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Lower bounding the boundary of a graph in
terms of its maximum or minimum degree

Tobias Müller∗ Attila Pór†‡ Jean-Sébastien Sereni†§

Abstract

A vertex v of a graph G is a boundary vertex if there exists a vertex
u such that the distance in G from u to v is at least the distance from
u to any neighbour of v. We give the best possible lower bound, up
to a constant factor, on the number of boundary vertices of a graph
in terms of its minimum degree (or maximum degree). This settles a
problem introduced by Hasegawa and Saito.

1 Introduction

Let G = (V, E) be a finite, simple and connected graph. For every vertex
v ∈ V , let N(v) := {u ∈ V : uv ∈ E} be the neighbourhood of v. A vertex
v ∈ V is a boundary vertex of G if there exists a vertex u ∈ V such that
dist(u, v) ≥ dist(u, w) for every w ∈ N(v). Such a vertex u is a witness for
v. The boundary of G is the set B(G) of boundary vertices of G.

The notion of boundary was introduced by Chartrand et al. [2, 3] and
further studied by Cáceres et al. [1], Hernando et al. [5], and Hasegawa and
Saito [4]. The latter proved that for every graph G,

δ(G) ≤ r

((
|B(G)| − 1

2

)
∗ 4

)
, (1)
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where δ(G) is the minimum degree of G. The right-hand side of (1) is the

(multicoloured) Ramsey number r
((|B(G)|−1

2

)
∗ 4

)
, that is the smallest integer

n such that each colouring of the edges of Kn with
(|B(G)|−1

2

)
colours yields

a monochromatic copy of K4. As shown by Xiaodong et al. [6], the Ramsey
number r(k ∗ 4) is Ω

(
5k

)
. Therefore, the lower bound on the number of

boundary vertices yielded by (1) cannot be better than

|B(G)| = Ω
(√

log(δ(G))
)

.

The following result is a significant improvement.

Theorem 1. For every graph G of maximum degree ∆,

|B(G)| ≥ log2(∆ + 2).

The bound provided by Theorem 1 is sharp up to a multiplicative factor
smaller than 3 log3(2) ≈ 1.89.

Theorem 2. For every positive integer n, there exists a graph Gn of mini-
mum degree δn := 3n−1 and maximum degree ∆n := 3n+n−1 with |B(Gn)| =
3n. Thus, |B(Gn)| = 3 (log3(δn) + 1) < 3 log3(∆n).

In particular, we deduce that the lower bound on the size of the boundary
in terms of the minimum degree implied by Theorem 1 is essentially best
possible, which answers a question of Hasegawa and Saito [4].

As it happens the vertex-connectivity of the graph Gn in Theorem 2 is
also 3n−1, which shows that being highly vertex-connected is not a sufficient
condition for having a large boundary.

2 Upper bound on the maximum degree

Throughout this section, let G = (V, E) be a graph. The endvertices of a
path P of G are the two vertices of degree 1 in P . A shortest path of G is
a path whose length is precisely the distance in G between its endvertices.
Given a shortest path P , an extension of P is a shortest path Q containing
P . If Q is an extension of P , we say that P extends to Q. The proof of
Theorem 1 relies on the following observation.

Lemma 3. Each shortest path of G extends to a shortest path between two
boundary vertices.
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Proof. Let P be a shortest path of G. If one of its endvertices is not a
boundary vertex, then P extends to a longer path (which is also a shortest
path between its endvertices), by the definition of a boundary vertex. As the
graph G is finite, we eventually obtain an extension of P whose endvertices
are boundary vertices.

For every vertex v ∈ V , let Cv : N(v) → 2B(G) be the mapping defined by

Cv(u) := {b ∈ B(G) : dist(b, u) < dist(b, v)}.

The proof of the following lemma relies on Lemma 3.

Lemma 4. Let v ∈ V . For each pair (u, u′) of neighbours of v, Cv(u) 6=
Cv(u

′). Moreover, Cv(u) is neither empty nor the whole set B(G).

Proof. By Lemma 3 there exists a path P containing the vertices u and u′

that is a shortest path between two boundary vertices b and b′. We may
assume that u is closer to b than u′. Let r := dist(u, b) and s := dist(u′, b′).

First suppose that uu′ 6∈ E. In this case we may assume that v belongs to
P . Since P is a shortest path, dist(v, b) = r+1 = dist(u′, b)−1. Consequently,
b ∈ Cv(u) \ Cv(u

′).
Assume now that uu′ ∈ E. Since dist(v, b) + dist(v, b′) ≥ dist(b, b′) =

r+s+1, it follows that dist(v, b) ≥ r+1 or dist(v, b′) ≥ s+1. By symmetry,
assume that dist(v, b) = r + 1. Since P is a shortest path between b and b′,
we deduce that dist(u′, b) = r + 1, and therefore b ∈ Cv(u) \ Cv(u

′).
Since the edge uv extends to a shortest path between two boundary ver-

tices, we infer that Cv(u) is neither empty nor the whole set B(G), which
concludes the proof.

Proof of Theorem 1. Let v be a vertex of G of degree at least 2. By Lemma 4,
there exists an injective mapping from N(v) to 2B(G) \ {∅,B(G)}. Therefore
the degree of v is at most 2|B(G)| − 2, which yields the desired result.

3 Construction of the graph Gn

Fix a positive integer n. Let the vertex-set of the graph Gn be V := A ∪ B
where

A := {0, 1, 2}n, B := {bi
j : j ∈ {1, . . . , n} and i ∈ {0, 1, 2}}.

Let the edge-set of the graph Gn be

E := {uv : u, v ∈ A} ∪
⋃

j∈{1,...,n}
i∈{0,1,2}

{vbi
j : v ∈ A and (v)j = i}.
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The vertex bi
j is joined to exactly those vertices v ∈ A whose j-th coordinate

is i. Notice that the vertices of A have degree 3n + n − 1, and those of B
have degree 3n−1. So it only remains to establish that B(Gn) = B.

Note that the diameter of G is 3. For every two indices i 6= i′, and
every j ∈ {1, 2, . . . , n}, the path bi

jvwbi′
j is a shortest path of length 3, where

v, w ∈ A with (v)j = i and (w)j = i′. Since every pair of vertices that are
not both in B lie on such a shortest path, it follows that B(G) = B.
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