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One can reduce the problem of proving that a polynomial is nonnegative, or more generally of proving that a system of polynomial inequalities has no solutions, to finding polynomials that are sums of squares of polynomials and satisfy some linear equality obtained by a Positivstellensatz. This problem itself reduces to a feasibility problem in semidefinite programming. Unfortunately, this last problem is in general not strictly feasible -the solution set then is a convex with empty interior, which precludes direct use of numerical optimization methods. We propose a workaround for this difficulty.

We implemented our method and illustrate its use with examples including automatically showing that various nonnegative polynomials that have been shown not to be sums of squares of polynomials are indeed nonnegative, as quotients of two sums of squares of polynomials.

INTRODUCTION

Consider the following problem: given a conjunction of polynomial equalities, and (wide and strict) polynomial inequalities, with integer or rational coefficients, decide whether this conjunction is satisfiable over R ; that is, whether one can assign real values to the variables so that the conjunction holds.

The decision problem for real polynomial inequalities can be reduced to quantifier elimination: given a formula F , whose atomic formulas are polynomial (in)equalities, containing quantifiers, provide another, equivalent, formula F ′ , whose atomic formulas are still polynomial (in)equalities, containing no quantifier. An algorithm for quantifier elimination over the theory of real closed fields (roughly speaking, (R, 0, 1, +, ×, ≤) was first proposed by Tarski [START_REF] Tarski | A Decision Method for Elementary Algebra and Geometry[END_REF] and Seidenberg [START_REF] Seidenberg | A new decision method for elementary algebra[END_REF], but this algorithm had non-elementary complexity and thus was impractical. Later, the cylindrical algebraic decomposition (CAD) algorithm was proposed by Collins [START_REF] Collins | Quantifier elimination for real closed fields by cylindrical algebraic decomposition[END_REF], with a doubly exponential complexity, but despite improvements [START_REF] Collins | Quantifier elimination by cylindrical algebraic decomposition -twenty years of progress[END_REF] CAD is still slow in practice and there are few implementations available.

Quantifier elimination is not the only decision method. Basu et al. [START_REF] Basu | On the combinatorial and algebraic complexity of quantifier elimination[END_REF]Theorem 3] proposed a satisfiability testing algorithm with complexity s k+1 d O(k) , where s is the number of distinct polynomials appearing in the formula, d is their maximal degree, and k is the number of variables. We know of no implementation of that algorithm. Tiwari [START_REF] Tiwari | An algebraic approach for the unsatisfiability of nonlinear constraints[END_REF] proposed an algorithm based on rewriting systems that is supposed to answer in reasonable time when a conjunction of polynomial inequalities has no solution.

Many of the algebraic algorithms are complex, which leads to complex implementations. This poses a methodology problem: can one trust their results? The use of computer programs for proving lemmas used in mathematical theorems was criticized in the case of Thomas Hales' proof of the Kepler conjecture. Similarly, the use of complex decision procedures (as in the proof assistant PVS1 ) or program analyzers (as, for instance, Astrée2 ) in order to prove the correctness of critical computer programs is criticized on grounds that these verification systems could themselves contain bugs.

One could either formally prove correct the implementation of the algorithm using a proof assistant such as Coq [START_REF] Coq | The Coq Proof Assistant Reference Manual[END_REF], as suggested by Mahboubi [START_REF] Mahboubi | Implementing the CAD algorithm inside the Coq system[END_REF], or one could arrange for the decision procedure to provide a witness of its result. The answer of the procedure is correct if the witness is correct, and correctness of the witness can be checked by a much simpler procedure. The idea is to reduce the size and complexity of the software to trust.

We know how to provide unsatisfiability witnesses for systems of complex equalities or linear rational inequalities. An additional benefit is that in both cases, the witness directly indicates the subset of hypotheses that was used to prove unsatisfiability; this is not only precious for the end-user (which hypotheses are actually useful) but also means that such procedures can be used as theory solvers within DPLL(T ) satisfiability modulo theory decision procedures [15, ch. 11]. It is therefore tempting to seek unsatisfiability witnesses for systems of polynomial inequalities.

Harrison [START_REF] Harrison | Verifying nonlinear real formulas via sums of squares[END_REF], Parrilo [START_REF] Parrilo | Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization[END_REF] have suggested looking for proof witnesses whose existence is guaranteed by the Positivstellensatz [START_REF] Stengle | A Nullstellensatz and a Positivstellensatz in semialgebraic geometry[END_REF]. They reduce the original problem to: given polynomials Pi and R, find polynomials Qi that are sums of squares such that i PiQi = R. This last problem easily reduces to a semidefinite programming (sdp) feasibility problem, solved by numerical methods. Peyrl and Parrilo [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF] explain how to obtain suitable witnesses for a sub-problem of the general problem that we study in this article, namely proving that a given polynomial is a sum of squares. Unfortunately, their method suffers from a caveat: it applies only under a strict feasibility condition: a certain convex geometrical object should not be degenerate, that is, it should have nonempty interior. Unfortunately it is very easy to obtain problems where this condition is not true. Equivalently, the method of rationalization of certificates suggested by Kaltofen et al. [START_REF] Kaltofen | Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars[END_REF] has a limiting requirement that the rationalized moment matrix remains positive semidefinite.

In this article, we explain how to work around the degeneracy problem: we propose a method to look for rational solutions to a general sdp feasibility problem. We have implemented our method and applied it to example.

WITNESSES

For many interesting theories, it is trivial to check that a given valuation of the variables satisfies a quantifier-free formula. A satisfiability decision procedure will in this case tend to seek a satisfiability witness and provide it to the user when giving a positive answer In contrast, if the answer is that the problem is not satisfiable, the user has to trust the output of the satisfiability testing algorithm, the informal meaning of which is "I looked carefully everywhere and did not find a solution.". In some cases, it is possible to provide unsatisfiability witnesses: solutions to some form of dual problem that show that the original problem had no solution. In order to introduce the Positivstellensatz approach, we first briefly explain two simpler, but similar, problems with unsatisfiability witnesses.

Unsatisfiability Witnesses for Linear Inequalities

Let C be a conjunction of (strict or wide) linear inequalities. A satisfiability witness is just a valuation such that the inequalities hold, and can be obtained by linear programming for instance.

Can we also have unsatisfiability witnesses? For the sake of simplicity, let us consider the case where all the inequalities are wide and take C to be L1(x1, . . . , xm) ≥ 0 ∧ • • • ∧ Ln(x1, . . . , xm) ≥ 0 where the Li are affine linear forms. Obviously, if α1, . . . , αn are nonnegative coefficients, then if C holds, then αiLi(x1, . . . , xm) ≥ 0 also holds. Thus, if one can exhibit α1, . . . , αn ≥ 0 such that αiLi = -1 -otherwise said, a trivial contradiction -, then C does not hold. The vector (α1, . . . , αn) is thus an unsatisfiability witness.

This refutation method is evidently sound, that is, if such a vector can be exhibited, then the original problem had no solution. It is also complete: one can always obtain such a vector if the original problem C is unsatisfiable, from Farkas' lemma [10, §6.4, theorem 6].

Unsatisfiability Witnesses for Complex Polynomial Equalities

Let C be a conjunction of polynomial equalities P1(x1, . . . , xm) = 0∧• • •∧Pn(x1, . . . , xm) = 0 whose coefficients lie in a subfield K (say, the rational numbers Q) of an algebraically closed field K ′ (say, the complex numbers C). C is said to be satisfiable if one can find a valuation in K ′ of the variables in C such that the equalities hold. We shall now show that one can get unsatisfiability witnesses that are checkable using simple methods, only involving adding and multiplying polynomials over K.

Obviously Apply that theorem to P = 1 and I the ideal generated by P1, . . . , Pm. P = 1. By the theorem, the Pi have no common solution if and only if 1 lies in I, that is, there exists Q1, . . . , Qm ∈ K ′ [x1, . . . , xn] such that i QiPi = 1. K ′ is a vector space over K, thus K has a supplemental space S in K ′ . By projecting the coefficients of the Qi onto K, one obtains polynomials Qi ∈ K[x1, . . . , xn] such that i QiPi = 1. Those Qi constitute a unsatisfiability witness for C. One can compute such a witness by dividing the unit polynomial by a Gröbner basis of the ideal generated by the Qi; the remainder is zero if such a witness exists [START_REF] Cox | Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra[END_REF].

Note that this algorithm is sound but incomplete when K ′ is not algebraically closed (e.g. the real field R). For instance, the polynomial x 2 + 1 has no real solution, yet the polynomial 1 is not a member of the ideal generated by it and this method will thus not conclude that x 2 + 1 = 0 has no real solution.

Nonnegativity Witnesses

To prove that a polynomial P is nonnegative, one simple method is to express it as a sum of squares of polynomials. One good point is that the degree of the polynomials involved in this sum of squares can be bounded, and even that the choice of possible monomials is constrained by the Newton polytope of P , as seen in §3.

Yet, there exist nonnegative polynomials that cannot be expressed as sums of squares, for instance this example due to Motzkin [START_REF] Reznick | Some concrete aspects of hilbert's 17th problem[END_REF]:

M = x 6 1 + x 4 2 x 2 3 + x 2 2 x 4 3 -3x 2 1 x 2 2 x 2 3 (1)
However, Artin's answer to Hilbert's seventeenth problem is that any nonnegative polynomial can be expressed as a sum of squares of rational functions [1]. It follows that such a polynomial can always be expressed as the quotient Q2/Q1 of two sums of squares of polynomials, which forms the nonnegativity witness, and can be obtained by solving P.Q1 -Q2 = 0.

Unsatisfiability Witnesses for Polynomial Inequalities

For the sake of simplicity, we shall restrict ourselves to wide inequalities (the extension to mixed wide/strict inequalities is possible). Let us first remark that the problem of testing whether a set of wide inequalities with coefficients in a subfield K of the real numbers is satisfiable over the real numbers is equivalent to the problem of testing whether a set of equalities with coefficients K is satisfiable over the real numbers: for each inequality P (x1, . . . , xm) ≥ 0, replace it by P (x1, . . . , xm)µ 2 = 0, where µ is a new variable. Strict inequalities can also be simulated as follows: Pi(x1, . . . , xm) = 0 is replaced by Pi(x1, . . . , xm).µ = 1 where µ a µ is a new variables. One therefore does not gain theoretical simplicity by restricting oneself to equalities.

Stengle [START_REF] Stengle | A Nullstellensatz and a Positivstellensatz in semialgebraic geometry[END_REF] proved two theorems regarding the solution sets of systems of polynomial equalities and inequalities over the reals (or, more generally, over real closed fields): a Nullstellensatz and a Positivstellensatz . Without going into overly complex notations, let us state consequences of these theorems. Let K be an ordered field (such as Q) and K ′ be a real closed field containing K (such as the real field R). The corollary of interest to us [START_REF] Lombardi | Une borne sur les degrés pour le théorème des zéros réel effectif[END_REF] is:

Theorem 2. Let {Z1, . . . , Zn z }, {P1, . . . , Pn p } be two (pos- sibly empty) sets of polynomials in K[x1, . . . , xm]. Then Z1(x1, . . . , xm) = 0∧• • •∧Zn z (x1, . . . , xm) = 0∧P1(x1, . . . , xm) ≥ 0 ∧ • • • ∧ Pn p (x1, . . . , xm) ≥ 0 has no solution in K ′m if
and only if there exist some polynomials A and B such that A + B = -1, A ∈ I(Z1, . . . , Zn z ) and B ∈ S(P1, . . . , Pn p ), where I(Z1, . . . , Zn z ) is the ideal generated by the Z1, . . . , Zn z and S(P1, . . . , Pn p ) is the semiring generated by the positive elements of K and P 2 1 , . . . , P 2 np .

Note that this result resembles the one used for linear inequalities (Section 2.1), replacing nonnegative numbers by sums of squares of polynomials.

For a simple example, consider the following system, which obviously has no solution:

-2 + y 2 ≥ 0 1 -y 4 ≥ 0 (2) A Positivstellensatz witness is y 2 (-2+y 2 )+1(1-y 4 )+2y 2 = -1. Another is 2 3 + y 2 3 (-2 + y 2 ) + 1 3 (1 -y 4 ) = -1. Consider the conjunction C: P1 ≥ 0 ∧ • • • ∧ Pn ≥ 0 where Pi ∈ Q[X1, . . . , Xm].
Consider the set S of products of the form w∈{0,1} {1,...,n} P w i i -that is, the set of all products of the Pi where each Pi appears at most once. Obviously, if one can exhibit nonnegative functions Qj such that P j ∈S QjPj = -1, then C does not have solutions. Theorem 2 guarantees that if C has no solutions, then such functions Qj exist as sum of squares of polynomials. We have again reduced our problem to the following problem: given polynomials Pj and R, find sums-of-squares polynomials Qj such that QjPj = R.

SOLVING THE SUMS-OF-SQUARES PROB-LEM

In §2.3 and §2.4, we have reduced our problems to: given polynomials (Pj ) 1≤j≤n and R in Q[X1, . . . , Xm], find poly-nomials that are sums of squares Qj such that

j PjQj = R (3) 
We wish to output the Qj as Qj = n j i=1 αjiL 2 ji where αji ∈ Q + and Lji are polynomials over Q. We now show how to solve this equation.

Reduction to Semidefinite Programming

Lemma 4 ensures that each Qj can be expressed as Mj QjM

T j
where Qj is a symmetric positive semidefinite matrix (noted Qj 0) and Mj is a vector of monomials.

Assume that we know the Mj, but we do not know the matrices Qj. The equality j Pj (Mj Qj(Mj) t ) = R directly translates into a system (S) of affine linear equalities over the coefficients of the Qj: j (Mj Qj(Mj) t )Pj -R is the zero polynomial, so its coefficients, which are affine linear combinations of the coefficients of the Qj matrices, should be zero; each of these combinations thus yields an affine linear equation. The additional requirement is that the Qj are positive semidefinite.

One can equivalently express the problem by grouping these matrices into a block diagonal matrix Q and express the system (S) of affine linear equations over the coefficients of Q. By Gaussian elimination in exact rational arithmetic, or other faster exact linear algebra methods, we can obtain a system of generators for the solution set of (S): Q ∈ -F0 + vect(F1, . . . , Fm). The problem is then to find a positive semidefinite matrix within this search space; that is, find α1, . . . , αm such that -F0 + i αiFi 0. This is the problem of semidefinite programming: finding a positive semidefinite matrix within an affine linear variety of symmetric matrices, optionally optimizing a linear form [START_REF] Vandenberghe | Semidefinite programming[END_REF][START_REF] Boyd | Convex Optimization[END_REF]. Powers and Wörmann [START_REF] Powers | An algorithm for sums of squares of real polynomials[END_REF], Parrilo [18, chapter 4] and others have advocated such kind of decomposition for finding whether a given polynomial is a sum of squares. Harrison [START_REF] Harrison | Verifying nonlinear real formulas via sums of squares[END_REF] generalized the approach to finding unsatisfiability witnesses.

For instance, the second unsatisfiability witness we gave for constraint system 2 is defined, using monomials {1, y}, 1 and {1, y}, by:

      2 3 0 0 1 3 1 3 0 0 0 0      
Conjunction C has no solution if and only if there exists a set of monomials and associated positive semidefinite matrices verifying some linear relations. Positive semidefiniteness is a semialgebraic property of the matrix coefficients, defined by the signs of the coefficients of the characteristic polynomial of the matrix, which are polynomials in the coefficients of the matrices. Thus, C has no solution if and only there is a set of monomials such that some set of wide polynomial inequalities has a solution.

It looks like finding an unsatisfiability witness for C just amounts to a sdp problem. There are, however, several problems to this approach:

1. For the general Positivstellensatz witness problem, the set of polynomials to consider is exponential in the number of inequalities.

2. Except for the simple problem of proving that a given polynomial is a sum of squares, we do not know the degree of the Qj in advance, so we cannot choose finite sets of monomials Mj. The dimension of the vector space for Qj grows quadratically in |Mj |.

3. Some sdp algorithms can fail to converge if the problem is not strictly feasible -that is, the solution set has empty interior, or, equivalently, is not full dimensional (that is, it is included within a strict subspace of the search space).

4. sdp algorithms are implemented in floating-point. If the solution space is not full dimensional, they tend to provide solutions Q that are "almost" positive semidefinite (all eigenvalues greater than -ǫ for some small positive ǫ), but not positive semidefinite.

Let us first consider the first two problems. Lombardi [START_REF] Lombardi | Une borne sur les degrés pour le théorème des zéros réel effectif[END_REF] provides a bound to the degrees of the polynomials necessary for the unsatisfiability certificates, but this bound is nonelementary (asymptotically greater than any tower of exponentials), so it is not of practical value. This bound, however, is only needed for the completeness of the refutation method: we are guaranteed to find the certificate if we look in a large enough space. It is not needed for soundness: if we find a correct certificate by looking in a portion of the huge search space, then that certificate is correct regardless. This means that we can limit the choice of monomials in Mj and hope for the best.

Regarding the second and third problems : what is needed is a way to reduce the dimension of the search space, ideally up to the point that the solution set is full dimensional. Peyrl and Parrilo [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF] suggests applying a result of Reznick [21, Th. 1]: in a sum-of-square decomposition of a polynomial P , only monomials x α 1 1 . . . x αn n such that 2(α1, . . . , αn) lies within the Newton polytope 3 of P can appear. This helps reduce the dimension if P is known in advance (as in a sum-of-squares decomposition to prove positivity) but does not help for more general equations.

Kaltofen et al. [START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-ofsquares of rational functions with rational coefficients[END_REF] suggest solving the sdp problem numerically and looking for rows with very small values, which indicate useless monomials that can be safely removed from the basis; in other words, they detect "approximate kernel vectors" from the canonical basis. Our method is somehow a generalization of theirs: we detect kernel vectors whether or not they are from the canonical basis.

In the next section, we shall investigate the fourth problem: how to deal with solution sets with empty interior.

How to deal with degenerate cases

In the preceding section, we have shown how to reduce the problem of finding unsatisfiability witnesses to a sdp feasibility problem, but pointed out one crucial difficulty: the possible degeneracy of the solution set. In this section, we explain more about this difficulty and how to work around it.

Let K be the cone of positive semidefinite matrices. We denote by M 0 a positive semidefinite matrix M , by M ≻ 0 a positive definite matrix M . y denotes a vector, yi is the 3 The Newton polytope of a polynomial P , or in Reznick's terminology, its cage, is the convex hull of the vertices (α1, . . . , αn) such that x α 1 1 . . . x αn n is a monomial of P .

i-th coordinate of y. x denotes a floating-point value close to an ideal real value x.

We consider a sdp feasibility problem: given a family of symmetric matrices F0, Fi, . . . , Fm, find (yi) 1≤i≤m such that

F (y) = -F0 + m i=1 yiFi 0. ( 4 
)
The Fi have rational coefficients, and we suppose that there is at least one rational solution for y such that F (y) 0. The problem is how to find such a solution.

If nonempty, the solution set S ⊆ R m for the y, also known as the spectrahedron, is semialgebraic, convex and closed; its boundary consists in y defining singular positive semidefinite matrices, its interior are positive definite matrices. We say that the problem is strictly feasible if the solution set has nonempty interior. Equivalently, this means that the convex S has dimension m.

Interior point methods used for semidefinite feasibility, when the solution set has nonempty interior, tend to find a solution in the interior away from the boundary. Around any solution y in the interior of S, there exists an open ball B(y, ǫ) ⊆ S. It follows that if we take y Q a rationalization of y such that y Q -y ≤ ǫ, then y Q is also in S, thus the problem is solved. This is why earlier works on sums-of-square methods [START_REF] Peyrl | Computing sum of squares decompositions with rational coefficients[END_REF] have proposed finding rational solutions only when the sdp problem is strictly feasible. In this article, we explain how to do away with the strict feasibility clause. Some problems are not strictly feasible. Geometrically, this means that the linear affine space {-F0 + m i=1 yiFi | (y1, . . . , ym) ∈ R m } is tangent to the semidefinite positive cone K. Alternatively, this means that the solution set is included in a strict linear affine subspace of R m . Intuitively, this means that we are searching for the solution in "too large a space"; for instance, if m = 2 and y lies in a plane, this happens if the solution set is a point or a segment of a line. In this case, some sdp algorithms may fail to converge if the problem is not strictly feasible, and those that converge, in general, will find a point slightly outside the solution set. The main contribution of this article is a workaround for this problem.

Simplified algorithm

If S has nonempty interior, then an interior point solving method will lead to a solution ỹ in this interior, assuming enough precision is used. Choose a very close approximation y to this vector using rational numbers (perhaps with only small denominators), then unless we are unlucky y is also the interior of S. Thus, F (y) is a solution of problem 4. We shall thus now suppose the problem has empty interior.

Suppose we have found a numerical solution ỹ, but it is nearly singular -meaning that it has some negative eigenvalues extremely close to zero. This means there is v such that |v.F (ỹ)| ≤ ǫ. Suppose that ỹ is very close to a rational solution y and, that v.F (y) = 0, and also that y is in the relative interior of S -that is, the interior of that set relative to the least linear affine space containing S. Then, by lemma 9, all solutions F (y ′ ) also satisfy v.F (y ′ ) = 0. Remark that the same lemma implies that either there is no rational solution in the relative interior, either that rational solutions are dense in S.

How can finding such a v help us? Obviously, if v ∈ m i=0 ker Fi, its discovery does not provide any more information than already present in the linear affine system -F0 + Vect (F1, . . . , Fm). We thus need to look for a vector outside that intersection of kernels; then, knowing such a vector will enable us to reduce the dimension of the search space from m to m ′ < m.

We therefore look for such a vector in the orthogonal complement of m i=0 ker Fi, which is the vector space generated by the rows of the F0, . . . , Fm. We therefore compute a full rank matrix B whose rows span the exact same space; this can be achieved by echelonizing a matrix obtained by stacking F0, . . . , Fm. Then, v = wB for some vector w. We thus look for w such that G(y).w = 0, with G(y) = BF (y)B T .

The question is how to find such a w with rational or, equivalently, integer coefficients. Another issue is that this vector should be "reasonable" -it should not involve extremely large coefficients, which would basically amplify the floating-point inaccuracies.

We can reformulate the problem as: find w ∈ Z m \ {0} such that both w and G(ỹ).w are "small", which can be combined into a single constraint α 2 G(ỹ).w 2 2 + w 2 2 , where α > 0 is a coefficient for tuning how much we penalize large values of G(ỹ).w 2 in comparison to large values of w 2 . If α is large enough, the difference between αG(ỹ) and its integer rounding M is small. We currently choose α = α0/ G(ỹ) , with M the Frobenius norm of M (the Euclidean norm for n × n matrices being considered as vectors in R n 2 ), and α0 = 10 15 .

We therefore try searching for a small (with respect to the Euclidean norm) nonzero vector that is an integer linear combination of the li = (0, . . . , 1, . . . , 0, mi) where mi is the i-th row of M and the 1 is at the i-th position. Note that, because of the diagonal of ones, the li form a free family.

This problem is known as finding a short vector in an integer lattice, and can be solved by the Lenstra-Lenstra-Lovász (LLL) algorithm. This algorithm outputs a free family of vectors si such that s1 is very short. Other vectors in the family may also be very short.

Once we have such a small vector w, we can compute

F ′ 0 , . . . , F ′ m ′ such that    -F ′ 0 + m ′ i=1 y ′ i F ′ i | (y 1 , . . . , y m ′ ) ∈ R m ′    = -F 0 + m i=1 y i F i | (y 1 , . . . , ym) ∈ R m ∩ {F | F.v = 0} (5)
This is just linear algebra over rational numbers and may be performed by Gaussian elimination, for example. The resulting system has lower search space dimension m ′ < m, yet the same solution set dimension. By iterating the method, we eventually reach a search space dimension equal to the dimension of the solution set.

More efficient algorithm

In lieu of performing numerical sdp solving on F = -F0 + yiFi 0, we can perform it in lower dimension on -(BF0B T )+ yi(BFiB T ) 0. Recall that the rows of B span the orthogonal complement of m i=0 ker Fi, which is necessarily included in ker F ; we are therefore just leaving out dimensions that always provide null eigenvalues.

The reduction of the sums-of-squares problem (Eq. 3) provides matrices with a fixed block structure, one block for each Pj: for a given problem all matrices F0, F1, . . . , Fm are block diagonal with respect to that structure. We therefore perform the test for positive semidefiniteness of the proposed F (y) solution block-wise, in exact arithmetic. This test may for instance be done by computing the Gaussian reduction of F using the algorithm for conversion of a positive semidefinite matrix to a sum-of-square from §A.2, which fails if and only if the matrix is not positive semidefinite. For the blocks not found to be positive semidefinite, the corresponding blocks of the matrices B and F (ỹ) are computed, and LLL is performed.

As described so far, only a single v kernel vector would be supplied by LLL for each block not found to be positive semidefinite. In practice, this tends to lead to too many iterations of the main loop: the dimension of the search space does not decrease quickly enough. We instead always take the first vector v (1) of the LLL-reduced basis, then accept following vectors

v (i) if v (i) 1 ≤ β. v (1) 1 and G(ỹ).v (i) 2 ≤ γ. G(ỹ).v (1) 2.
For practical uses, we took β = γ = 10.

When looking for the next iteration ỹ′ , we use the ỹ from the previous iteration as a hint: instead of starting the sdp search from an arbitrary point, we start it near the solution found by the previous iteration. We perform least-square minimization so that -

F ′ 0 + m ′ i=1 y ′ i F ′ i is the best approxi- mation of -F0 + m i=1 yiFi | (y1, . . . , ym).

Implementation details

The reduction from the problem expressed in Eq. 3 to sdp with rational solutions was implemented in Sage. 4 For efficiency, the rational sdp solving was implemented in C++. Exact rational arithmetic uses the GMP extended precision library;5 ; exact linear algebra is performed by the C++ template library Boost uBlas. 6 Numerical sdp solving is performed using DSDP 7 [4, 3] as a library. LLL reduction is performed by fpLLL. 8 Least square projection is performed using Lapack's DGELS. The implementation is available from the author's web page. 9 Exact precision rational linear arithmetic is expensive when the size of the numerators and denominators grows, which is unfortunately the case in our settings. Our choice of implementation is obviously from optimal; we expect clever integer linear arithmetic such as provided by Linbox to perform better. 10

Extensions

As seen in §4, our algorithm tends to produce solutions with large numerators and denominators in the sum-of-square decomposition. We experimented with methods to get F (y ′ ) ≈ F (y) such that F (y ′ ) has a smaller common denominator. This reduces to the following problem: given v ∈ f0 + vect(f1, . . . , fn) a real (floating-point) vector and f0, . . . , fn rational vectors, find y ′ 1 , . . . , yn such that v ′ = f0+ i y ′ i fi ≈ v and the numerators of v ′ have a tunable magnitude (pa-rameter µ). One can obtain such a result by LLL reduction of the rows of:

M =      Z(βµ(f0 -v)) Z(βf0) 1 0 . . . 0 Z(βµf1) Z(βf1) 0 1 . . . . . . . . . 0 . . . Z(βµfn) Z(βfn) 0 1      (6) 
where β is a large parameter (say, 10 19 ) and Z(v) stands for the integer rounding of v. After LLL reduction, one of the short vectors in the basis will be a combination n i yili where l0, . . . , ln are the lines of M , such that y0 = 0. Because of the large βµ coefficient, y0(f0v) + n i=1 yifi should be very small, thus f0 + n i=1 yifi ≈ v. But among those vectors, the algorithm chooses one such that n i=0 yifi is not large -and among the suitable v ′ , the vector of numerators is proportional to n i=0 yifi. After computing such a y ′ , we check whether F (y ′ ) 0; we try this for a geometrically increasing sequence of µ and stop as soon as we find a solution. The matrices Qj then have simpler coefficients than the original ones. Unfortunately, it does not ensue that the sums of square decompositions of these matrices have small coefficients.

We have so far considered sdp feasibility problems only. It is also possible to use the same method for optimization problems. First, the feasibility problem should be solved by the above method; a parametrization -F ′ 0 +vect(F ′ 1 , . . . , F ′ m ) of the linear affine span of the solution set is thus computed, as well as a point -

F ′ 0 + i y ′ i F ′ i 0.
In this new parametrization, the problem is strictly feasible, and one can use a sdp system to obtain y ′′ such that F ′ (y ′′ ) = -F ′ 0 + i y ′′ i F ′ i 0 numerically and F ′ (y ′′ ) maximizes a linear form. If, after rationalizing y ′′ , F ′ (y ′′ ) is not found to be positive semidefinite (because it has some slightly negative eigenvalues), one can consider a barycenter F ′′ (ǫy ′ + (1ǫ)y ′′ ) for small

Wrong leads

A crucial issue when using multiple vectors from the output of LLL is to know which vectors can safely be considered to be vectors from the kernel of the approximated matrices: if we take vectors that are not from that kernel, then we risk overconstraining the search space and getting no solution from the algorithm.

We considered computing the signature of a rationalization of the F (ỹ) matrix, using Gaussian reduction, and taking as many leading vectors of th e output of the LLL basis as F (ỹ) has nonpositive eigenvalues. Unfortunately, this does not work -this scheme may take too many vectors.

We exhibited witnesses that each of the 8 semidefinite positive forms listed by Reznick [START_REF] Reznick | Some concrete aspects of hilbert's 17th problem[END_REF], which are not sums of squares of polynomials, are quotients of sums of squares (Motzkin's M , Robinson's R and f , Choi and Lam's F , Q, S, H and Schmüdgen's q). These examples include polynomials with up to 6 variables and search spaces up to dimension 1155. We did likewise with delzell, laxlax and leepstarr2 from [START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-ofsquares of rational functions with rational coefficients[END_REF]. The maximal computation time was 7'. In some cases, it was necessary to initialize the numerical solver with a nonzero solution matrix in order to avoid the undesirable trivial solution Q1 = Q2 = 0.

We also exhibited a witness that the Vor1 polynomial cited by Safey El Din [START_REF] Madden | Computing the global optimum of a multivariate polynomial over the reals[END_REF] is a sum of squares. 11 We could not apply our method to the Vor2 polynomial because of our inefficient implementation of exact linear algebra. 11 Tool logs and witnesses are available from http://www-verimag.imag.fr/~monniaux/download/sdp_logs.zip.

CONCLUSION AND FURTHER WORKS

We have described a method for solving sdp problems in rational arithmetic. This method can be used to solve sums-of-squares problems even in geometrically degenerate cases. We illustrated this method with applications to proving the nonnegativity of polynomials, or the unsatisfiability of systems of polynomials. The method then provides easily checkable proof witnesses.

One weakness of the method is that it tends to provide "unnatural" witnesses -they tend to have very large coefficients. These are machine checkable but provide little insights to the reader.

A more serious limitation for proofs of unsatisfiability is the very high cost of application of the Positivstellensatz. There is the exponential number of polynomials to consider, and the unknown number of monomials. It would be very interesting if there could be some simple results, similar to the Newton polytope approach, for reducing the dimension of the search space or the number of polynomials to consider. Another question is whether it is possible to define sdp problems from Positivstellensatz equations for which the spectrahedron has rational points only at its relative boundary.

While our method performed well on examples, and is guaranteed to provide a correct answer if it provides one, we have supplied no completeness proof -that is, we have not proved that it necessarily provides a solution if there is one. This is due to the use of floating-point computations. One appreciable result would be that a solution should be found under the assumption that floating-point computations are precise up to ǫ, for a value of ǫ and the various scaling factors in the algorithm depending on the values in the problem or the solution.

A desirable property of an unsatisfiability proof procedure is that is uses only a minimal set of hypotheses (or, better, a set of hypotheses of minimal cardinality). This would correspond to finding a diagonal solution matrix Q with a maximal set of zero diagonal blocks (or a set of maximal cardinal). Heuristically, one would expect that it helps to look for Q of minimal rank within the solution set. This, however, would involve finding solutions on the relative boundary of the solution set, while our method finds solution in the relative interior of that set. In any case, it is possible to use a minimization procedure for the set of hypotheses [6, min function].

It seems possible to combine our reduction method based on LLL with the Newton iterations suggested by [START_REF] Kaltofen | Exact certification in global polynomial optimization via sums-ofsquares of rational functions with rational coefficients[END_REF][START_REF] Kaltofen | Exact certification of global optimality of approximate factorizations via rationalizing sums-of-squares with floating point scalars[END_REF], as an improvement over their strategy for detection of useless monomials and reduction of the search space. Again, further experiment is needed.

B. GAUSSIAN REDUCTION AND TEST OF POSITIVE SEMIDEFINITENESS

This appendix is not intended to be included in the conference proceeding. It recalls known results about positive semidefinite forms and their Gaussian reduction.

Theorem 11 (Sylvester's criterion). A symmetric matrix A = (aij) 1≤i≤n,1≤j≤n is positive definite if and only if its leading principal minors (the determinants of the "top left" k×k squares, |(aij) 1≤i≤k,1≤j≤k , for k ≤ n) are positive.

Note that this criterion cannot be immediately extended to semidefinite positive matrices by substituting "nonnegative" for "positive". For instance, all the leading minors of the following matrix are nonnegative, yet the matrix is not semidefinite positive:

  1 1 1 1 1 1 1 1 0  
A straightforward implementation of this criterion would compute n determinants, each with cost Θ(n 3 ) arithmetic operations, thus a cost Θ(n 4 ). This is however unneeded: instead, we compute a Gaussian reduction of the quadratic form: If the initial m is positive definite, then so it will be at each iteration the restriction of m to the lines and rows i . . . n; conversely, if it is not, then the program will terminate.

At the beginning of an iteration, the matrix formed from the rows and columns i . Suppose that the entrance of iteration i, m[i . . . n, i . . . n] is positive semidefinite. If mi,i = 0, then the ith base vector is in the isotropic cone of the matrix, thus of its kernel, and the row i must be zero. Otherwise, mi,i > 0. By adding ǫ to the diagonal of the matrix, we would have a positive definite matrix and thus the output of the loop iteration would also be positive definite, as above. By ǫ → 0 and the fact that the set of positive semidefinite matrices is topologically closed, then the output of the loop iteration is also positive semidefinite.

Finally, the same algorithm can also be used for transforming a semidefinite positive matrix into a "sum of squares" form, also known as Gaussian reduction: The output variable is then a list of couples (ci, vi) such that the original matrix m is equal to i civ T i vi (with vi row vectors). Otherwise said, for any row vector u, umu T = i ci u, vi 2 .

  f o r i :=1 to n do begin i f m[ i , i ] <= 0 then goto n o n p o s i t i v e d e f i n i t e v := m. row ( i ) / m[ i , i ] m := mm[ i , i ] * v . tr a n s p o s e ( ) * v end

  . . n, noted m[i . . . n, i . . . n] is positive semidefinite, by induction hypothesis; by Th. 11 its leading principal minors are positive.The m := mm[i, i] * v.transpose() * v line can be decomposed into: it subtracts the first line, scaled, from the remaining lines (thus changing none of the leading principal minors), then it zeroes the first line. Before zeroeing, the rows and columns i . . . n look like:The leading principal minors of m[i + 1 . . . n, i + 1 . . . n] are the same as those of the above matrix, times mi,i. They are also positive, thus, by Th. 11, this matrix is also positive definite. Note that since the final result is not affected by the columns and rows above i, we could have used fewer operations.A minor modification of this algorithm decides positive semidefiniteness:f o r i :=1 to n do begin i f m[ i , i ] <0 then goto n o n p o s i t i v e d e m i d e f i n i t e i f m[ i , i ] = 0 then i f m. row ( i ) <> 0 goto n o n p o s i t i v e d e m i d e f i n i t e e l s e begin v := m. row ( i ) / m[ i , i ] m := mm[ i , i ] * v . t r a n s p o s e ( ) * v end end

  f o r i :=1 to n do begin i f m[ i , i ] < 0 then goto n o n p o s i t i v e d e m i d e f i n i t e i f m[ i , i ] = 0 then i f m. row ( i ) <> 0 goto n o n p o s i t i v e d e m i d e f i n i t e e l s e begin v := m. row ( i ) / m[ i , i ] output . append (m[ i , i ] , v ) m := mm[ i , i ] * v . t r a n s p o s e ( ) * v end end

http://pvs.csl.sri.com/

http://www.astree.ens.fr/

Sage is a computer algebra system implemented within the Python programming language, available under the GNU GPL from http://www.sagemath.org.

http://www.gmplib.org/

See http://www.boost.org
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EXAMPLES

The following system of inequalities has no solution (neither Redlog nor QepCad nor Mathematica 5 can prove it; Mathematica 7 can):

This system was concocted by choosing P1, P2, P3 somewhat haphazardly and then P4 = -(P1 + (3 + (x + 5y) 2 )P2 + P3 + 1 + x 2 ), which guaranteed the system had no solution. The initial 130 constraints yield a search space of dimension 145, and after four round of numeric solving one gets an unsatisfiability witness (sums of squares Qj such that 4 j=1 PjQj + Q5 = 0). Total computation time was 4.4 s. Even though there existed a simple solution (note the above formula for P4), our algorithm provided a lengthy one, with large coefficients (and thus unfit for inclusion here).

Motzkin's polynomial M (Eq. 1) cannot be expressed as a sum of squares, but it can be expressed as a quotient of two sums of squares. We attempted solving M.Q1 -Q2 = 0 for sums of squares Q1 and Q2 built from homogeneous monomials of respective total degrees 3 and 6 (lesser degrees yield no solutions). The equality relation over the polynomials yields 66 constraints over the matrix coefficients and a search space of dimension 186. Four cycles of SDP programming and LLL are then needed, total computation time was 4.1 s.

The following solution is obtained: 

APPENDIX A. LEMMAS

A.1 Sums of squares and semidefinite positive matrices

Proof. v T v is obviously symmetric. Let λ be a eigenvalue for it, and x a corresponding eigenvector:

. Since x = 0, λ must be nonnegative. 

i vi, by lemma 3 is symmetric positive semidefinite. Q = i Qi thus fulfills the conditions. Let us remark that the converse is correct for matrices over R, by diagonalization: any symmetric positive semidefinite matrix is a sum of squares of linear forms. Such a decomposition can also be obtained over Q by applying the Gaussian reduction algorithm from §B.

A.2 Geometry of the semidefinite cone

Our algorithm from §3.3 relies crucially on some results about the geometry of the boundary of the semidefinite cone.

Definition 5. The affine closure of a set S is the least affine space containing S. The relative interior of a set S is the interior of S with respect to the affine closure of S.

The following lemmas are from basic convex geometry: Lemma 6. Let S be a nonempty convex set. S then has nonempty relative interior, which is obtained by taking λa + (1λ)b for all a, b ∈ S and 0 < λ < 1. The affine closure of S is the same as the affine closure of the relative interior of S. Let us now suppose F ′ ∈ I. The same reasoning could have been held after exchanging F and F ′ , thus ker F = ker F ′ . Thus, by lemma 6 for all ∆ in the tangent space of the affine closure of E ∩ K, ∆ ∈ H.

Let ∆ ∈ H. For sufficiently small t, F + t∆ has the same number of strictly positive eigenvalues as F , which, since F is semidefinite positive, is ndim ker F . Note nthe number of negative eigenvalues of F + t∆; then n = (n-dim ker F )+n-+dim ker(F +t∆). Since ker F = ker ∆, dim ker(F + t∆) ≥ dim ker F , thus n-≤ 0 and F + t∆ cannot have negative eigenvalues. F +t∆ is thus semidefinite positive, and also belongs to E. ∆ is thus in the tangent space of the affine closure of E ∩ K.

Corollary 10. Let E be a linear affine subspace of the n × n symmetric matrices such that E ∩ K = ∅. The relative interior of E ∩ K consists of the matrices of maximal rank in E ∩ K.