2s + 2δ + 1). So, using again

z n ln(n/z n ) < n, T ≤ C ∞ j=j1+1 2 -2j(s+1/2-1/p) ≤ C2 -2j1(s+1/2-1/p) ≤ C z n ln(n/z n ) n 2(s+1/2-1/p)/(2δ+1) ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1)
.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have

T ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1) . ( 27 
)
The term S can be decomposed as

S = S 1 + S 2 + S 3 + S 4 , (28) 
where

S 1 = j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k |≥κλj } 1 {|β j,k |<κλj /2} , S 2 = j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k |≥κλj } 1 {|β j,k |≥κλj /2} , S 3 = j1 j=τ 2 j -1 k=0 E β 2 j,k 1 {| β j,k |<κλj } 1 {|β j,k |≥2κλj } and S 4 = j1 j=τ 2 j -1 k=0 E β 2 j,k 1 {| β j,k |<κλj } 1 {|β j,k |<2κλj } .
Let us analyze each term S 1 , S 2 , S 3 and S 4 in turn.

Upper bounds for S 1 and S 3 . We have

| β j,k | < κλ j , |β j,k | ≥ 2κλ j ⊆ | β j,k -β j,k | > κλ j /2 , | β j,k | ≥ κλ j , |β j,k | < κλ j /2 ⊆ | β j,k -β j,k | > κλ j /2 and | β j,k | < κλ j , |β j,k | ≥ 2κλ j ⊆ |β j,k | ≤ 2| β j,k -β j,k | . So max(S 1 , S 3 ) ≤ C j1 j=τ 2 j -1 k=0 E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλj /2} .
It follows from the Cauchy-Schwarz inequality and Propositions 3 and 4 that

E β j,k -β j,k 2 1 {| β j,k -β j,k |>κλj /2} ≤ E β j,k -β j,k 4 1/2 P | β j,k -β j,k | > κλ j /2 1/2 ≤ C2 2δj z 2 n ln(n/z n ) n 2 .
Since z n ln(n/z n ) < n and 2s/(2s + 2δ + 1) < 1, we have

max(S 1 , S 3 ) ≤ C z 2 n ln(n/z n ) n 2 j1 j=τ 2 j(1+2δ) ≤ C z 2 n ln(n/z n ) n 2 2 j1(1+2δ) ≤ C z n ln(n/z n ) n ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1) . ( 29 
)
Upper bound for S 2 . Using Proposition 3 and the Cauchy-Schwarz inequality, we obtain

E β j,k -β j,k 2 ≤ E β j,k -β j,k 4 1/2 ≤ C2 2δj z n ln(n/z n ) n .
Hence

S 2 ≤ C z n ln(n/z n ) n j1 j=τ 2 2δj 2 j -1 k=0 1 {|β j,k |>κλj /2} .
Let j 2 be the integer defined by

1 2 n z n ln(n/z n ) 1/(2s+2δ+1) < 2 j2 ≤ n z n ln(n/z n ) 1/(2s+2δ+1) . (30) We have S 2 ≤ S 2,1 + S 2,2 , where S 2,1 = C z n ln(n/z n ) n j2 j=τ 2 2δj 2 j -1 k=0 1 {|β j,k |>κλj /2} and S 2,2 = C z n ln(n/z n ) n j1 j=j2+1 2 2δj 2 j -1 k=0 1 {|β j,k |>κλj /2} .
We have

S 2,1 ≤ C z n ln(n/z n ) n j2 j=τ 2 j(1+2δ) ≤ C z n ln(n/z n ) n 2 j2(1+2δ) ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1) . For r ≥ 1 and p ≥ 2, since B s p,r (M ) ⊆ B s 2,∞ (M ), S 2,2 ≤ C z n ln(n/z n ) n j1 j=j2+1 2 2δj 1 λ 2 j 2 j -1 k=0 β 2 j,k = C ∞ j=j2+1 2 j -1 k=0 β 2 j,k ≤ C2 -2j2s ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1)
.

For r ≥ 1, p ∈ [1, 2) and s > (2δ + 1)/p, since B s p,r (M ) ⊆ B s+1/2-1/p 2,∞ (M ) and (2s + 2δ + 1)(2 -p)/2 + (s + 1/2 -1/p + δ -2δ/p)p = 2s, we have .

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have

S 2 ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1) . ( 31 
)
Upper bound for S 4 . We have

S 4 ≤ j1 j=τ 2 j -1 k=0 β 2 j,k 1 {|β j,k |<2κλj } .
Let j 2 be the integer (30). We have .

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have

S 4 ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1) . ( 32 
)
It follows from ( 28), ( 29), ( 31) and ( 32) that

S ≤ C z n ln(n/z n ) n 2s/(2s+2δ+1) . (33) 
Combining ( 25), ( 26), ( 27) and ( 33 .

The proof of Theorem 2 is complete.
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--

  (w d (v)) (v,d)∈{1,...,n}×{1,...,m} are known positive weights such that, for any v ∈ {1, . . . , n}, (f d ) d∈{1,...,m} are unknown densities. For a fixed d * ∈ {1, . . . , m}, we aim to estimate f d * when only Y 1 , . . . , Y n are observed.

  (2), sup x∈R g(x) ≤ C * and h v is a density, t)dt = C * .

.

  For r ≥ 1, p ∈ [1, 2) and s > (2δ + 1)/p, since B s p,r (M ) 2δ + 1)(2 -p)/2 + (s + 1/2 -1/p + δ -2δ/p)p = 2s, we have S 4

  ), we have, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p},

We consider two wavelets estimators for f d * : a linear estimator and a hard thresholding estimator.