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Abstract We consider the model: Y = X+ε, where X and ε are independent
random variables. The density of ε is known whereas the one of X is a finite
mixture with unknown components. Considering the ”ordinary smooth case”
on the density of ε, we want to estimate a component of this mixture. To
reach this goal, we develop two wavelet estimators: a nonadaptive based on
a projection and an adaptive based on a hard thresholding rule. We evaluate
their performances by taking the minimax approach under the mean integrated
squared error over Besov balls. We prove that the adaptive one attains a sharp
rate of convergence.

Keywords Density deconvolution · Mixture · Minimax approach ·Wavelets ·
Hard thresholding.

1 Motivations

We consider the following model:

Yv = Xv + εv, v ∈ {1, . . . , n}, n ∈ N∗, (1)

where X1, . . . , Xn are independent random variables and ε1, . . . , εn are i.i.d.
random variables. The density of ε1 is denoted g and, for any v ∈ {1, . . . , n},
the density of Xv is the finite mixture:

hv(x) =

m∑
d=1

wd(v)fd(x), x ∈ R,

where m ∈ N∗,
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2 Christophe Chesneau

– (wd(v))(v,d)∈{1,...,n}×{1,...,m} are known positive weights such that, for any
v ∈ {1, . . . , n},

m∑
d=1

wd(v) = 1,

– (fd)d∈{1,...,m} are unknown densities.

For a fixed d∗ ∈ {1, . . . ,m}, we aim to estimate fd∗ when only Y1, . . . , Yn are
observed.

In the literature, the model (1) has been recently described for a particular
mixture in Lee et al. (2010). In the simplest case where m = 1, w1(1) = . . . =
w1(n) = 1 and fd∗ = f1 = f , (1) becomes the standard convolution density
model. See e.g. Hall and Carol (1988), Devroye (1989), Fan (1991), Pensky and
Vidakovic (1999), Fan and Koo (2002), Butucea and Matias (2005), Comte et
al. (2006) and Lacour (2006). The estimation of fd∗ when only X1, . . . , Xn

are observed has been investigated in some papers. See e.g. Maiboroda (1996),
Hall and Zhou (2003), Pokhyl’ko (2005) and Prakasa Rao (2010). However,
to the best of our knowledge, the estimation of fd∗ from Y1, . . . , Yn is a new
challenge.

Considering the ordinary smooth case on g (see (3)), we estimate fd∗ by
two wavelet estimators: a linear nonadaptive and a nonlinear adaptive based
on the hard thresholding rule. The construction of our adaptive estimator is
”similar” to the one of Pensky and Vidakovic (1999) and Fan and Koo (2002).
It has the originality to include some technical tools on mixture and a new
version of the ”observations thresholding” introduced in wavelet estimation
theory by Delyon and Juditsky (1996) in the context of the nonparametric
regression. The performances of our estimators are evaluated via the minimax
approach under the mean integrated squared error (MISE) over a wide class of
functions: the Besov balls Bsp,r(M) (to be defined in Section 3). In particular,
under mild assumptions on the weights of the mixture, we prove that our
adaptive estimator attains the rate of convergence:

rn =

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

,

where zn depends on these weights and δ is a factor related to the ordinary
smooth case. This rate of convergence is sharp in the sense that it is the one
attains by the best nonrealistic linear wavelet estimator up to a logarithmic
term.

The paper is organized as follows. Assumptions on the model and some
notations are introduced in Section 2. Section 3 briefly describes the wavelet
basis and the Besov balls. The estimators are presented in Section 4. The
minimax results are set in Section 5. Technical proofs are given in Section 6.

2 Assumptions and notations

Assumption on fd∗ . Without loss of generality, we assume that the support
of fd∗ is [0, 1].
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Assumptions on g. We suppose that there exists a constant C∗ > 0 such
that

sup
x∈R

g(x) ≤ C∗ <∞. (2)

We define the Fourier transform of a function h by

F(h)(x) =

∫ ∞
−∞

h(y)e−ixydy, x ∈ R,

whenever this integral exists. The notation · will be used for the complex
conjugate.
We consider the ordinary smooth case on g: there exist two constants,
c∗ > 0 and δ > 1, such that, for any x ∈ R, F(g)(x) satisfies

| F(g)(x)| ≥ c∗
(1 + x2)δ/2

. (3)

This assumption controls the decay of the Fourier coefficients of g, and
thus the smoothness of g.
Example: for any v ∈ {1, . . . , n}, suppose that εv =

∑p
u=1 εu,v, where

p ∈ N∗ and (εu,v)(u,v)∈{1,...,p}×{1,...,n} are i.i.d. random variables having the

Laplace density: f(x) = (1/2)e−|x|, x ∈ R. Then | F(g)(x)| = 1/(1 + x2)p.
Therefore (3) is satisfied with c∗ = 1 and δ = 2p.

Assumptions on the weights. We suppose that the matrix

Γn =

(
1

n

n∑
v=1

wk(v)w`(v)

)
(k,`)∈{1,...,m}2

is nonsingular i.e. det(Γn) > 0. For the considered d∗ and any v ∈ {1, . . . , n},
we set

ad∗(v) =
1

det(Γn)

m∑
k=1

(−1)k+d∗γnd∗,kwk(v), (4)

where γnd∗,k denotes the determinant of the minor (d∗, k) of the matrix Γn.
Then, for any k ∈ {1, . . . ,m},

1

n

n∑
v=1

ad∗(v)wk(v) =


1 if k = d∗,

0 otherwise,

(5)

and

(ad∗(1), . . . , ad∗(n)) = argmin
(b1,...,bn)∈Rn

1

n

n∑
v=1

b2v.

Technical details can be found in Maiboroda (1996).
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We set

zn =
1

n

n∑
v=1

a2d∗(v) (6)

and, for technical reasons, we suppose that zn < n/e.

3 Wavelets and Besov balls

Wavelet basis. Let N ∈ N∗, φ be a father wavelet of a multiresolution
analysis on R and ψ be the associated mother wavelet. Assume that
– supp(φ) = supp(ψ) = [1−N,N ],

–
∫ N
1−N φ(x)dx = 1,

– for any v ∈ {0, . . . , N − 1},
∫ N
1−N x

vψ(x)dx = 0,
– φ and ψ are of class Cυ, υ > 1 + δ, where δ is the one in (3).

(For instance, the Daubechies wavelets). Set

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k).

Then there exists an integer τ satisfying 2τ ≥ 2N such that the collection

B = {φτ,k(.), k ∈ {0, . . . , 2τ−1}; ψj,k(.); j ∈ N−{0, . . . , τ−1}, k ∈ {0, . . . , 2j−1}},

(with an appropriate treatments at the boundaries) is an orthonormal basis

of L2([0, 1]) = {h : [0, 1]→ R;
∫ 1

0
h2(x)dx <∞}. We refer to Cohen et al.

(1993).
For any integer ` ≥ τ , any h ∈ L2([0, 1]) can be expanded on B as

h(x) =

2`−1∑
k=0

α`,kφ`,k(x) +

∞∑
j=`

2j−1∑
k=0

βj,kψj,k(x),

where αj,k and βj,k are the wavelet coefficients of h defined by

αj,k =

∫ 1

0

h(x)φj,k(x)dx, βj,k =

∫ 1

0

h(x)ψj,k(x)dx. (7)

Besov balls. Let M > 0, s > 0, p ≥ 1 and r ≥ 1. A function h belongs
to the Besov balls Bsp,r(M) if and only if there exists a constant M∗ > 0
(depending on M) such that the associated wavelet coefficients (7) satisfy ∞∑

j=τ−1

2j(s+1/2−1/p)

2j−1∑
k=0

|βj,k|p
1/p


r

1/r

≤M∗.

(We set βτ−1,k = ατ,k). In this expression, s is a smoothness parameter
and p and r are norm parameters. For a particular choice of s, p and r,
Bsp,r(M) contain the Hölder and Sobolev balls. See Meyer (1992).
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4 Estimators

Wavelet coefficients estimators. The first step to estimate fd∗ consists
in expanding fd∗ on B and estimating its unknown wavelet coefficients.
For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, we estimate αj,k =∫ 1

0
fd∗(x)φj,k(x)dx by

α̂j,k =
1

2πn

n∑
v=1

ad∗(v)

∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
e−ixYvdx, (8)

and βj,k =
∫ 1

0
fd∗(x)ψj,k(x)dx by

β̂j,k =
1

n

n∑
v=1

Gv1{|Gv|≤ηj}, (9)

where

Gv =
1

2π
ad∗(v)

∫ ∞
−∞

F (ψj,k)(x)

F(g)(x)
e−ixYvdx, (10)

for any random event A, 1A is the indicator function on A, ad∗(v) is defined
by (4),

ηj = θ2δj
√

nzn
ln(n/zn)

,

zn is defined by (6) and θ =
√

(C∗/2πc2∗)
∫∞
−∞(1 + x2)δ |F (ψ) (x)|2 dx (C∗,

c∗ and δ are those in (2) and (3)).
Note that, since ψ ∈ Cυ, there exists a constant C > 0 such that |F (ψ) (x)| ≤
C(1 + |x|)−υ, x ∈ R (see Meyer (1992)). Therefore, since υ > 1 + δ,∫∞
−∞(1 + x2)δ |F (ψ) (x)|2 dx ≤ C2

∫∞
−∞(1 + x2)δ(1 + |x|)−2υdx <∞ and θ

exists.
The idea of the thresholding in (9) is to do a selection on the observations:
when, for v ∈ {1, . . . , n}, Gv is too large, the observation Yv is neglected.
From a technical point of view, this allows us to estimate βj,k in an optimal
way under mild assumptions on (ad∗(v))v∈{1,...,n} (and, a fortiori, on the
weights of the mixture). Such a thresholding method has been introduced
by Delyon and Juditsky (1996) for regression wavelet estimation.

Statistical properties of α̂j,k and β̂j,k are investigated in Propositions 1, 2,
3 and 4.

We consider two wavelets estimators for fd∗ : a linear estimator and a hard
thresholding estimator.
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Linear estimator. Assuming that fd∗ ∈ Bsp,r(M) with p ≥ 2, we define the

linear estimator f̂L by

f̂L(x) =

2j0−1∑
k=0

α̂j0,kφj0,k(x), (11)

where α̂j,k is defined by (8), j0 is the integer satisfying

1

2

(
n

zn

)1/(2s+2δ+1)

< 2j0 ≤
(
n

zn

)1/(2s+2δ+1)

,

zn is defined by (6) and δ is the one in (3).

Note that f̂L is not adaptive since it depends on s, the smoothness param-
eter of fd∗ .

Hard thresholding estimator. We define the hard thresholding estimator
f̂H by

f̂H(x) =

2τ−1∑
k=0

α̂τ,kφτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

β̂j,k1{|β̂j,k|≥κλj}ψj,k(x), (12)

where α̂τ,k and β̂j,k are defined by (8) and (9), j1 is the integer satisfying

1

2

(
n

zn

)1/(2δ+1)

< 2j1 ≤
(
n

zn

)1/(2δ+1)

,

κ ≥ 8/3 + 2 + 2
√

16/9 + 4, λj is the threshold

λj = θ2δj
√
zn ln(n/zn)

n
,

zn is defined by (6) and δ is the one in (3).

Contrary to f̂L, f̂H is adaptive. The feature of the hard thresholding esti-
mator is to only estimate the ”large” unknown wavelets coefficients of fd∗
(those which contain the main characteristics of fd∗). Hard thresholding
estimators for other deconvolution problems than (1) can be found in Fan
and Koo (2002), Johnstone et al. (2004), Willer (2005) and Cavalier and
Raimondo (2007).

5 Minimax results

Upper bounds for f̂L and f̂H are given in Theorems 1 and 2 below. Further
details on the minimax approach (and rates of convergence for various models)
can be found in Tsybakov (2004).
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Theorem 1 Consider (1) under the assumptions of Section 2. Suppose that

fd∗ ∈ Bsp,r(M) with s > 0, p ≥ 2 and r ≥ 1. Let f̂L be (11). Then there exists
a constant C > 0 such that

E
(∫ 1

0

(
f̂L(x)− fd∗(x)

)2
dx

)
≤ C

(zn
n

)2s/(2s+2δ+1)

.

The proof of Theorem 1 uses a moment inequality on (8) and a suitable de-

composition of the MISE. Note that f̂L is constructed to minimize the MISE
as much as possible. For this reason, our benchmark will be the rate of con-

vergence: (zn/n)
2s/(2s+2δ+1)

.

Theorem 2 Consider (1) under the assumptions of Section 2. Let f̂H be (12).
Suppose that fd∗ ∈ Bsp,r(M) with r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and
s > (2δ + 1)/p}. Then there exists a constant C > 0 such that

E
(∫ 1

0

(
f̂H(x)− fd∗(x)

)2
dx

)
≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.

The proof of Theorem 2 is based on several probability results (moment in-
equalities, concentration inequality,. . . ) and a suitable decomposition of the
MISE.

Theorem 2 shows that, besides being adaptive, f̂H attains the same rate of
convergence than the one of f̂L up to the logarithmic term (ln(n/zn))2s/(2s+2δ+1).
Naturally, in the simplest case where m = 1, w1(1) = . . . = w1(n) = 1, zn = 1

and fd∗ = f1 = f , the rate of convergence attained by f̂H becomes the stan-
dard one for the classical convolution density model: (lnn/n)2s/(2s+2δ+1). See
(Fan and Koo 2002, Theorem 2).

Main conclusion and perspectives. We have developed a new adaptive
estimator f̂H for fd∗ under mild assumption on the weights of the mixture. It is
based on wavelet and thresholding. It has ”near-optimal” minimax properties
for a wide class of functions fd∗ . Possible perspectives of this work are

- to investigate the case where the weights of the mixture are unknown,
- to potentially improve the estimation of fd∗ by considering other kinds of

thresholding rules as the block thresholding one (BlockJS, . . . ). See e.g.
Cai (1999), Cai (2002), Pensky and Sapatinas (2009), Petsa and Sapatinas
(2009) and Chesneau et al. (2010).

6 Proofs

In this section, C represents a positive constant which may differ from one
term to another.
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6.1 Auxiliary results

Proposition 1 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let αj,k
and βj,k be the wavelet coefficients (7) of fd∗ . Then

– α̂j,k defined by (8) is an unbiased estimator of αj,k,
– for (Gv)v∈{1,...,n} defined by (10), we have

E

(
1

n

n∑
v=1

Gv

)
= βj,k.

Proof of Proposition 1. Since Xv and εv are independent, for any x ∈ R,
we have

E
(
e−ixYv

)
= E

(
e−ixXv

)
E
(
e−ixεv

)
= F(hv)(x)F(g)(x)

=

m∑
d=1

wd(v)F(fd)(x)F(g)(x). (13)

It follows from (13), (5) and the Plancherel-Parseval theorem that

E (α̂j,k) =
1

2πn

n∑
v=1

ad∗(v)

∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
E
(
e−ixYv

)
dx

=
1

2πn

n∑
v=1

ad∗(v)

∫ ∞
−∞

F (φj,k)(x)

F(g)(x)

m∑
d=1

wd(v)F(fd)(x)F(g)(x)dx

=

m∑
d=1

(
1

2π

∫ ∞
−∞
F (φj,k)(x)F(fd)(x)dx

)
1

n

n∑
v=1

ad∗(v)wd(v)

=
1

2π

∫ ∞
−∞
F (φj,k)(x)F(fd∗)(x)dx =

∫ 1

0

φj,k(x)fd∗(x)dx = αj,k.

Similarly, taking ψ instead of φ, we prove that

E

(
1

n

n∑
v=1

Gv

)
=

1

2πn

n∑
v=1

ad∗(v)

∫ ∞
−∞

F (ψj,k)(x)

F(g)(x)
E
(
e−ixYv

)
dx = βj,k.

This complete the proof of Proposition 1.

�

Proposition 2 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let αj,k be
the wavelet coefficient (7) of fd∗ and α̂j,k be (8). Then there exists a constant
C > 0 such that

E
(

(α̂j,k − αj,k)
2
)
≤ C22δj

zn
n
.
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Proof of Proposition 2. By Proposition 1, α̂j,k is an unbiased estimator of
αj,k. Therefore, using the independence of Y1, . . . , Yn, we obtain

E
(

(α̂j,k − αj,k)
2
)

= V (α̂j,k)

=
1

(2π)2n2

n∑
v=1

a2d∗(v)V

(∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
e−ixYvdx

)
.

(14)

For any v ∈ {1, . . . , n}, we have

V

(∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
e−ixYvdx

)
≤ E

∣∣∣∣∣
∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
e−ixYvdx

∣∣∣∣∣
2
 . (15)

Since Xv and εv are independent, the density of Yv is

wv(x) = (hv ? g)(x) =

∫ ∞
−∞

hv(t)g(x− t)dt, x ∈ R.

Therefore

E

∣∣∣∣∣
∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
e−ixYvdx

∣∣∣∣∣
2
 =

∫ ∞
−∞

∣∣∣∣∣
∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
e−ixydx

∣∣∣∣∣
2

wv(y)dy

=

∫ ∞
−∞

∣∣∣∣∣F
(
F (φj,k)(.)

F(g)(.)

)
(y)

∣∣∣∣∣
2

wv(y)dy.

(16)

Since, by (2), supx∈R g(x) ≤ C∗ and hv is a density, we have

sup
v∈{1,...,n}

sup
x∈R

wv(x) ≤ C∗ sup
v∈{1,...,n}

∫ ∞
−∞

hv(t)dt = C∗.

The Plancherel-Parseval theorem and (3) imply that

∫ ∞
−∞

∣∣∣∣∣F
(
F (φj,k)(.)

F(g)(.)

)
(y)

∣∣∣∣∣
2

wv(y)dy ≤ C∗

∫ ∞
−∞

∣∣∣∣∣F
(
F (φj,k)(.)

F(g)(.)

)
(y)

∣∣∣∣∣
2

dy

= 2πC∗

∫ ∞
−∞

∣∣∣∣∣F (φj,k)(x)

F(g)(x)

∣∣∣∣∣
2

dx

≤ 2π
C∗
c2∗

∫ ∞
−∞

(1 + x2)δ |F (φj,k) (x)|2 dx.

(17)
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Since |F (φj,k) (x)| = 2−j/2
∣∣F (φ) (x/2j)

∣∣, by a change of variables, we have∫ ∞
−∞

(1 + x2)δ |F (φj,k) (x)|2 dx = 2−j
∫ ∞
−∞

(1 + x2)δ
∣∣F (φ) (x/2j)

∣∣2 dx
=

∫ ∞
−∞

(1 + 22jx2)δ |F (φ) (x)|2 dx

≤ 22δj
∫ ∞
−∞

(1 + x2)δ |F (φ) (x)|2 dx. (18)

It follows from (16), (17) and (18) that

E

∣∣∣∣∣
∫ ∞
−∞

F (φj,k)(x)

F(g)(x)
e−ixYvdx

∣∣∣∣∣
2
 ≤ θ∗22δj , (19)

with θ∗ = 2π(C∗/c
2
∗)
∫∞
−∞(1 + x2)δ |F (φ) (x)|2 dx. By (14), (15) and (19), we

obtain

E
(

(α̂j,k − αj,k)
2
)
≤ θ∗22δj

1

(2π)2n

(
1

n

n∑
v=1

a2d∗(v)

)
≤ C22δj

zn
n
.

The proof of Proposition 2 is complete.

�

Proposition 3 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let βj,k be

the wavelet coefficient (7) of fd∗ and β̂j,k be (9). Then there exists a constant
C > 0 such that

E
((

β̂j,k − βj,k
)4)

≤ C24δj
(zn ln(n/zn))2

n2
.

Proof of Proposition 3. Thanks to Proposition 1, we have

βj,k = E

(
1

n

n∑
v=1

Gv

)
=

1

n

n∑
v=1

E(Gv1{|Gv|≤ηj}) +
1

n

n∑
v=1

E(Gv1{|Gv|>ηj}).(20)

Hence

E
((

β̂j,k − βj,k
)4)

= E

( 1

n

n∑
v=1

(
Gv1{|Gv|≤ηj} − E

(
Gv1{|Gv|≤ηj}

))
− 1

n

n∑
v=1

E(Gv1{|Gv|>ηj})

)4


≤ 8(A+B), (21)

where

A = E

( 1

n

n∑
v=1

(
Gv1{|Gv|≤ηj} − E(Gv1{|Gv|≤ηj})

))4

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and

B =

(
1

n

n∑
v=1

E(Gv1{|Gv|>ηj})

)4

.

Let us bound A and B, in turn. To bound A, we need the Rosenthal inequality
presented in lemma below (see Rosenthal (1970)).

Lemma 1 (Rosenthal’s inequality) Let p ≥ 2, n ∈ N∗ and (Uv)v∈{1,...,n}
be n zero mean independent random variables such that, for any v ∈ {1, . . . , n},
E(|Uv|p) <∞. Then there exists a constant C > 0 such that

E

(∣∣∣∣∣
n∑
v=1

Uv

∣∣∣∣∣
p)
≤ C max

 n∑
v=1

E (|Uv|p) ,

(
n∑
v=1

E
(
U2
v

))p/2 .

Applying the Rosenthal inequality with p = 4 and, for any v ∈ {1, . . . , n},

Uv = Gv1{|Gv|≤ηj} − E
(
Gv1{|Gv|≤ηj}

)
,

we obtain

A =
1

n4
E

( n∑
v=1

Uv

)4
 ≤ C 1

n4
max

 n∑
v=1

E
(
U4
v

)
,

(
n∑
v=1

E
(
U2
v

))2
 .

Using (19) with ψ instead of φ, we have, for any a ∈ {2, 4} and any v ∈
{1, . . . , n},

E (Uav ) ≤ 2aE
(
Gav1{|Gv|≤ηj}

)
≤ 2aηa−2j E

(
G2
v

)
≤ 2aθ2ηa−2j 22δja2d∗(v).

Hence, since zn < n/e,

A ≤ C
1

n4
max

24θ2η2j 22δj
n∑
v=1

a2d∗(v),

(
22θ222δj

n∑
v=1

a2d∗(v)

)2


≤ C
1

n4
max

(
24δj

n2z2n
ln(n/zn)

, 24δjn2z2n

)
= C24δj

z2n
n2
. (22)

Let us now bound B. Using the inequality: 1{|Gv|>ηj} ≤ (1/ηj)|Gv|, and again
(19) with ψ instead of φ, we obtain

1

n

n∑
v=1

E
(
|Gv|1{|Gv|>ηj}

)
≤ 1

ηj

(
1

n

n∑
v=1

E
(
G2
v

))

≤ 1

θ2δj

√
ln(n/zn)

nzn
θ222δjzn

= θ2δj
√
zn ln(n/zn)

n
. (23)
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Hence

B ≤ C24δj
(zn ln(n/zn))2

n2
. (24)

It follows from (21), (22), (24) and zn < n/e that

E
((

β̂j,k − βj,k
)4)

≤ C

(
24δj

z2n
n2

+ 24δj
(zn ln(n/zn))2

n2

)
≤ C24δj

(zn ln(n/zn))2

n2
.

This complete the proof of Proposition 3.

�

Proposition 4 For any integer j ≥ τ and any k ∈ {0, . . . , 2j − 1}, let βj,k be

the wavelet coefficient (7) of fd∗ and β̂j,k be (9). Then, for any κ ≥ 8/3 + 2 +

2
√

16/9 + 4,

P
(
|β̂j,k − βj,k| ≥ κλj/2

)
≤ 2

(zn
n

)2
.

Proof of Proposition 4. Using (20), we have

|β̂j,k − βj,k|

=

∣∣∣∣∣ 1n
n∑
v=1

(
Gv1{|Gv|≤ηj} − E

(
Gv1{|Gv|≤ηj}

))
− 1

n

n∑
v=1

E
(
Gv1{|Gv|>ηj}

)∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑
v=1

(
Gv1{|Gv|≤ηj} − E

(
Gv1{|Gv|≤ηj}

))∣∣∣∣∣+
1

n

n∑
v=1

E
(
|Gv|1{|Gv|>ηj}

)
.

By (23) we obtain

1

n

n∑
v=1

E
(
|Gv|1{|Gv|>ηj}

)
≤ θ2δj

√
zn ln(n/zn)

n
= λj .

Hence

S = P
(
|β̂j,k − βj,k| ≥ κλj/2

)
≤ P

(∣∣∣∣∣ 1n
n∑
v=1

(
Gv1{|Gv|≤ηj} − E

(
Gv1{|Gv|≤ηj}

))∣∣∣∣∣ ≥ (κ/2− 1)λj

)
.

Let us now present the Bernstein inequality (see Petrov (1995)).

Lemma 2 (Bernstein’s inequality) Let n ∈ N∗ and (Uv)v∈{1,...,n} be n zero
mean independent random variables such that there exists a constant M > 0
satisfying, for any v ∈ {1, . . . , n}, |Uv| ≤ M < ∞. Then, for any λ > 0, we
have

P

(∣∣∣∣∣
n∑
v=1

Uv

∣∣∣∣∣ ≥ λ
)
≤ 2 exp

(
− λ2

2
(∑n

v=1 E (U2
v ) + λM

3

)) .
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Let us set, for any v ∈ {1, . . . , n},

Uv = Gv1{|Gv|≤ηj} − E
(
Gv1{|Gv|≤ηj}

)
.

Then E(Uv) = 0,

|Uv| ≤ |Gv| 1{|Gv|≤ηj} + E
(
|Gv|1{|Gv|≤ηj}

)
≤ 2ηj

and, using again (19) with ψ instead of φ,

n∑
v=1

E
(
U2
v

)
=

n∑
v=1

V
(
Gv1{|Gv|≤ηj}

)
≤

n∑
v=1

E
(
G2
v

)
≤ θ222δj

n∑
v=1

a2d∗(v)

≤ θ222δjnzn.

It follows from the Bernstein inequality that

S ≤ 2 exp

− n2(κ/2− 1)2λ2j

2
(
θ222δjnzn +

2n(κ/2−1)λjηj
3

)
 .

Since

λjηj = θ2δj
√
zn ln(n/zn)

n
θ2δj

√
nzn

ln(n/zn)
= θ222δjzn

and

λ2j = θ222δj
zn ln(n/zn)

n
,

for any κ ≥ 8/3 + 2 + 2
√

16/9 + 4, we have

S ≤ 2 exp

− (κ/2− 1)2 ln(n/zn)

2
(

1 + 2(κ/2−1)
3

)
 = 2

(
n

zn

)− (κ/2−1)2

2(1+
2(κ/2−1)

3 ) ≤ 2
(zn
n

)2
.

This complete the proof of Proposition 4.

�

6.2 Proofs of the main results

Proof of Theorem 1. We expand the function fd∗ on B as

fd∗(x) =

2j0−1∑
k=0

αj0,kφj0,k(x) +

∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x),

where

αj0,k =

∫ 1

0

fd∗(x)φj0,k(x)dx, βj,k =

∫ 1

0

fd∗(x)ψj,k(x)dx.
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We have

f̂L(x)− fd∗(x) =

2j0−1∑
k=0

(α̂j0,k − αj0,k)φj0,k(x)−
∞∑
j=j0

2j−1∑
k=0

βj,kψj,k(x).

Since B is an orthonormal basis of L2([0, 1]), we have

E
(∫ 1

0

(
f̂L(x)− fd∗(x)

)2
dx

)
= A+B,

where

A =

2j0−1∑
k=0

E
(

(α̂j0,k − αj0,k)
2
)
, B =

∞∑
j=j0

2j−1∑
k=0

β2
j,k.

Using Proposition 2, we obtain

A ≤ C2j0(1+2δ) zn
n
≤ C

(zn
n

)2s/(2s+2δ+1)

.

Since p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Hence

B ≤ C2−2j0s ≤ C
(zn
n

)2s/(2s+2δ+1)

.

Therefore

E
(∫ 1

0

(
f̂L(x)− fd∗(x)

)2
dx

)
≤ C

(zn
n

)2s/(2s+2δ+1)

.

The proof of Theorem 1 is complete.

�

Proof of Theorem 2. We expand the function fd∗ on B as

fd∗(x) =

2τ−1∑
k=0

ατ,kφτ,k(x) +

∞∑
j=τ

2j−1∑
k=0

βj,kψj,k(x),

where

ατ,k =

∫ 1

0

fd∗(x)φτ,k(x)dx, βj,k =

∫ 1

0

fd∗(x)ψj,k(x)dx.

We have

f̂H(x)− fd∗(x)

=

2τ−1∑
k=0

(α̂τ,k − ατ,k)φτ,k(x) +

j1∑
j=τ

2j−1∑
k=0

(
β̂j,k1{|β̂j,k|≥κλj} − βj,k

)
ψj,k(x)

−
∞∑

j=j1+1

2j−1∑
k=0

βj,kψj,k(x).
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Since B is an orthonormal basis of L2([0, 1]), we have

E
(∫ 1

0

(
f̂H(x)− fd∗(x)

)2
dx

)
= R+ S + T, (25)

where

R =

2τ−1∑
k=0

E
(

(α̂τ,k − ατ,k)
2
)
, S =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k1{|β̂j,k|≥κλj} − βj,k
)2)

and

T =

∞∑
j=j1+1

2j−1∑
k=0

β2
j,k.

Let us bound R, T and S, in turn.

Using Proposition 2 and the inequalities: zn < n/e, zn ln(n/zn) < n and
2s/(2s+ 2δ + 1) < 1, we obtain

R ≤ C2τ(1+2δ) zn
n
≤ C zn

n
≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

. (26)

For r ≥ 1 and p ≥ 2, we have Bsp,r(M) ⊆ Bs2,∞(M). Since zn ln(n/zn) < n
and 2s/(2s+ 2δ + 1) < 2s/(2δ + 1), we have

T ≤ C

∞∑
j=j1+1

2−2js ≤ C2−2j1s ≤ C
(
zn ln(n/zn)

n

)2s/(2δ+1)

≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.

For r ≥ 1 and p ∈ [1, 2), we have Bsp,r(M) ⊆ B
s+1/2−1/p
2,∞ (M). Since s >

(2δ+ 1)/p, we have (s+ 1/2− 1/p)/(2δ+ 1) > s/(2s+ 2δ+ 1). So, using again
zn ln(n/zn) < n,

T ≤ C

∞∑
j=j1+1

2−2j(s+1/2−1/p) ≤ C2−2j1(s+1/2−1/p)

≤ C

(
zn ln(n/zn)

n

)2(s+1/2−1/p)/(2δ+1)

≤ C
(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.

Hence, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we
have

T ≤ C
(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

. (27)

The term S can be decomposed as

S = S1 + S2 + S3 + S4, (28)
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where

S1 =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k|≥κλj}1{|βj,k|<κλj/2}
)
,

S2 =

j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k|≥κλj}1{|βj,k|≥κλj/2}
)
,

S3 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κλj}1{|βj,k|≥2κλj}

)
and

S4 =

j1∑
j=τ

2j−1∑
k=0

E
(
β2
j,k1{|β̂j,k|<κλj}1{|βj,k|<2κλj}

)
.

Let us analyze each term S1, S2, S3 and S4 in turn.
Upper bounds for S1 and S3. We have{

|β̂j,k| < κλj , |βj,k| ≥ 2κλj

}
⊆
{
|β̂j,k − βj,k| > κλj/2

}
,

{
|β̂j,k| ≥ κλj , |βj,k| < κλj/2

}
⊆
{
|β̂j,k − βj,k| > κλj/2

}
and {

|β̂j,k| < κλj , |βj,k| ≥ 2κλj

}
⊆
{
|βj,k| ≤ 2|β̂j,k − βj,k|

}
.

So

max(S1, S3) ≤ C
j1∑
j=τ

2j−1∑
k=0

E
((

β̂j,k − βj,k
)2

1{|β̂j,k−βj,k|>κλj/2}

)
.

It follows from the Cauchy-Schwarz inequality and Propositions 3 and 4 that

E
((

β̂j,k − βj,k
)2

1{|β̂j,k−βj,k|>κλj/2}

)
≤
(
E
((

β̂j,k − βj,k
)4))1/2 (

P
(
|β̂j,k − βj,k| > κλj/2

))1/2
≤ C22δj

z2n ln(n/zn)

n2
.

Since zn ln(n/zn) < n and 2s/(2s+ 2δ + 1) < 1, we have

max(S1, S3) ≤ C
z2n ln(n/zn)

n2

j1∑
j=τ

2j(1+2δ) ≤ C z
2
n ln(n/zn)

n2
2j1(1+2δ)

≤ C
zn ln(n/zn)

n
≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

. (29)
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Upper bound for S2. Using Proposition 3 and the Cauchy-Schwarz inequality,
we obtain

E
((

β̂j,k − βj,k
)2)

≤
(
E
((

β̂j,k − βj,k
)4))1/2

≤ C22δj
zn ln(n/zn)

n
.

Hence

S2 ≤ C
zn ln(n/zn)

n

j1∑
j=τ

22δj
2j−1∑
k=0

1{|βj,k|>κλj/2}.

Let j2 be the integer defined by

1

2

(
n

zn ln(n/zn)

)1/(2s+2δ+1)

< 2j2 ≤
(

n

zn ln(n/zn)

)1/(2s+2δ+1)

. (30)

We have

S2 ≤ S2,1 + S2,2,

where

S2,1 = C
zn ln(n/zn)

n

j2∑
j=τ

22δj
2j−1∑
k=0

1{|βj,k|>κλj/2}

and

S2,2 = C
zn ln(n/zn)

n

j1∑
j=j2+1

22δj
2j−1∑
k=0

1{|βj,k|>κλj/2}.

We have

S2,1 ≤ C
zn ln(n/zn)

n

j2∑
j=τ

2j(1+2δ) ≤ C zn ln(n/zn)

n
2j2(1+2δ)

≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M),

S2,2 ≤ C
zn ln(n/zn)

n

j1∑
j=j2+1

22δj
1

λ2j

2j−1∑
k=0

β2
j,k = C

∞∑
j=j2+1

2j−1∑
k=0

β2
j,k ≤ C2−2j2s

≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.
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For r ≥ 1, p ∈ [1, 2) and s > (2δ + 1)/p, since Bsp,r(M) ⊆ Bs+1/2−1/p
2,∞ (M) and

(2s+ 2δ + 1)(2− p)/2 + (s+ 1/2− 1/p+ δ − 2δ/p)p = 2s, we have

S2,2 ≤ C
zn ln(n/zn)

n

j1∑
j=j2+1

22δj
1

λpj

2j−1∑
k=0

|βj,k|p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2 ∞∑
j=j2+1

2jδ(2−p)2−j(s+1/2−1/p)p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2

2−j2(s+1/2−1/p+δ−2δ/p)p

≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have

S2 ≤ C
(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

. (31)

Upper bound for S4. We have

S4 ≤
j1∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλj}.

Let j2 be the integer (30). We have

S4 ≤ S4,1 + S4,2,

where

S4,1 =

j2∑
j=τ

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλj}, S4,2 =

j1∑
j=j2+1

2j−1∑
k=0

β2
j,k1{|βj,k|<2κλj}.

We have

S4,1 ≤ C

j2∑
j=τ

2jλ2j = C
zn ln(n/zn)

n

j2∑
j=τ

2j(1+2δ) ≤ C zn ln(n/zn)

n
2j2(1+2δ)

≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.

For r ≥ 1 and p ≥ 2, since Bsp,r(M) ⊆ Bs2,∞(M), we have

S4,2 ≤
∞∑

j=j2+1

2j−1∑
k=0

β2
j,k ≤ C2−2j2s ≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.
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For r ≥ 1, p ∈ [1, 2) and s > (2δ + 1)/p, since Bsp,r(M) ⊆ Bs+1/2−1/p
2,∞ (M) and

(2s+ 2δ + 1)(2− p)/2 + (s+ 1/2− 1/p+ δ − 2δ/p)p = 2s, we have

S4,2 ≤ C

j1∑
j=j2+1

λ2−pj

2j−1∑
k=0

|βj,k|p

= C

(
zn ln(n/zn)

n

)(2−p)/2 j1∑
j=j2+1

2jδ(2−p)
2j−1∑
k=0

|βj,k|p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2 ∞∑
j=j2+1

2jδ(2−p)2−j(s+1/2−1/p)p

≤ C

(
zn ln(n/zn)

n

)(2−p)/2

2−j2(s+1/2−1/p+δ−2δ/p)p

≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.

So, for r ≥ 1, {p ≥ 2 and s > 0} or {p ∈ [1, 2) and s > (2δ + 1)/p}, we have

S4 ≤ C
(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

. (32)

It follows from (28), (29), (31) and (32) that

S ≤ C
(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

. (33)

Combining (25), (26), (27) and (33), we have, for r ≥ 1, {p ≥ 2 and s > 0}
or {p ∈ [1, 2) and s > (2δ + 1)/p},

E
(∫ 1

0

(
f̂H(x)− fd∗(x)

)2
dx

)
≤ C

(
zn ln(n/zn)

n

)2s/(2s+2δ+1)

.

The proof of Theorem 2 is complete.

�
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