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ABSTRACT
One can reduce the problem of proving that a polynomial
is nonnegative, or more generally of proving that a system
of polynomial inequalities has no solutions, to finding poly-
nomials that are sums of squares of polynomials and satisfy
some linear equality obtained by a Positivstellensatz. This
problem itself reduces to a feasibility problem in semidef-
inite programming. Unfortunately, this last problem is in
general not strictly feasible — the solution set then is a
convex with empty interior, which precludes direct use of
numerical optimization methods. We propose a workaround
for this difficulty.

We implemented our method and illustrate its use with
examples including automatically showing that various non-
negative polynomials that have been shown not to be sums
of squares of polynomials are indeed nonnegative, as quo-
tients of two sums of squares of polynomials.

Categories and Subject Descriptors
G.1.6 [Numerical analysis]: Optimization—Convex pro-
gramming ; F.4.1 [Mathematical logic and formal lan-

guages]: Mathematical logic—Mechanical theorem proving

General Terms
Algorithms, Verification

1. INTRODUCTION
Consider the following problem: given a conjunction of

polynomial equalities, and (wide and strict) polynomial in-
equalities, with integer or rational coefficients, decide whether
this conjunction is satisfiable over R ; that is, whether one
can assign real values to the variables so that the conjunc-
tion holds.

The decision problem for real polynomial inequalities can
be reduced to quantifier elimination: given a formula F ,
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whose atomic formulas are polynomial (in)equalities, con-
taining quantifiers, provide another, equivalent, formula F ′,
whose atomic formulas are still polynomial (in)equalities,
containing no quantifier. An algorithm for quantifier elimi-
nation over the theory of real closed fields (roughly speaking,
(R, 0, 1,+,×,≤) was first proposed by Tarski [26] and Sei-
denberg [24], but this algorithm had non-elementary com-
plexity and thus was impractical. Later, the cylindrical al-
gebraic decomposition (CAD) algorithm was proposed by
Collins [7], with a doubly exponential complexity, but de-
spite improvements [8] CAD is still slow in practice and there
are few implementations available.

Quantifier elimination is not the only decision method.
Basu et al. [2, Theorem 3] proposed a satisfiability testing

algorithm with complexity sk+1dO(k), where s is the num-
ber of distinct polynomials appearing in the formula, d is
their maximal degree, and k is the number of variables. We
know of no implementation of that algorithm. Tiwari [27]
proposed an algorithm based on rewriting systems that is
supposed to answer in reasonable time when a conjunction
of polynomial inequalities has no solution.

Many of the algebraic algorithms are complex, which leads
to complex implementations. This poses a methodology
problem: can one trust their results? The use of computer
programs for proving lemmas used in mathematical theo-
rems was criticized in the case of Thomas Hales’ proof of
the Kepler conjecture. Similarly, the use of complex de-
cision procedures (as in the proof assistant PVS1) or pro-
gram analyzers (as, for instance, Astrée2) in order to prove
the correctness of critical computer programs is criticized
on grounds that these verification systems could themselves
contain bugs.

One could either formally prove correct the implementa-
tion of the algorithm using a proof assistant such as Coq
[12], as suggested by Mahboubi [17], or one could arrange
for the decision procedure to provide a witness of its re-
sult. The answer of the procedure is correct if the witness is
correct, and correctness of the witness can be checked by a
much simpler procedure. The idea is to reduce the size and
complexity of the software to trust.

We know how to provide unsatisfiability witnesses for sys-
tems of complex equalities or linear rational inequalities. An
additional benefit is that in both cases, the witness directly
indicates the subset of hypotheses that was used to prove un-
satisfiability; this is not only precious for the end-user (which
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hypotheses are actually useful) but also means that such
procedures can be used as theory solvers within DPLL(T )
satisfiability modulo theory decision procedures [15, ch. 11].
It is therefore tempting to seek unsatisfiability witnesses for
systems of polynomial inequalities.

Harrison [11], Parrilo [18] have suggested looking for proof
witnesses whose existence is guaranteed by the Positivstel-
lensatz [25]. They reduce the original problem to: given
polynomials Pi and R, find polynomials Qi that are sums of
squares such that

∑

i
PiQi = R. This last problem easily re-

duces to a semidefinite programming (sdp) feasibility prob-
lem, solved by numerical methods. Peyrl and Parrilo [19]
explain how to obtain suitable witnesses for a sub-problem
of the general problem that we study in this article, namely
proving that a given polynomial is a sum of squares. Unfor-
tunately, their method suffers from a caveat: it applies only
under a strict feasibility condition: a certain convex geo-
metrical object should not be degenerate, that is, it should
have nonempty interior. Unfortunately it is very easy to
obtain problems where this condition is not true. Equiva-
lently, the method of rationalization of certificates suggested
by Kaltofen et al. [13] has a limiting requirement that the
rationalized moment matrix remains positive semidefinite.

In this article, we explain how to work around the degen-
eracy problem: we propose a method to look for rational
solutions to a general sdp feasibility problem. We have im-
plemented our method and applied it to example.

2. WITNESSES
For many interesting theories, it is trivial to check that

a given valuation of the variables satisfies a quantifier-free
formula. A satisfiability decision procedure will in this case
tend to seek a satisfiability witness and provide it to the user
when giving a positive answer

In contrast, if the answer is that the problem is not sat-
isfiable, the user has to trust the output of the satisfiability
testing algorithm, the informal meaning of which is “I looked
carefully everywhere and did not find a solution.”. In some
cases, it is possible to provide unsatisfiability witnesses: so-
lutions to some form of dual problem that show that the
original problem had no solution. In order to introduce the
Positivstellensatz approach, we first briefly explain two sim-
pler, but similar, problems with unsatisfiability witnesses.

2.1 Unsatisfiability Witnesses for Linear In-
equalities

Let C be a conjunction of (strict or wide) linear inequali-
ties. A satisfiability witness is just a valuation such that the
inequalities hold, and can be obtained by linear program-
ming for instance.

Can we also have unsatisfiability witnesses? For the sake
of simplicity, let us consider the case where all the inequal-
ities are wide and take C to be L1(x1, . . . , xm) ≥ 0 ∧ · · · ∧
Ln(x1, . . . , xm) ≥ 0 where the Li are affine linear forms.
Obviously, if α1, . . . , αn are nonnegative coefficients, then if
C holds, then

∑

αiLi(x1, . . . , xm) ≥ 0 also holds. Thus,
if one can exhibit α1, . . . , αn ≥ 0 such that

∑

αiLi = −1
— otherwise said, a trivial contradiction —, then C does
not hold. The vector (α1, . . . , αn) is thus an unsatisfiability
witness.

This refutation method is evidently sound, that is, if such
a vector can be exhibited, then the original problem had no
solution. It is also complete: one can always obtain such a

vector if the original problem C is unsatisfiable, from Farkas’
lemma [10, §6.4, theorem 6].

2.2 Unsatisfiability Witnesses for Complex Poly-
nomial Equalities

Let C be a conjunction of polynomial equalities P1(x1, . . . , xm) =
0∧· · ·∧Pn(x1, . . . , xm) = 0 whose coefficients lie in a subfield
K (say, the rational numbers Q) of an algebraically closed
field K′ (say, the complex numbers C). C is said to be sat-
isfiable if one can find a valuation in K′ of the variables in
C such that the equalities hold. We shall now show that
one can get unsatisfiability witnesses that are checkable us-
ing simple methods, only involving adding and multiplying
polynomials over K.

Obviously, if one can find Q1, . . . , Qn ∈ K[x1, . . . , xm]
such that

∑

i
PiQi = 1, then C has no solution. Again,

this method of finding a trivial contradiction is both sound
and complete for refutation. The completeness proof relies
on a theorem known as Nullstellensatz :

Theorem 1 (Hilbert). Let K′ be an algebraically closed
field, let I be an ideal in K′[x1, . . . , xn]. Let P be a polyno-
mial in K′[x1, . . . , xn]. P vanishes over the common zeroes
of the ideals in I if and only if some nonnegative power of
P lies in I.

Apply that theorem to P = 1 and I the ideal generated
by P1, . . . , Pm. P = 1. By the theorem, the Pi have no
common solution if and only if 1 lies in I , that is, there
exists Q̄1, . . . , Q̄m ∈ K′[x1, . . . , xn] such that

∑

i Q̄iPi = 1.
K′ is a vector space over K, thus K has a supplemental
space S in K′. By projecting the coefficients of the Q̄i onto
K, one obtains polynomials Qi ∈ K[x1, . . . , xn] such that
∑

i
QiPi = 1. Those Qi constitute a unsatisfiability witness

for C. One can compute such a witness by dividing the unit
polynomial by a Gröbner basis of the ideal generated by the
Qi; the remainder is zero if such a witness exists [9].

Note that this algorithm is sound but incomplete when
K′ is not algebraically closed (e.g. the real field R). For
instance, the polynomial x2+1 has no real solution, yet the
polynomial 1 is not a member of the ideal generated by it
and this method will thus not conclude that x2 + 1 = 0 has
no real solution.

2.3 Nonnegativity Witnesses
To prove that a polynomial P is nonnegative, one simple

method is to express it as a sum of squares of polynomi-
als. One good point is that the degree of the polynomials
involved in this sum of squares can be bounded, and even
that the choice of possible monomials is constrained by the
Newton polytope of P , as seen in §3.

Yet, there exist nonnegative polynomials that cannot be
expressed as sums of squares, for instance this example due
to Motzkin [22]:

M = x6
1 + x4

2x
2
3 + x2

2x
4
3 − 3x2

1x
2
2x

2
3 (1)

However, Artin’s answer to Hilbert’s seventeenth prob-
lem is that any nonnegative polynomial can be expressed as
a sum of squares of rational functions [1]. It follows that
such a polynomial can always be expressed as the quotient
Q2/Q1 of two sums of squares of polynomials, which forms
the nonnegativity witness, and can be obtained by solving
P.Q1 −Q2 = 0.



2.4 Unsatisfiability Witnesses for Polynomial
Inequalities

For the sake of simplicity, we shall restrict ourselves to
wide inequalities (the extension to mixed wide/strict in-
equalities is possible). Let us first remark that the problem
of testing whether a set of wide inequalities with coefficients
in a subfield K of the real numbers is satisfiable over the real
numbers is equivalent to the problem of testing whether a
set of equalities with coefficients K is satisfiable over the
real numbers: for each inequality P (x1, . . . , xm) ≥ 0, re-
place it by P (x1, . . . , xm) − µ2 = 0, where µ is a new vari-
able. Strict inequalities can also be simulated as follows:
Pi(x1, . . . , xm) 6= 0 is replaced by Pi(x1, . . . , xm).µ = 1
where µ a µ is a new variables. One therefore does not gain
theoretical simplicity by restricting oneself to equalities.

Stengle [25] proved two theorems regarding the solution
sets of systems of polynomial equalities and inequalities over
the reals (or, more generally, over real closed fields): a Null-
stellensatz and a Positivstellensatz . Without going into
overly complex notations, let us state consequences of these
theorems. Let K be an ordered field (such as Q) and K′ be
a real closed field containing K (such as the real field R).
The corollary of interest to us [16] is:

Theorem 2. Let {Z1, . . . , Znz}, {P1, . . . , Pnp} be two (pos-
sibly empty) sets of polynomials in K[x1, . . . , xm]. Then
Z1(x1, . . . , xm) = 0∧· · ·∧Znz (x1, . . . , xm) = 0∧P1(x1, . . . , xm) ≥
0 ∧ · · · ∧ Pnp (x1, . . . , xm) ≥ 0 has no solution in K′m if and
only if there exist some polynomials A and B such that A+
B = −1, A ∈ I(Z1, . . . , Znz ) and B ∈ S(P1, . . . , Pnp ), where
I(Z1, . . . , Znz ) is the ideal generated by the Z1, . . . , Znz and
S(P1, . . . , Pnp) is the semiring generated by the positive ele-

ments of K and P 2
1 , . . . , P

2
np

.

Note that this result resembles the one used for linear
inequalities (Section 2.1), replacing nonnegative numbers by
sums of squares of polynomials.

For a simple example, consider the following system, which
obviously has no solution:

{

−2 + y2 ≥ 0
1− y4 ≥ 0

(2)

A Positivstellensatz witness is y2(−2+y2)+1(1−y4)+2y2 =

−1. Another is
(

2
3
+ y2

3

)

(−2 + y2) + 1
3
(1− y4) = −1.

Consider the conjunction C: P1 ≥ 0 ∧ · · · ∧ Pn ≥ 0 where
Pi ∈ Q[X1, . . . , Xm]. Consider the set S of products of the
form

∏

w∈{0,1}{1,...,n} P
wi
i — that is, the set of all prod-

ucts of the Pi where each Pi appears at most once. Obvi-
ously, if one can exhibit nonnegative functions Qj such that
∑

Pj∈S
QjPj = −1, then C does not have solutions. Theo-

rem 2 guarantees that if C has no solutions, then such func-
tions Qj exist as sum of squares of polynomials. We have
again reduced our problem to the following problem: given
polynomials Pj and R, find sums-of-squares polynomials Qj

such that
∑

QjPj = R.

3. SOLVING THE SUMS-OF-SQUARES PROB-
LEM

In §2.3 and §2.4, we have reduced our problems to: given
polynomials (Pj)1≤j≤n and R in Q[X1, . . . , Xm], find poly-

nomials that are sums of squares Qj such that
∑

j

PjQj = R (3)

We wish to output the Qj as Qj =
∑nj

i=1 αjiL
2
ji where αji ∈

Q+ and Lji are polynomials over Q. We now show how to
solve this equation.

3.1 Reduction to Semidefinite Programming
Lemma 4 ensures that eachQj can be expressed asMjQ̂jM

T
j

where Q̂j is a symmetric positive semidefinite matrix (noted

Q̂j � 0) and Mj is a vector of monomials.
Assume that we know the Mj , but we do not know the

matrices Q̂j . The equality
∑

j
Pj(MjQ̂j(Mj)

t) = R directly

translates into a system (S) of affine linear equalities over

the coefficients of the Q̂j :
∑

j(MjQ̂j(Mj)
t)Pj − R is the

zero polynomial, so its coefficients, which are affine linear
combinations of the coefficients of the Q̂j matrices, should
be zero; each of these combinations thus yields an affine
linear equation. The additional requirement is that the Q̂j

are positive semidefinite.
One can equivalently express the problem by grouping

these matrices into a block diagonal matrix Q̂ and express
the system (S) of affine linear equations over the coeffi-

cients of Q̂. By Gaussian elimination in exact rational arith-
metic, or other faster exact linear algebra methods, we can
obtain a system of generators for the solution set of (S):

Q̂ ∈ −F0 + vect(F1, . . . , Fm). The problem is then to find
a positive semidefinite matrix within this search space; that
is, find α1, . . . , αm such that −F0 +

∑

i
αiFi � 0.

This is the problem of semidefinite programming : finding
a positive semidefinite matrix within an affine linear variety
of symmetric matrices, optionally optimizing a linear form
[28, 5]. Powers and Wörmann [20], Parrilo [18, chapter 4]
and others have advocated such kind of decomposition for
finding whether a given polynomial is a sum of squares. Har-
rison [11] generalized the approach to finding unsatisfiability
witnesses.

For instance, the second unsatisfiability witness we gave
for constraint system 2 is defined, using monomials {1, y}, 1
and {1, y}, by:













2
3

0
0 1

3
1
3

0 0
0 0













Conjunction C has no solution if and only if there exists a
set of monomials and associated positive semidefinite matri-
ces verifying some linear relations. Positive semidefiniteness
is a semialgebraic property of the matrix coefficients, defined
by the signs of the coefficients of the characteristic polyno-
mial of the matrix, which are polynomials in the coefficients
of the matrices. Thus, C has no solution if and only there
is a set of monomials such that some set of wide polynomial
inequalities has a solution.

It looks like finding an unsatisfiability witness for C just
amounts to a sdp problem. There are, however, several prob-
lems to this approach:

1. For the general Positivstellensatz witness problem, the
set of polynomials to consider is exponential in the
number of inequalities.



2. Except for the simple problem of proving that a given
polynomial is a sum of squares, we do not know the
degree of the Qj in advance, so we cannot choose finite
sets of monomials Mj . The dimension of the vector
space for Qj grows quadratically in |Mj |.

3. Some sdp algorithms can fail to converge if the problem
is not strictly feasible — that is, the solution set has
empty interior, or, equivalently, is not full dimensional
(that is, it is included within a strict subspace of the
search space).

4. sdp algorithms are implemented in floating-point. If
the solution space is not full dimensional, they tend to
provide solutions Q̂ that are “almost” positive semidef-
inite (all eigenvalues greater than −ǫ for some small
positive ǫ), but not positive semidefinite.

Let us first consider the first two problems. Lombardi [16]
provides a bound to the degrees of the polynomials neces-
sary for the unsatisfiability certificates, but this bound is
nonelementary (asymptotically greater than any tower of
exponentials), so it is not of practical value. This bound,
however, is only needed for the completeness of the refuta-
tion method: we are guaranteed to find the certificate if we
look in a large enough space. It is not needed for soundness:
if we find a correct certificate by looking in a portion of the
huge search space, then that certificate is correct regardless.
This means that we can limit the choice of monomials in Mj

and hope for the best.
Regarding the second and third problems : what is needed

is a way to reduce the dimension of the search space, ide-
ally up to the point that the solution set is full dimensional.
Peyrl and Parrilo [19] suggests applying a result of Reznick
[21, Th. 1]: in a sum-of-square decomposition of a polyno-
mial P , only monomials xα1

1 . . . xαn
n such that 2(α1, . . . , αn)

lies within the Newton polytope3 of P can appear. This
helps reduce the dimension if P is known in advance (as in a
sum-of-squares decomposition to prove positivity) but does
not help for more general equations.

Kaltofen et al. [14] suggest solving the sdp problem nu-
merically and looking for rows with very small values, which
indicate useless monomials that can be safely removed from
the basis; in other words, they detect “approximate kernel
vectors” from the canonical basis. Our method is somehow
a generalization of theirs: we detect kernel vectors whether
or not they are from the canonical basis.

In the next section, we shall investigate the fourth prob-
lem: how to deal with solution sets with empty interior.

3.2 How to deal with degenerate cases
In the preceding section, we have shown how to reduce the

problem of finding unsatisfiability witnesses to a sdp feasi-
bility problem, but pointed out one crucial difficulty: the
possible degeneracy of the solution set. In this section, we
explain more about this difficulty and how to work around
it.

Let K be the cone of positive semidefinite matrices. We
denote by M � 0 a positive semidefinite matrix M , by M ≻
0 a positive definite matrix M . y denotes a vector, yi is the

3The Newton polytope of a polynomial P , or in Reznick’s
terminology, its cage, is the convex hull of the vertices
(α1, . . . , αn) such that xα1

1 . . . xαn
n is a monomial of P .

i-th coordinate of y. x̃ denotes a floating-point value close
to an ideal real value x.

We consider a sdp feasibility problem: given a family of
symmetric matrices F0, Fi, . . . , Fm, find (yi)1≤i≤m such that

F (y) = −F0 +
m
∑

i=1

yiFi � 0. (4)

The Fi have rational coefficients, and we suppose that there
is at least one rational solution for y such that F (y) � 0.
The problem is how to find such a solution.

If nonempty, the solution set S ⊆ Rm for the y, also known
as the spectrahedron, is semialgebraic, convex and closed; its
boundary consists in y defining singular positive semidefinite
matrices, its interior are positive definite matrices. We say
that the problem is strictly feasible if the solution set has
nonempty interior. Equivalently, this means that the convex
S has dimension m.

Interior point methods used for semidefinite feasibility,
when the solution set has nonempty interior, tend to find
a solution in the interior away from the boundary. Around
any solution y in the interior of S, there exists an open ball
B(y, ǫ) ⊆ S. It follows that if we take yQ a rationalization of
y such that ‖yQ−y‖ ≤ ǫ, then yQ is also in S, thus the prob-
lem is solved. This is why earlier works on sums-of-square
methods [19] have proposed finding rational solutions only
when the sdp problem is strictly feasible. In this article, we
explain how to do away with the strict feasibility clause.

Some problems are not strictly feasible. Geometrically,
this means that the linear affine space {−F0 +

∑m

i=1 yiFi |
(y1, . . . , ym) ∈ Rm} is tangent to the semidefinite positive
cone K. Alternatively, this means that the solution set is
included in a strict linear affine subspace of Rm. Intuitively,
this means that we are searching for the solution in “too
large a space”; for instance, if m = 2 and y lies in a plane,
this happens if the solution set is a point or a segment of a
line. In this case, some sdp algorithms may fail to converge if
the problem is not strictly feasible, and those that converge,
in general, will find a point slightly outside the solution set.
The main contribution of this article is a workaround for
this problem.

3.3 Simplified algorithm
If S has nonempty interior, then an interior point solving

method will lead to a solution ỹ in this interior, assuming
enough precision is used. Choose a very close approximation
y to this vector using rational numbers (perhaps with only
small denominators), then unless we are unlucky y is also
in the interior of S. Thus, F (y) is a solution of problem 4.
We shall thus now suppose the problem has empty interior.

Suppose we have found a numerical solution ỹ, but it is
nearly singular — meaning that it has some negative eigen-
values extremely close to zero. This means there is v such
that |v.F (ỹ)| ≤ ǫ. Suppose that ỹ is very close to a ratio-
nal solution y and, that v.F (y) = 0, and also that y is in
the relative interior of S — that is, the interior of that set
relative to the least linear affine space containing S. Then,
by lemma 9, all solutions F (y′) also satisfy v.F (y′) = 0.
Remark that the same lemma implies that either there is no
rational solution in the relative interior, either that rational
solutions are dense in S.

How can finding such a v help us? Obviously, if v ∈
⋂m

i=0 kerFi, its discovery does not provide any more in-
formation than already present in the linear affine system



−F0 +Vect (F1, . . . , Fm). We thus need to look for a vector
outside that intersection of kernels; then, knowing such a
vector will enable us to reduce the dimension of the search
space from m to m′ < m.

We therefore look for such a vector in the orthogonal com-
plement of

⋂m

i=0 kerFi, which is the vector space generated
by the rows of the F0, . . . , Fm. We therefore compute a full
rank matrix B whose rows span the exact same space; this
can be achieved by echelonizing a matrix obtained by stack-
ing F0, . . . , Fm. Then, v = wB for some vector w. We thus
look for w such that G(y).w = 0, with G(y) = BF (y)BT .

The question is how to find such a w with rational or,
equivalently, integer coefficients. Another issue is that this
vector should be “reasonable” — it should not involve ex-
tremely large coefficients, which would basically amplify the
floating-point inaccuracies.

We can reformulate the problem as: find w ∈ Zm \ {0}
such that bothw andG(ỹ).w are“small”, which can be com-
bined into a single constraint α2‖G(ỹ).w‖22 + ‖w‖22, where
α > 0 is a coefficient for tuning how much we penalize
large values of ‖G(ỹ).w‖2 in comparison to large values of
‖w‖2. If α is large enough, the difference between αG(ỹ)
and its integer rounding M is small. We currently choose
α = α0/‖G(ỹ)‖, with ‖M‖ the Frobenius norm of M (the
Euclidean norm for n× n matrices being considered as vec-

tors in Rn2

), and α0 = 1015.
We therefore try searching for a small (with respect to

the Euclidean norm) nonzero vector that is an integer linear
combination of the li = (0, . . . , 1, . . . , 0,mi) where mi is the
i-th row of M and the 1 is at the i-th position. Note that,
because of the diagonal of ones, the li form a free family.

This problem is known as finding a short vector in an inte-
ger lattice, and can be solved by the Lenstra-Lenstra-Lovász
(LLL) algorithm. This algorithm outputs a free family of
vectors si such that s1 is very short. Other vectors in the
family may also be very short.

Once we have such a small vector w, we can compute
F ′
0, . . . , F

′
m′ such that







−F ′
0 +

m′
∑

i=1

y′iF
′
i | (y1, . . . , ym′) ∈ Rm′







=

{

−F0 +
m
∑

i=1

yiFi | (y1, . . . , ym) ∈ Rm

}

∩ {F | F.v = 0} (5)

This is just linear algebra over rational numbers and may
be performed by Gaussian elimination, for example. The re-
sulting system has lower search space dimensionm′ < m, yet
the same solution set dimension. By iterating the method,
we eventually reach a search space dimension equal to the
dimension of the solution set.

3.4 More efficient algorithm
In lieu of performing numerical sdp solving on F = −F0+

∑

yiFi � 0, we can perform it in lower dimension on−(BF0B
T )+

∑

yi(BFiB
T ) � 0. Recall that the rows of B span the or-

thogonal complement of
⋂m

i=0 kerFi, which is necessarily in-
cluded in kerF ; we are therefore just leaving out dimensions
that always provide null eigenvalues.

The reduction of the sums-of-squares problem (Eq. 3) pro-
vides matrices with a fixed block structure, one block for
each Pj : for a given problem all matrices F0, F1, . . . , Fm are
block diagonal with respect to that structure. We therefore

perform the test for positive semidefiniteness of the proposed
F (y) solution block-wise, in exact arithmetic. This test may
for instance be done by computing the Gaussian reduction of
F using the algorithm for conversion of a positive semidef-
inite matrix to a sum-of-square from §A.2, which fails if
and only if the matrix is not positive semidefinite. For the
blocks not found to be positive semidefinite, the correspond-
ing blocks of the matrices B and F (ỹ) are computed, and
LLL is performed.

As described so far, only a single v kernel vector would
be supplied by LLL for each block not found to be positive
semidefinite. In practice, this tends to lead to too many
iterations of the main loop: the dimension of the search
space does not decrease quickly enough. We instead al-
ways take the first vector v(1) of the LLL-reduced basis,
then accept following vectors v(i) if ‖v(i)‖1 ≤ β.‖v(1)‖1 and

‖G(ỹ).v(i)‖2 ≤ γ.‖G(ỹ).v(1)‖2. For practical uses, we took
β = γ = 10.

When looking for the next iteration ỹ′, we use the ỹ from
the previous iteration as a hint: instead of starting the sdp
search from an arbitrary point, we start it near the solution
found by the previous iteration. We perform least-square

minimization so that −F ′
0 +

∑m′

i=1 y
′
iF

′
i is the best approxi-

mation of −F0 +
∑m

i=1 yiFi | (y1, . . . , ym).

3.5 Implementation details
The reduction from the problem expressed in Eq. 3 to sdp

with rational solutions was implemented in Sage.4 For effi-
ciency, the rational sdp solving was implemented in C++.
Exact rational arithmetic uses the GMP extended precision
library;5; exact linear algebra is performed by the C++ tem-
plate library Boost uBlas.6 Numerical sdp solving is per-
formed using DSDP7 [4, 3] as a library. LLL reduction is per-
formed by fpLLL.8 Least square projection is performed us-
ing Lapack’s DGELS. The implementation is available from
the author’s web page.9

Exact precision rational linear arithmetic is expensive when
the size of the numerators and denominators grows, which
is unfortunately the case in our settings. Our choice of im-
plementation is obviously from optimal; we expect clever
integer linear arithmetic such as provided by Linbox to per-
form better.10

3.6 Extensions
As seen in §4, our algorithm tends to produce solutions

with large numerators and denominators in the sum-of-square
decomposition. We experimented with methods to get F (y′) ≈
F (y) such that F (y′) has a smaller common denominator.
This reduces to the following problem: given v ∈ f0 +
vect(f1, . . . , fn) a real (floating-point) vector and f0, . . . , fn
rational vectors, find y′

1, . . . ,yn such that v′ = f0+
∑

i y
′
ifi ≈

v and the numerators of v′ have a tunable magnitude (pa-

4Sage is a computer algebra system implemented within the
Python programming language, available under the GNU
GPL from http://www.sagemath.org.
5http://www.gmplib.org/
6See http://www.boost.org
7DSDP is a sdp tool available from
http://www.mcs.anl.gov/DSDP/
8fpLLL is a LLL library from Damien Stehlé et al., available
from http://perso.ens-lyon.fr/damien.stehle/
9
http://www-verimag.imag.fr/~monniaux/download/safe_sdp.zip

10http://www.linalg.org/linbox-html/index.html

http://www.sagemath.org
http://www.gmplib.org/
http://www.boost.org
http://www.mcs.anl.gov/DSDP/
http://perso.ens-lyon.fr/damien.stehle/
http://www-verimag.imag.fr/~monniaux/download/safe_sdp.zip
http://www.linalg.org/linbox-html/index.html


rameter µ). One can obtain such a result by LLL reduction
of the rows of:

M =











Z(βµ(f0 − v)) Z(βf0) 1 0 . . . 0
Z(βµf1) Z(βf1) 0 1 . . .

...
... 0

. . .

Z(βµfn) Z(βfn) 0 1











(6)

where β is a large parameter (say, 1019) and Z(v) stands
for the integer rounding of v. After LLL reduction, one of
the short vectors in the basis will be a combination

∑n

i
yili

where l0, . . . , ln are the lines ofM , such that y0 6= 0. Because
of the large βµ coefficient, y0(f0 − v) +

∑n

i=1 yifi should
be very small, thus f0 +

∑n

i=1 yifi ≈ v. But among those
vectors, the algorithm chooses one such that

∑n

i=0 yifi is not
large — and among the suitable v′, the vector of numerators
is proportional to

∑n

i=0 yifi.
After computing such a y′, we check whether F (y′) � 0;

we try this for a geometrically increasing sequence of µ and
stop as soon as we find a solution. The matrices Q̂j then
have simpler coefficients than the original ones. Unfortu-
nately, it does not ensue that the sums of square decompo-
sitions of these matrices have small coefficients.

We have so far considered sdp feasibility problems only.
It is also possible to use the same method for optimization
problems. First, the feasibility problem should be solved by
the above method; a parametrization −F ′

0+vect(F ′
1, . . . , F

′
m)

of the linear affine span of the solution set is thus com-
puted, as well as a point −F ′

0 +
∑

i y
′
iF

′
i � 0. In this

new parametrization, the problem is strictly feasible, and
one can use a sdp system to obtain y′′ such that F ′(y′′) =
−F ′

0 +
∑

i
y′′
i F

′
i � 0 numerically and F ′(y′′) maximizes a

linear form. If, after rationalizing y′′, F ′(y′′) is not found to
be positive semidefinite (because it has some slightly neg-
ative eigenvalues), one can consider a barycenter F ′′(ǫy′ +
(1− ǫ)y′′) for small ǫ.

3.7 Wrong leads
A crucial issue when using multiple vectors from the out-

put of LLL is to know which vectors can safely be considered
to be vectors from the kernel of the approximated matrices:
if we take vectors that are not from that kernel, then we
risk overconstraining the search space and getting no solu-
tion from the algorithm.

We considered computing the signature of a rationaliza-
tion of the F (ỹ) matrix, using Gaussian reduction, and tak-
ing as many leading vectors of th e output of the LLL basis
as F (ỹ) has nonpositive eigenvalues. Unfortunately, this
does not work — this scheme may take too many vectors.

4. EXAMPLES
The following system of inequalities has no solution (nei-

ther Redlog nor QepCad nor Mathematica 5 can prove it;
Mathematica 7 can):































P1 = x3 + xy + 3y2 + z + 1 ≥ 0
P2 = 5z3 − 2y2 + x+ 2 ≥ 0
P3 = x2 + y − z ≥ 0
P4 = −5x2z3 − 50xyz3 − 125y2z3 + 2x2y2 + 20xy3

+50y4 − 2x3 − 10x2y − 25xy2 − 15z3 − 4x2

−21xy − 47y2 − 3x− y − 8 ≥ 0
(7)

This system was concocted by choosing P1, P2, P3 some-
what haphazardly and then P4 = −(P1+(3+(x+5y)2)P2+
P3 + 1+ x2), which guaranteed the system had no solution.
The initial 130 constraints yield a search space of dimen-
sion 145, and after four round of numeric solving one gets
an unsatisfiability witness (sums of squares Qj such that
∑4

j=1 PjQj + Q5 = 0). Total computation time was 4.4 s.

Even though there existed a simple solution (note the above
formula for P4), our algorithm provided a lengthy one, with
large coefficients (and thus unfit for inclusion here).

Motzkin’s polynomial M (Eq. 1) cannot be expressed as a
sum of squares, but it can be expressed as a quotient of two
sums of squares. We attempted solving M.Q1 − Q2 = 0 for
sums of squares Q1 and Q2 built from homogeneous mono-
mials of respective total degrees 3 and 6 (lesser degrees yield
no solutions). The equality relation over the polynomials
yields 66 constraints over the matrix coefficients and a search
space of dimension 186. Four cycles of SDP programming
and LLL are then needed, total computation time was 4.1 s.

The following solution is obtained:
Q1 = 8006878A2

1
+ 29138091A2

2
+ 25619868453870

/4003439A2

3
+ 14025608A2

4
+ 14385502A2

5
+ 85108577038951965167

/12809934226935A2

6

Q2 = 8006878B2

1
+ 25616453B2

2
+ 108749058736871

/4003439B2

3
+ 161490847987681

/25616453B2

4
+ 7272614B2

5
+ 37419351B2

6
+ 13078817768190

/3636307B2

7
+ 71344030945385471151

/15535579819553B2

8
+ 539969700325922707586

/161490847987681B2

9
+ 41728880843834

/12473117B2

10
+ 131008857208463018914/62593321265751B11

2,

where

A1 = −1147341/4003439x2

1
x3 − 318460/4003439x2

2
x3 + x3

3

A2 = x2x
2

3
A3 = −4216114037644/12809934226935x2

1
x3 + x2

2
x3

A4 = x1x
2

3
, A5 = x1x2x3, A6 = x2

1
x3 and B1 = −1102857

/4003439x4

1
x2x3 − 5464251/4003439x2

1
x2x

3

3
+ 2563669

/4003439x3

2
x3

3
+ x2x

5

3
, B2 = −9223081/25616453x4

1
x2

3
− 18326919

/25616453x2

1
x2

2
x2

3
+ 1933547/25616453x4

2
x2

3
+ x2

2
x4

3
,

B3 = −2617184886847/15535579819553x4

1
x2x3 − 12918394932706

/15535579819553x2

1
x2x

3

3
+ x3

2
x3

3
, B4 = −26028972147097

/161490847987681x4

1
x2

3
− 135461875840584

/161490847987681x2

1
x2

2
x2

3
+ x4

2
x2

3
, B5 = −2333331

/3636307x3

1
x2x

2

3
− 1302976/3636307x1x

3

2
x2

3
+ x1x2x

4

3
,

B6 = −11582471/37419351x5

1
x3 − 12629854

/37419351x3

1
x2

2
x3 − 4402342/12473117x3

1
x3

3
+ x1x

2

2
x3

3
,

B7 = −x3

1
x2x

2

3
+ x1x

3

2
x2

3
, B8 = −x4

1
x2x3 + x2

1
x2x

3

3
,

B9 = −x4

1
x2

3
+ x2

1
x2

2
x2

3
, B10 = −17362252580967

/20864440421917x5

1
x3 − 3502187840950

/20864440421917x3

1
x2

2
x3 + x3

1
x3

3
, B11 = −x5

1
x3 + x3

1
x2

2
x3.

We exhibited witnesses that each of the 8 semidefinite
positive forms listed by Reznick [22], which are not sums
of squares of polynomials, are quotients of sums of squares
(Motzkin’sM , Robinson’sR and f , Choi and Lam’s F , Q, S,
H and Schmüdgen’s q). These examples include polynomials
with up to 6 variables and search spaces up to dimension
1155. We did likewise with delzell, laxlax and leepstarr2
from [14]. The maximal computation time was 7’. In some
cases, it was necessary to initialize the numerical solver with
a nonzero solution matrix in order to avoid the undesirable
trivial solution Q1 = Q2 = 0.

We also exhibited a witness that the Vor1 polynomial cited
by Safey El Din [23] is a sum of squares.11 We could not
apply our method to the Vor2 polynomial because of our
inefficient implementation of exact linear algebra.

11Tool logs and witnesses are available from
http://www-verimag.imag.fr/~monniaux/download/sdp_logs.zip.

http://www-verimag.imag.fr/~monniaux/download/sdp_logs.zip


5. CONCLUSION AND FURTHER WORKS
We have described a method for solving sdp problems

in rational arithmetic. This method can be used to solve
sums-of-squares problems even in geometrically degenerate
cases. We illustrated this method with applications to prov-
ing the nonnegativity of polynomials, or the unsatisfiability
of systems of polynomials. The method then provides easily
checkable proof witnesses.

One weakness of the method is that it tends to provide
“unnatural” witnesses — they tend to have very large co-
efficients. These are machine checkable but provide little
insights to the reader.

A more serious limitation for proofs of unsatisfiability is
the very high cost of application of the Positivstellensatz.
There is the exponential number of polynomials to consider,
and the unknown number of monomials. It would be very
interesting if there could be some simple results, similar to
the Newton polytope approach, for reducing the dimension
of the search space or the number of polynomials to con-
sider. Another question is whether it is possible to define
sdp problems from Positivstellensatz equations for which the
spectrahedron has rational points only at its relative bound-
ary.

While our method performed well on examples, and is
guaranteed to provide a correct answer if it provides one, we
have supplied no completeness proof — that is, we have not
proved that it necessarily provides a solution if there is one.
This is due to the use of floating-point computations. One
appreciable result would be that a solution should be found
under the assumption that floating-point computations are
precise up to ǫ, for a value of ǫ and the various scaling factors
in the algorithm depending on the values in the problem or
the solution.

A desirable property of an unsatisfiability proof procedure
is that is uses only a minimal set of hypotheses (or, better, a
set of hypotheses of minimal cardinality). This would corre-

spond to finding a block diagonal solution matrix Q̂ with a
maximal set of zero diagonal blocks (or a set of maximal car-
dinal). Heuristically, one would expect that it helps to look

for Q̂ of minimal rank within the solution set. This, however,
would involve finding solutions on the relative boundary of
the solution set, while our method finds solution in the rel-
ative interior of that set. In any case, it is possible to use
a minimization procedure for the set of hypotheses [6, min

function].
It seems possible to combine our reduction method based

on LLL with the Newton iterations suggested by [14, 13], as
an improvement over their strategy for detection of useless
monomials and reduction of the search space. Again, further
experiment is needed.
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APPENDIX

A. LEMMAS

A.1 Sums of squares and semidefinite positive
matrices

Lemma 3. Let v ∈ Kn. Then, vT v is a n× n symmetric
positive semidefinite matrix.

Proof. vT v is obviously symmetric. Let λ be a eigen-
value for it, and x a corresponding eigenvector: xvT v = λx.
Thus, ‖vxT ‖22 = (vxT )T (vxT ) = xvT vxT = λxxT = ‖x‖22.
Since x 6= 0, λ must be nonnegative.

Lemma 4. Let P ∈ K[X, Y, . . . ] be a sum of squares of
polynomials

∑

i
P 2
i . Let M = {m1, . . . , m|M|} be a set such

that each Pi can be written as a linear combination of ele-
ments of M (M can be for instance the set of monomials
in the Pi). Then there exists a |M | × |M | symmetric posi-
tive semidefinite matrix Q with coefficients in K such that
P (X,Y, . . . ) = [m1, . . . ,m|M|]Q[m1, . . . ,m|M|]

T , noting vT

the transpose of v.

Proof. Let us decompose Pi(X,Y, . . . ) into a linear com-
bination of monomials

∑

1≤j≤|M| pi,jmj . Let vi be the vec-

tor [pi,1, . . . , pi,m]; then Pi(X,Y, . . . ) = vi[m1, . . . ,m|M|]
T .

P 2
i (X,Y, . . . ) is thus [m1, . . . ,m|M|]v

T
i vi[m1, . . . ,m|M|]

T . Qi =

vTi vi, by lemma 3 is symmetric positive semidefinite. Q =
∑

i
Qi thus fulfills the conditions.

Let us remark that the converse is correct for matrices
over R, by diagonalization: any symmetric positive semidef-
inite matrix is a sum of squares of linear forms. Such a
decomposition can also be obtained over Q by applying the
Gaussian reduction algorithm from §B.

A.2 Geometry of the semidefinite cone
Our algorithm from §3.3 relies crucially on some results

about the geometry of the boundary of the semidefinite cone.

Definition 5. The affine closure of a set S is the least
affine space containing S. The relative interior of a set S is
the interior of S with respect to the affine closure of S.

The following lemmas are from basic convex geometry:

Lemma 6. Let S be a nonempty convex set. S then has
nonempty relative interior, which is obtained by taking λa+
(1 − λ)b for all a, b ∈ S and 0 < λ < 1. The affine closure
of S is the same as the affine closure of the relative interior
of S.

Lemma 7. The tangent space of the affine closure of nonempty
a convex set S is {t(x− y) | t ∈ R, x, y ∈ S}.

A basic lemma on quadratic forms:

Lemma 8. For M � 0, the isotropic cone {v | vT .M.v =
0} is the same as the kernel kerM = {v | M.v = 0}.

Lemma 9. Let E be a linear affine subspace of the n× n
symmetric matrices such that E ∩ K 6= ∅. F in the relative
interior I of E ∩ K. Then,

• For all F ′ ∈ E ∩ K, kerF ⊆ kerF ′.

• The least affine space containing E ∩ K is H = {M ∈
E | kerM = kerF}.

Proof. Let v ∈ kerF . Let ∆ = F ′ − F . Because I is
relatively open, there exists t > 0 such that F + t∆ ∈ I and
F − t∆ ∈ I . vT .(F + t∆).v ≥ 0 and vT .(F − t∆).v ≥ 0 since
F + t∆ � 0 and F − t∆ � 0. Since vT .F.v = 0, vT .∆.v = 0.
Then vT .F ′.v = 0, thus, by lemmas 8 and 7, v ∈ kerF ′.
Thus kerF ⊆ kerF ′.

Let us now suppose F ′ ∈ I . The same reasoning could
have been held after exchanging F and F ′, thus kerF =
kerF ′. Thus, by lemma 6 for all ∆ in the tangent space of
the affine closure of E ∩ K, ∆ ∈ H .

Let ∆ ∈ H . For sufficiently small t, F + t∆ has the
same number of strictly positive eigenvalues as F , which,
since F is semidefinite positive, is n − dimkerF . Note n−

the number of negative eigenvalues of F + t∆; then n =
(n−dim kerF )+n−+dimker(F+t∆). Since kerF = ker∆,
dimker(F + t∆) ≥ dimkerF , thus n− ≤ 0 and F + t∆
cannot have negative eigenvalues. F+t∆ is thus semidefinite
positive, and also belongs to E. ∆ is thus in the tangent
space of the affine closure of E ∩ K.

Corollary 10. Let E be a linear affine subspace of the
n×n symmetric matrices such that E ∩K 6= ∅. The relative
interior of E ∩ K consists of the matrices of maximal rank
in E ∩ K.

http://dx.doi.org/10.1016/j.tcs.2008.09.025
http://dx.doi.org/10.1215/S0012-7094-78-04519-2
http://dx.doi.org/10.1145/1390768.1390781
http://www.jstor.org/stable/1969640


B. GAUSSIAN REDUCTION AND TEST OF
POSITIVE SEMIDEFINITENESS

This appendix is not intended to be included in the con-
ference proceeding. It recalls known results about positive
semidefinite forms and their Gaussian reduction.

Theorem 11 (Sylvester’s criterion). A symmetric
matrix A = (aij)1≤i≤n,1≤j≤n is positive definite if and only
if its leading principal minors (the determinants of the “top
left” k×k squares, |(aij)1≤i≤k,1≤j≤k, for k ≤ n) are positive.

Note that this criterion cannot be immediately extended
to semidefinite positive matrices by substituting “nonnega-
tive” for “positive”. For instance, all the leading minors of
the following matrix are nonnegative, yet the matrix is not
semidefinite positive:





1 1 1
1 1 1
1 1 0





A straightforward implementation of this criterion would
compute n determinants, each with cost Θ(n3) arithmetic
operations, thus a cost Θ(n4). This is however unneeded:
instead, we compute a Gaussian reduction of the quadratic
form:

for i :=1 to n do

begin

i f m[ i , i ] <= 0 then goto n o n p o s i t i v e d e f i n i t e
v := m. row ( i ) / m[ i , i ]
m := m − m[ i , i ] ∗ v . t ran spose ( ) ∗ v

end

If the initial m is positive definite, then so it will be at each
iteration the restriction of m to the lines and rows i . . . n;
conversely, if it is not, then the program will terminate.

At the beginning of an iteration, the matrix formed from
the rows and columns i . . . n, noted m[i . . . n, i . . . n] is pos-
itive semidefinite, by induction hypothesis; by Th. 11 its
leading principal minors are positive.

The m := m − m[i, i] ∗ v.transpose() ∗ v line can be de-
composed into: it subtracts the first line, scaled, from the
remaining lines (thus changing none of the leading principal
minors), then it zeroes the first line. Before zeroeing, the
rows and columns i . . . n look like:











mi,i mi,i+1 . . .
0 mi+1,i+1 . . .
...

...
. . .

0 mn,i+1 . . .











The leading principal minors of m[i+ 1 . . . n, i+ 1 . . . n] are
the same as those of the above matrix, times mi,i. They are
also positive, thus, by Th. 11, this matrix is also positive
definite. Note that since the final result is not affected by
the columns and rows above i, we could have used fewer
operations.

A minor modification of this algorithm decides positive
semidefiniteness:

for i :=1 to n do

begin

i f m[ i , i ] < 0 then

goto non po s i t i v e d em id e f i n i t e
i f m[ i , i ] = 0 then

i f m. row ( i ) <> 0
goto non po s i t i v e d em id e f i n i t e

else

begin

v := m. row ( i ) / m[ i , i ]
m := m − m[ i , i ] ∗ v . t ran spose ( ) ∗ v

end

end

Suppose that the entrance of iteration i, m[i . . . n, i . . . n]
is positive semidefinite. If mi,i = 0, then the ith base vector
is in the isotropic cone of the matrix, thus of its kernel, and
the row i must be zero. Otherwise, mi,i > 0. By adding ǫ
to the diagonal of the matrix, we would have a positive def-
inite matrix and thus the output of the loop iteration would
also be positive definite, as above. By ǫ → 0 and the fact
that the set of positive semidefinite matrices is topologically
closed, then the output of the loop iteration is also positive
semidefinite.

Finally, the same algorithm can also be used for trans-
forming a semidefinite positive matrix into a“sum of squares”
form, also known as Gaussian reduction:

for i :=1 to n do

begin

i f m[ i , i ] < 0 then

goto non po s i t i v e d em id e f i n i t e
i f m[ i , i ] = 0 then

i f m. row ( i ) <> 0
goto non po s i t i v e d em id e f i n i t e

else

begin

v := m. row ( i ) / m[ i , i ]
output . append (m[ i , i ] , v )
m := m − m[ i , i ] ∗ v . t ran spose ( ) ∗ v

end

end

The output variable is then a list of couples (ci, vi) such
that the original matrix m is equal to

∑

i
civ

T
i vi (with vi

row vectors). Otherwise said, for any row vector u, umuT =
∑

i
ci〈u, vi〉

2.
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