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Abstract. We prove that the minimal number of matrices on C
n re-

quired to form a hypercyclic abelian semigroup on C
n is n + 1. We

also prove that the action of any abelian semigroup finitely generated
by matrices on C

n or R
n is never k-transitive for k ≥ 2. These answer

questions raised by Feldman and Javaheri.

1. Introduction

Let K = R or C. Following Feldman from [6], by an p-tuple of matri-
ces, we mean a finite sequence of length p (p ≥ 1) of commuting matrices

A1, A2, . . . , Ap on K
n. We will let G = {Ak1

1 Ak2

2 . . . A
kp

p : k1, k2, . . . , kp ∈ N}
be the semi-group generated by A1, A2, . . . , Ap. For a vector x ∈ K

n, the
orbit of x under the action of G on K

n is OG(x) = {Ax : A ∈ G}. For a

subset E ⊂ K
n, denote by E (resp.

◦

E ) the closure (resp. interior) of E.
A subset E ⊂ K

n is called G-invariant if A(E) ⊂ E for any A ∈ G. The

orbit OG(x) ⊂ K
n is dense (resp. locally dense) in K

n if OG(x) = K
n (resp.

˚
OG(x) 6= ∅). The semigroup G is called hypercyclic (or also topologically
transitive) (resp. locally hypercyclic) if there exists a vector x ∈ K

n such
that OG(x) is dense (resp. locally dense) in K

n. For an account of results
and bibliography on hypercyclicity, we refer to the book [3] by Bayart and
Matheron.

On the other part, let k ≥ 1 be an integer. Denote by (Kn)k the k-fold
Cartesian product of K

n. For every u = (x1, . . . , xk) ∈ (Kn)k, the orbit of u

under the action of G on (Kn)k is denoted

Ok
G(u) = {(Ax1, . . . , Axk) : A ∈ G}

When k = 1, Ok
G(u) = OG(u). We say that the action of G on K

n is k-

transitive if, the induced action of G on (Kn)k is hypercyclic, this is equiv-

alent to that for some u ∈ (Kn)k, Ok
G(u) = (Kn)k. A 2-transitive action is

also called weak topological mixing and 1-transitive means hypercyclic.
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In [6], Feldman showed that in C
n there exist a hypercyclic semigroup

generated by (n+1)-tuple of diagonal matrices on C
n and that no semigroup

generated by n-tuple of diagonalizable matrices on K
n can be hypercyclic.

If one remove the diagonalizability condition, Costakis et al. proved in
[4] that there exists a hypercyclic semigroup generated by n-tuple of non
diagonalizable matrices on R

n. However, they show in [5] that there exist a
hypercyclic semigroup generated by (n+1)-tuple of diagonalizable matrices
A1, . . . , An+1 on R

n.

The main purpose of this paper is twofold: firstly, we give a general result
(with respect to the results above) by showing that the minimal number of
matrices on C

n required to form a hypercyclic tuple in C
n is n + 1. This

answer a question raised by Feldman in ([6], Section 6). Secondly, we prove
that the action of any abelian semigroup finitely generated by matrices on
K

n is never k-transitive for k ≥ 2. This answer a question of Javaheri in
([7], Problem 3).

Our principal results are the following:

Theorem 1.1. For every n ≥ 1, any abelian semigroup generated by n

matrices on C
n is not locally hypercyclic.

Theorem 1.2. Let G be an abelian semigroup generated by p matrices (p ≥
1) on K

n (K = R or C). Then the action of G on K
n is never k-transitive

for k ≥ 2.

2. On hyercyclic semigroups

Let Mn(K) be the set of all square matrices of order n ≥ 1 with entries
in K and GL(n, K) be the group of invertible matrices of Mn(K). Let G

be an abelian semigroup generated by p matrices (p ≥ 1) on K
n and we let

G′ = G ∩ GL(n, K).

Lemma 2.1. Under the notation above, let k ≥ 1 be an integer and u ∈
(Kn)k. Then

(i) Ok
G(u) = (Kn)k if and only if Ok

G′(u) = (Kn)k.

(ii)
˚

Ok
G(u) = ∅ if and only if

˚
Ok

G′(u) = ∅.

In particular, if the action of G on K
n is k-transitive so is the action of

G′ on K
n.

Proof. (i) Suppose that Ok
G′(u) = (Kn)k for some u ∈ (Kn)k. Then since

Ok
G′(u) ⊂ Ok

G(u), we see that Ok
G(u) = (Kn)k.
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Conversely, suppose there exists u ∈ (Kn)k such that Ok
G(u) = (Kn)k. De-

note by (A1, . . . , Ap) an p-tuple of matrices on K
n which generate the semi-

group G. One can suppose that for some 0 ≤ r ≤ p, A1, . . . , Ar ∈ GL(n, K)
and Ar+1, . . . , Ap ∈ Mn(K)\GL(n, K). Then G′ = G∩GL(n, K) is the semi-
group generated by A1, . . . , Ar. For k = 1, . . . , r, write Im(Ak) = Ak(K

n)
the range of Ak. Then Im(Ak) is a vector subspace of K

n of dimension < n,

hence
◦

Im(Ak) = ∅.
- If r = p then G = G′ and so (i) is obvious.

- If r = 0 then for every u ∈ (Kn)k, Ok
G(u) ⊂

p
⋃

k=1

(Im(Ak))
k ∪ {u}. Since

˚p
⋃

k=1

(Im(Ak))k = ∅,
◦

Ok
G(u) = ∅.

- If 0 < r < p then

Ok
G(u) ⊂





r
⋃

j=1

(Im(Aj))
k



 ∪ Ok
G′(u).

It follows that

(Kn)k ⊂





r
⋃

j=1

(Im(Aj))
k



 ∪ Ok
G′(u)

and therefore Ok
G′(u) = (Kn)k.

The proof of (ii) is the same as for (i). �

Lemma 2.2. ([2], Corollary 1.5). Let G be an abelian subgroup of GL(n, C).
If G is generated by n matrices (n ≥ 1), it has no dense orbit.

Lemma 2.3. ([6], Corollary 5.7). Let G be an abelian semigroup generated
by p matrices (p ≥ 1) on C

n. Then every locally dense orbit of G is dense
in C

n.

From Lemmas 2.2 and 2.3, we obtain the following:

Corollary 2.4. Any abelian semigroup generated by n matrices (n ≥ 1) of
GL(n, C) is not locally hypercyclic.

Proof of Theorem 1.1. Let G be an abelian semigroup generated by n ma-

trices on C
n and we let G′ = G ∩ GL(n, C). By Corollary 2.4,

˚
Ok

G′(u) = ∅

for every u ∈ (Cn)k and hence by Lemma 2.1,
˚

Ok
G(u) = ∅. The proof is

complete. �
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3. On k-transitivity (k ≥ 2)

Let recall first the following result:

Proposition 3.1 ([1], Theorem 4.1). Let G be an abelian subgroup of GL(n, K)
(K = R or C). Then there exists a G-invariant dense open subset U

in K
n such that if, u, v ∈ U and (Bm)m∈N is a sequence of G such that

lim
m→+∞

Bmu = v then lim
m→+∞

B−1
m v = u.

Corollary 3.2. Let G be an abelian subgroup of GL(n, K) (K = R or C)
and let U be a G-invariant dense open subset of K

n as in Proposition 3.1.

Then for every k ≥ 2, if v ∈ Uk and w ∈ Ok
G(v) ∩ Uk then Ok

G(v) ∩ Uk =

Ok
G(w) ∩ Uk.

Proof. Write v = (v1, . . . , vk), w = (w1, . . . , wk) ∈ Uk. Suppose that w ∈

Ok
G(v) ∩ Uk. Then there exists a sequence (Bm)m∈N in G such that

lim
m→+∞

(Bmv1, . . . , Bmvk) = (w1, . . . , wk).

Then lim
m→+∞

Bmvj = wj , for every 1 ≤ j ≤ k. Since vj , wj ∈ U , so by

Proposition 3.1, lim
m→+∞

B−1
m wj = vj and hence

lim
m→+∞

(B−1
m w1, . . . , B

−1
m wk) = v ∈ Ok

G(w).

It follows that Ok
G(v) ∩ Uk = Ok

G(w) ∩ Uk. �

Proof of Theorem 1.2. Suppose the action of G is k-transitive (k ≥ 2), then

there exists v = (v1, . . . , vk) ∈ (Kn)k so that Ok
G(v) = (Kn)k. We let G′ =

G ∩ GL(n, K). By Lemma 2.1, Ok
G′(v) = (Kn)k. Denote by G′′ the group

generated by G′ and by U a G′′-invariant dense open subset in K
n as in

Proposition 3.1. Then Ok
G′′(v) = (Kn)k and hence v ∈ Uk. Write

w := (v1, . . . , v1). Then w ∈ Uk and by Corollary 3.2, Ok
G′′(w) = (Kn)k

(since Uk is dense in (Kn)k). It follows that OG′′(v1) = K
n.

Let ϕ : K
n −→ (Kn)k be the homomorphism defined by

ϕ(x) = (x, . . . , x), x ∈ K
n.

Then Ok
G′′(w) = ϕ(OG′′(v1)) ⊂ ϕ(Kn). As ϕ(Kn) is a vector subspace of

(Kn)k of dimension n < nk, OG′′(w) cannot be dense in (Kn)k (since k ≥ 2),
this is a contradiction and the theorem is proved. �
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