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LVMB manifolds and simplicial spheres

Jerome Tambour

Abstract

LVM and LVMB manifolds are a large family of examples of non khler manifolds. For instance, Hopf
manifolds and Calabi-Eckmann manifolds can be seen as LVMB manifolds. The LVM manifolds
have a very natural action of the real torus and the quotient of this action is a simple polytope.
This quotient allows us to relate closely LVM manifolds to the moment-angle manifolds studied (for
example) by Buchstaber and Panov. Our aim is to generalize the polytopes associated to LVM
manifolds to the LVMB case and study its properties. In particular, we show that it belongs to a
very large class of simplicial spheres. Moreover, we show that for every sphere belonging to this class,
we can construct a LMVB manifold whose associated sphere is the given sphere. We use this latter
result to show that many moment-angle complexes can be endowed with a complex structure (up to
product with circles).

Introduction

It is not easy to construct non khler compact complex manifolds. The simplest example is the well know
Hopf’s manifold ([Ho], 1948), which gives a complex structure on the product of spheres S2n+1 × S1 as
a quotient of Cn\{0} by the action of a discrete group. The Hopf’s manifold has many generalizations:
firstly, by Calabi and Eckmann [CE] who give a structure of complex manifold on any product of spheres
(of odd dimension). Then by Santiago Lopez de Medrano, Alberto Verjovsky ([LdM] and [LdMV])
and Laurent Meersseman [M]. In these last generalizations, the authors obtain complex structures on
products of spheres, and on connected sums of products of spheres, also constructed as a quotient of an
open subset in Cn but by the action of a nondiscrete quotient this time. These manifolds are known as
LVM manifolds.

The construction in [M] has (at least) two interesting features: on the one hand, the LVM manifolds
are endowed with an action of the torus (S1)n whose quotient is a simple convex polytope and the
combinatorial type of this polytope characterizes the topology of the manifold. On the other hand, for
every simple polytope P, it is possible to construct a LVM manifold whose quotient is P .

In [Bo], Frdric Bosio generalize the construction of [M] emphasing on the combinatorial aspects of LVM
manifolds. This aim of this paper is to study the LVMB manifolds (i.e. manifolds constructed as in
[Bo]) from the topological and combinatorial viewpoints. In particular, we will generalize the associated
polytope of a LVM manifold to our case and prove that this generalization belongs to a large class of
simplicial spheres (named here rationally starshaped spheres).

In the first part, we briefly recall the construction of the LVMB manifolds as a quotient of an open set in
Cn by an holomorphic action of Cm. In the second part, we study fundamental sets, the combinatorial
data describing a LVMB manifold and its connection to pure simplicial complexes1. Mainly, we show
that an important property appearing in [Bo] (the SEU property) is related to a well-known class of
simplicial complexes: the pseudo-manifolds. In the same part, we also introduce the simplicial complex
associated to a LVMB manifold and we show that this complex generalizes the associated polytope of a
LVM manifold. In the third and forth parts, we are mainly interested in the properties of this complex
and we show that the complex is indeed a simplicial sphere. To do that, we have to study another
action whose quotient is a toric variety closely related to our LVMB manifold. This action was already
studied in [MV] and [CFZ] but we need a more thorough study. Finally, in the fifth part, we make
the inverse construction: starting with a rationally starshaped sphere, we construct a LVMB manifold
whose associated complex is the given sphere. Using this construction, we show an important property
for moment-angle complexes: up to a product of circles, every moment-angle complex arising from a
starshaped sphere can be endowed with a complex structure of LVMB manifold.

To sum up, we prove the following theorems:

1In this paper, the expression ”simplicial complex” (or even ”complex”) stands for ”abstract simplicial complex” and a
”geometric simplical complex” is a geometric complex whose cells are (straight) simplices in some Euclidean space Rn.
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Theorem 1: Let N be a LVMB manifold. Then its associated complex P is a rationally starshaped
sphere. Moreover, if N is indeed a LVM manifold, P can be identified with (the dual of) its associated
polytope.

Proposition: Every rationally starshaped sphere can be realized as the associated complex P for some
LVMB manifold.

Theorem 2: Up to a product of circles, every moment-angle complex arising from a starshaped sphere
can be endowed with a complex structure of LVMB manifold.

Notations

In this short section, we fix several notations which will be used throughout the text:

• We put Iz = { k ∈ {1, . . . , n} / zk 6= 0 } for every z in Cn.

• D is the closed unit disk in C and S1 its boundary.

• Moreover, exp will be the map Cn → (C∗)n defined by exp(z) = (ez1 , . . . , ezn) (where e is the usual
exponential map of C).

• The characters of (C∗)n will be noted Xm
n : Xm

n (z) = zm1

1 . . . zmn
n .

• And the one-parameter subgroups of (C∗)n will be noted λu
n: λu

n(t) = (tu1 , . . . , tun).

• <,> is the usual non hermitian inner product on Cn :< z,w >=
∑n

j=1 zjwj

• We will identify Cm, as a R-vector space, to R2m via the morphism

z 7→ (Re(z1), . . . , Re(zn), Im(z1), . . . , Im(zn))

• We set Re(z) = (Re(z1), . . . , Re(zn)) and Im(z) = (Im(z1), . . . , Im(zn)), so

z = Re(z) + iIm(z) = (Re(z), Im(z))

• In Rn, Conv(A) (resp. pos(A)) is the convex hull (resp. the positive hull) of a subset A.

• For every v in Rn, we set ṽ = (1, v) ∈ Rn+1.

1 Construction of the LVMB manifolds

In this section, we briefly recall the construction of LVMB manifolds, following the notations of [Bo].
Let M and n be two positive integers such that n ≥ M . A fundamental set is a nonempty subset E of
P({1, . . . , n}) whose elements are of cardinal M . Elements of E are called fundamental subsets.

Remark: For practical reasons, we sometimes consider fundamental sets whose elements does not belong
to { 1, . . . , n } but to another finite set (usually { 0, 1, . . . , n− 1 }).

Let P be a subset of {1, . . . , n}. We say that P is acceptable if P contains a fundamental subset. We set
A as the set of all acceptable subsets. Finally, an element of {1, . . . , n} will be called indispensable if it
belongs to every fundamental subset of E . We say that E is of type (M,n) (or (M,n, k) if we want to
emphasize the number k of indispensable elements).

Example 1: For instance, E = { {1, 2, 5}, {1, 4, 5}, {2, 3, 5}, {3, 4, 5} } is a fundamental set of type
(3, 5, 1).

Two combinatorial properties (named SE and SEU2 respectively, cf. [Bo]) will be very important in the
sequel:

∀ P ∈ E , ∀ k ∈ {1, . . . , n}, ∃ k′ ∈ P ; (P\{k′}) ∪ {k} ∈ E

∀ P ∈ E , ∀ k ∈ {1, . . . , n}, ∃! k′ ∈ P ; (P\{k′}) ∪ {k} ∈ E

2for Substitute’s Existence and Substitute’s Existence and Uniqueness
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Moreover, a fundamental set E is minimal for the SEU property if it verifies this property and has no
proper subset Ẽ such that Ẽ verifies the SEU property. Finally, we associate to E two open set S in Cn

and V in Pn−1 defined as follow:

S = { z ∈ Cn/ Iz ∈ A }

The open S is the complement of an arrangement of coordinate subspaces in Cn. We also remark that,
for all t ∈ C∗, we have Itz = Iz so the following definition is consistant (where Pn−1 is the complex
projective space of dimension n− 1):

V = { [z] ∈ Pn−1/ Iz ∈ A }

Example 2: In example 1, E verifies the SEU property and the set S is

S = { (z1, z2, z3, z4, z5) / (z1, z3) 6= 0, (z2, z4) 6= 0, z5 6= 0 } ≃
(
C2\{0}

)2
× C∗

Now, we suppose that M = 2m+ 1 is odd and we fix l = (l1, . . . , ln) a family of elements of Cm. We can
define an action (called acceptable holomorphic action) of C∗ × Cm on Cn defined by:

(α, T ) · z = ( αe<l1,T>z1, . . . , αe<ln,T>zn ) ∀ (α, T, z) ∈ C∗ × Cm × Cn

Remark: If m = 0, the previous action is just the classical one defining Pn−1.

In the sequel, we focus only on families l such that for every P ∈ E , (lp)p∈P spans Cm (seen as a R-affine
space). In this case, we said that (E , l) is a acceptable system. If α ∈ C∗, T ∈ Cm and z ∈ Cn, we have
I(α,T ).z = Iz , so S is invariant for the acceptable holomorphic action. Moreover, the restriction of this
action to S is free (cf. [Bo], p.1264).

As a consequence, we note N the orbit space for the action restricted to S. Notice that we can also
consider an action of Cm on V whose quotient is again N . We call (E , l) a good system if N can be
endowed with a complex structure such that the natural projection S → N is holomorphic. Such a
manifold is known as a LVMB manifold. Since a quotient of a holomorphic manifold by a free and proper
action (cf. [Hu], p.60) can be endowed with a complex structure, we only have to check the last property.
Here, according to [Hu], p.59, we define a proper action of a Lie Group G on a topological space X as a
continuous action such that the map G ×X → X ×X defined by (g, x) 7→ (g · x, x) is proper. Notice
that in our case, the group G is not discrete. If G is a discrete group which acts freely and properly on
a space X , then the action is properly discontinuous.

According to [Bo], we make the following definition:

Definition: Let (E , l) be a acceptable system. We say that it verifies the imbrication condition if for
every P,Q in E , the convex hulls Conv(lp, p ∈ P ) and Conv(lq , q ∈ Q) does not have disjoint interiors.

In [Bo], the following fundamental theorem is proved:

Theorem 3 ([Bo], p.1268): A acceptable system is a good one if and only if (E , l) verifies the SE property
and the imbrication condition.

Remark: In [Bo], it is also proved that a good system is minimal for the SEU property.

Finally, a LVM manifold is a manifold constructed as in [LdMV] or [M]. We don’t explain here the whole
construction of the LVM manifolds. The only thing we need here is that is a special case of LVMB.
Indeed, we have the following theorem (and we use this theorem as a definition of LVM manifolds):

Theorem 4 ([Bo], p.1265): Every LVM manifold is a LVMB manifold. To be more precise, let O be the
set of points of Cm which are not in the convex hull of any subset of l with cardinal 2m. Then, a good
system (E , l) is the good system of a LVM manifold if and only if there exists an unbounded component
O in O such that E is exactly the set of subsets P of {1, . . . , n} with (2m + 1) for cardinal such that O
is contained in Conv(lp, p ∈ P ).
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Example 3: We come back to example 1. If we set l1 = l3 = 1, l2 = l4 = i and l5 = 0, then the
imbrication condition is fulfilled and (E , l) is a good system. As a consequence, theorem 3 and theorem 4
imply that N can be endowed with a structure of a LVM manifold. In [LdMV], the LVM manifolds
constructed from a good system of type (3, n, k) are classified up to diffeomorphism. Here, E has type
(3, 5, 1) and we have N ≈ S3 × S3. Notice that we can also use the theory of moment-angle complex
(cf.the last section of this text) to do this calculation.

To conclude this section, we recall how is constructed the polytope associated to a LVM manifold (E , l).
It is clear that the natural action of (S1)n on Cn preserves S and that this action commutes with the
holomorphic action. So, we have an induced action of (S1)n on N . Up to a translation of the lj (which
does not change the quotient N ), theorem 4 allow us to assume that 0 belongs to Conv(l1, . . . , ln) (this
condition is known as Siegel’s condition) and in this case, the quotient P of the action of (S1)n on N
can be identified with:

P = { (r1, . . . , rn) ∈ (R+)n / Σn
i=1rj lj = 0, Σn

i=1rj = 1 }

This set is clearly a polytope and it can be shown that it is simple (cf. [BM], lemma 0.12). The polytope
P is called the polytope associated to the LVM manifold N .

Example 4: For the previous example, we have to perform a translation on the vectors lj with the view
to respect the Siegel’s condition. For example, N is also the LVM manifold associated with the good
system (E , λ) where λ1 = λ3 = 3

4 − i
4 , λ2 = λ4 = − 1

4 + 3i
4 and λ5 = − 1

4 − i
4 . A calculation shows that

the polytope P is the square

P =

{ (
1

4
− r3,

1

4
− r4, r3, r4,

1

2

)
/ r3, r4 ∈ [0,

1

4
]

}

2 Fundamental sets and associated complex

In this section, we will briefly study the fundamental sets introduced in [Bo] and defined above and
construct a simplicial complex whose combinatorial properties reflect the geometry of a LVMB manifold.
Here, E is a fundamental set of type (M,n). The integer M is not supposed to be odd. For the moment,
our aim is to relate the above properties to some classical ones of simplicial complexes.

Let us begin with some vocabulary. Faces, or simplices are subsets of a simplicial complex. If a complex
K is pure-dimensional (or simply pure), the simplices of maximal dimension d are named facets and the
faces of dimension 0 (resp. d− 1) are the vertices (resp. the ridges) of the complex.

The first important definition in this paper is the following:

Definition: Let E be a fundamental set of type (M,n). The associated complex of E is the set P of
subsets of {1, . . . , n} whose complement (in {1, . . . , n}) is acceptable.

As we will see later, this complex is the best choice for a combinatorial generalization of the associated
polytope of a LVM manifold.

First properties of P are the following:

Proposition 2.1: Let E be a fundamental set of type (M,n, k). Then, its associated complex P is a
simplicial complex on {1, . . . , n}. Moreover, P is pure-dimensional of dimension (n − M − 1) and has
(n−k) vertices. Its vertices are precisely the non-indispensable elements of {1, . . . , n} for E and its facets
are exactly the complements of the subsets of E .

Proof: P is obviously a simplicial complex. Moreover, the maximal simplices of P are exactly the
complements of minimal subsets of A, that are fundamental subsets. The latters have the same number
M of elements, so every maximal simplex of P has n−M elements. Finally, an element j ∈ {1, . . . , n} is
a vertex of P if and only if {1, . . . , n}\{j} contains a fundamental subset, that is j is not indispensable.
�

Example 5: The complex P associated to the fundamental set of example 1 is the complex with facets
{{1, 2}, {2, 3}, {3, 4}, {1, 4}}. So, P is the boundary of a square.
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Remark: Conversely, every pure complex can be realized as the associated complex of a fundamental set:
let P be a pure-dimensional simplicial complex on the set {1, . . . , v} with dimension d and v vertices.
Then, for every integer k, there exists M,n two integers and E a fundamental set of type (M,n, k) whose
associated complex is P . If k is fixed, this fundamental set E is unique.

Moreover, the SEU property can be expressed as a combinatorial property of P :

Proposition 2.2: E verify the SEU property if and only if

∀ Q ∈ Pmax, ∀ k ∈ {1, . . . , n}, ∃! k′ /∈ Q; (Q ∪ {k′})\{k} ∈ Pmax

where Pmax is the set of facets of P .

Proof: First, we assume that E verifies the SEU property. Let Q be a facet of P and k ∈ {1, . . . , n}.
Then P = Qc belongs to E . The SEU property implies that there is k′ in P (so k′ /∈ Q) such that
P ′ = (P\{k′}) ∪ {k} belongs to E . As it was claimed, P ′c is also a facet of P . Moreover, we obviously
have P ′c = (Q ∪ {k′})\{k}. Finally, if Q′′ = (Q ∪ {k′′})\{k} is a facet of P with k′′ 6= k′ and k′′ /∈ Q,
then, we would have (P\{k′})∪{k} in E , which contradicts the SEU property. The proof of the converse
is analogous. �

Corollary 1: Let E be a fundamental set. Then its associated complex P verify the SEU property if
and only if every ridge of P is contained in exactly two facets of P .

Proof: To begin, we assume that E verifies the SEU property. Let Q be a ridge of P . By definition, Q
is included in a facet P of P . We put P = Q ∪ {k}, k ∈ {1, . . . , n}\Q. By proposition 2.2, there exists
k′ /∈ P (and so k 6= k′) such that P ′ = (P ∪ {k′})\{k} is a facet of P . We have P ′ = Q ∪ {k′} so Q is
contained in at least two facets of P . Let assume that Q is contained in a third facet P ′′ = Q ∪ {k′′}.
However, in this case, we would have P ′′ = (P ∪ {k′′})\{k}, which contradicts proposition 2.2.
Conversely, let Q be a facet of P and k ∈ {1, · · · , n}. If k ∈ Q, then P = Q\{k} is a ridge of P and by
hypothesis, P is contained in exactly two facets Q1 and Q2. One of them, say Q1, is Q. The other is Q2

and we have Q2 = P ∪ {k′}. Then we have k′ /∈ Q (on the contrary, we would have Q2 = Q = Q1) and
Q2 = (Q∪{k′})\{k}. Moreover, if Q3 = (Q∪{k′′})\{k} is another facet of P with k′′ /∈ Q, so Q3 contains
P and by hypothesis, Q3 = Q2 (i.e k′′ = k′). If k /∈ Q, we remark that the element k′ ∈ {1, . . . , n} such
that Q′ = (Q ∪ {k′})\{k} is a facet of P is k′ = k. Indeed, if k′ = k, then Q′ = Q is a facet of P . And if
k′ 6= k, then k /∈ Q ∪ {k′} and, as a consequence, Q′ = Q ∪ {k′} is not in P . �

Definition: Let E be a fundamental set of type (M,n). We define the (unoriented) graph Γ stating that
its vertices are fundamental subsets of E and two vertices P and Q are related by an edge if and only if
there exist k /∈ P, k′ ∈ P such that Q = (P\{k′}) ∪ {k}. Equivalently, we relate two subsets of E if and
only if they differ exactly by one element. Γ is called replacement graph of E .

Proposition 2.3: Let E be a fundamental set of type (M,n) which verifies the SEU property. Then,
there exists an integer p ∈ N∗, and fundamental sets Ej of type (M,n) which are minimal for the SEU

property and such that E is the disjoint union

p⊔

j=1

Ej .

Proof: We proceed by induction on the cardinal of E . If E is minimal for the SEU property, then there
is nothing to do. Let assume that it is not the case: there exists a proper subset E1 of E which is minimal
for the SEU property. We put E for its complement E\E1. It is obvious that E is a fundamental set (of
type (M,n)). We claim that E verifies the SEU property. Let P be an element of E and k ∈ {1, . . . , n}.
If k ∈ P , then, putting k′ = k, we have that (P\{k′})∪ {k} = P is an element of E . It is the only choice
(for k′) since P is in E and E verifies the SEU property. Let assume now that k is not in P . Since P is
an element of E , there exists exactly one k′ ∈ P such that P ′ = (P\{k′}) ∪ {k} is an element of E , too.
We claim that P ′ cannot be in E1. Indeed, if it was the case, since E1 is minimal for the SEU property,
there would exist exactly one k′′ ∈ P ′ such that P ′′ = (P ′\{k′′})∪{k′} ∈ E1. But P = (P ′\{k})∪{k′} is
in E and k ∈ P ′. So, k′′ = k and P ′′ = P . As a consequence, E is a fundamental set of type (M,n) which
verifies the SEU property with cardinal strictly smaller than E . Applying the induction hypothesis on
E , we have the decomposition of E we were looking for. �

Remark: The decomposition of the previous proposition induces a decomposition of the vertex set of Γ.
In the proof, we show that an element of Ej is related only to others elements in Ej . Consequently, each
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set Ej is the vertex set of a connected component of Γ. This also implies that this decomposition is unique
up to the order. We call connected components of E the sets Ej .

Corollary 2: Let E be a fundamental set of type (M,n) and Γ its replacement graph. We assume that
E verifies the SEU property. Then, the following assertions are equivalent:

1. E is minimal for the SEU property.

2. E has only one connected component.

3. Γ is connected.

Definition: Let K be a simplicial complex. K is a pseudo-manifold if these two properties are fulfilled:

1. every ridge of K is contained in exactly two facets.

2. for all facets σ, τ of K, there exists a chains of facets σ = σ1, . . . , σn = τ of K such that σi ∩ σi+1

is a ridge of K for every i ∈ {0, . . . , n− 1}.

For instance, every simplicial sphere is a pseudo-manifold. More generally, a triangulation of a manifold
(that is a simplicial complex whose realization is homeomorphic to a topological manifold) is also a
pseudo-manifold. Now, the proposition below shows that the notion of pseudo-manifold is exactly the
combinatorial property of P which characterizes the fact that E is minimal for the SEU property:

Proposition 2.4: Let E be a fundamental set with n > M . Then, P is a pseudo-manifold if and only if
E is minimal for the SEU property.

Proof: On the one hand, let assume that E is minimal for the SEU property. This implies that every
ridge of P is contained in exactly two facets (cf. corollary 1). Moreover, let σ, τ be two distinct facets
of P . So, P = σc and Q = τc are two fundamental subsets. By minimality for the SEU property, Γ is
connected (cf. corollary 2). Consequently, there exists a sequence P0 = P, P1, . . . , Pr = Q of fundamental
subsets such that Pi and Pi−1 differ by exactly one element. We note Ri the acceptable subset Pi−1 ∪Pi

with M + 1 elements. Its complement Rc
i is thus a face of P with n−M − 1 = dim(P) elements. If we

put σi = P c
i , we have Rc

i = σi−1 ∩ σi so σ0 = σ, . . . , σr = τ . Consequently, P is a pseudo-manifold.
On the other hand, we assume that P is a pseudo-manifold. Then, thanks to corollary 1, E verifies the
SEU property. Moreover, E will be minimal for this property if and only if Γ is connected (cf. corollary 2).
Let σ, τ be two distinct elements of E . Then σc and τc are facets of P . Since P is a pseudo-manifold,
there exists a sequence σ0 = σc, σ1, . . . , σr = τc of facets of P such that for every i, σi and σi−1 share
a ridge of P . This means that σc

i and σc
i−1 are fundamental subsets E which differ only by an element,

and consequently, σc
i and σc

i−1 are related in Γ. This implies that Γ is connected and E is minimal for
the SEU property. �

Remark: The case where n = M corresponds to P = {∅}. It is not a pseudo-manifold since the only facet
is ∅ and it doesn’t contains any simplex with dimension strictly smaller.

Finally, we prove the following proposition which is the motivation for the study of the associated complex:

Proposition 2.5: Let (E , l) be a good system associated to a LVM manifold and P its associated
polytope. Then the associated complex P of E is combinatorially equivalent to the border of the dual of
P .

Proof: Since (E , l) is a good system associated to a LVM manifold, there exists a bounded component
O in O such that E is exactly the set of subsets Q of {1, . . . , n} with (2m + 1) for cardinal such that O
is included in the convex hull of (lq, q ∈ Q). Up to a translation, (whose effect on the action is just to
introduce an automorphism of Cm×C∗ and so does not change the action, cf. [Bo]), we can assume that
E is exactly the set of subsets P of {1, . . . , n} with (2m + 1) for cardinal such that the convex hull of
(lp, p ∈ P ) contains 0. In this setting, according to the page 65 of [BM], the border of P is combinatorially
characterized as the set of subsets I of {1, . . . , n} verifying

I ∈ P ⇔ 0 ∈ Conv(lk, k ∈ Ic)

So, I is a subset of P if and only if Ic is acceptable, i.e. I ∈ P .
As a consequence, from a viewpoint of set theory, P and P are the same set. We claim that the order
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on these sets P and P are reversed. On the one hand, the order on P is the usual inclusion (as for every
simplicial complex). On the other other, we recall the order on the face poset of P given in [BM]:
every j−face of P is represented by a (n − 2m − 1 − j)−tuple. So, facets of P are represented by a
singleton and vertices by a (n − 2m − 2)−tuple. A face represented by I is contained in another face
represented by J if and only if I ⊃ J . So, combinatorially speaking, the poset of P is (P ,⊃), which prove
the claim. Finally, the poset for the dual P ∗ is (P ,⊂), and the proof is over. �

3 Condition (K)

Consequently, P is exactly the object we are looking for to generalize the associated polytope of a LVM
manifold to the case of LVMB manifolds. What we have to do now is to study its properties. Our main
goal for the moment is to prove the following theorem:

Theorem 5: Let (E , l) be a good system of type (2m+1, n). Then P is a simplicial (n−2m−2)−sphere.

Remark: The theorem is trivial in the LVM case since the associated complex P is a polytope.

To prove the previous theorem, we have to focus on good systems which verify an additional condition,
called condition (K): there exists a real affine automorphism φ of Cm = R2m such that λj = φ(lj)
has coordinates in Z2m for every j. For instance, if all coordinates of li are rationals, then (E , l) verify
condition (K). Note that the imbrication condition is an open condition. As a consequence, it is sufficient
to prove the previous theorem for good system verifying the condition (K). Indeed, since Qn is dense
in Rn, a good system (E , l) which does not verify the condition (K) can be replaced by a good system
which verifies the condition, with the same associated complex P .

The main interest of condition (K) stands in the fact that we can associate to our holomorphic acceptable
action an algebraic action (called algebraic acceptable action) of (C∗)2m+1 on Cn (or an action of (C∗)2m

on Pn−1):

Let (E , l) be a fundamental set of type (2m+1, n) verifying condition (K). We set lj = aj+ibj, aj , bj ∈ Zm

for every j and aj = (a1j , . . . , a
m
j ). We can define an action of (C∗)2m+1 on Cn setting:

(u, t, s) · z =
(
u t

a1
1

1 . . . t
am
1

m s
b11
1 . . . s

bm1
m z1, . . . , u t

a1
n

1 . . . t
am
n

m s
b1n
1 . . . s

bmn
m zn

)

∀u ∈ C∗, t, s ∈ (C∗)
m
, z ∈ Cn

Using the notation X
l̃j
2m+1 for the character of (C∗)2m+1 defined by l̃j = (1, lj), we can resume the formula

describing the acceptable algebraic action by:

t · z =
(
X l̃1

2m+1(t)z1, . . . , X
l̃n
2m+1(t)zn

)
∀t ∈ (C∗)2m+1, z ∈ Cn

It is clear that S is invariant by this action. So we can define X as the topological orbit space of S by
the algebraic action. As for the holomorphic acceptable action, we can define an action of (C∗)2m on V
whose quotient is also X . In [CFZ], proposition 2.3, it is shown that the holomorphic acceptable action of
Cm on V can be seen as the restriction of the algebraic acceptable action to a closed cocompact subgroup
H of (C∗)2m. As a consequence, we can define an action of K = (C∗)2m/H on N whose quotient can be
homeomorphically identified with X .

The principal consequence of this result is the following:

Proposition 3.1: X is Hausdorff and compact.

Proof: Let p : N → X be the canonical surjection. K is a compact Lie group so p is a closed map
(cf. [Br], p.38). Consequently, X is Hausdorff. Finally, since p is continuous and N is compact, we can
conclude that X is compact. �

Another important consequence for the sequel of the article is that the algebraic action on S (or V) is
closed. Moreover, since every complex compact commutative Lie group is a complex compact torus (i.e.
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a complex Lie group whose underlying topological space is (S1)n, cf. [L], Theorem 1.19), we can say that
K is a complex compact torus.

Using an argument of [BBŚ], we show that:

Proposition 3.2: t ∈ (C∗)2m is in the stabilizer of [z] if and only if ∀i, j ∈ Iz , we have

X li
2m+1(t) = X

lj
2m+1(t)

Proof: Let us fix some linear order on Z2m. Up to a permutation of the homogenous coordinates of
Pn−1, we can assume that lj ≤ lj+1 for every j ∈ {1, . . . , n − 1} (notice that such a permutation is an
equivariant automorphism of Pn−1). We set j0 = min(Iz) the smallest index of nonzero coordinates of
z. Then, for every t which stabilizes [z], we have

[z] = t.[z] = [X
lj
2m+1(t)zj ] = [0, . . . , 0, X

lj0
2m+1(t)zj0 , . . . , X

ln
2m+1(t)zn]

So [z] = [0, . . . , 0, zj0 , . . . , X
ln−lj0
2m+1 (t)zj ]. In particular, we have X

ln−lj0
2m+1 (t)zj = zj for every j. If j ∈ Iz ,

then X
ln−lj0
2m+1 (t) = 1. �

Remark: In [BBŚ], it is shown that [z] is a fixed point for the algebraic acceptable action if and only if
∀i, j ∈ Iz, we have li = lj .

Consequently, we have:

Proposition 3.3: Every element of V have a finite stabilizer for the algebraic acceptable action.

Proof: First, we recall that an element of V has at least (2m + 1) nonzero coordinates and amongs this
coordinates, there are (2m + 1) coordinates such that (lp)p∈P spans Cm as a real affine space. Up to a
permutation, we can assume that (1, 2, . . . , 2m + 1) is contained in Iz and in E . In this case, we have

X
lj−l2m+1

2m+1 (t) = 1 for every j = 1, . . . , 2m and every t in the stabilizer of [z]. We put Lj = lj − l2m+1.
Writing tj = rje

2iπθj , we get that r = (r1, . . . , r2m+1) and θ = (θ1, . . . , θ2m+1) verify the following
systems:

M.ln(r) = 0, M.θ ≡ 0 [1]

where M = (mi,j) is the matrix defined by mi,j = Li
j and ln(r) = (ln(r1), . . . , ln(r2m+1)). The system

being acceptable, (l1, . . . , l2m+1) spans Cm as a real affine space, which means exactly that the real matrix
M is inversible.
Consequently, ln(r) = 0 (i.e |tj | = 1 pour tout j) and θ ≡ 0 [det(M−1)]. So, rje

2iπθj can take only a
finite number of values. As a conclusion, the stabilizer of [z] is finite, as it was claimed. �

Remark: An analogous proof shows that the stabilizer of z ∈ S is finite, too.

4 Connection with toric varieties

In this section, our main task is to recall that X is a toric variety and to compute its fan. When the fan
Σ is simplicial, we can constructed a simplicial complex KΣ as follow: we note Σ(1) for the set of rays of
Σ and order its elements by x1, . . . , xn. Then, the complex KΣ is the simplicial complex on {1, · · · , n}
defined by:

∀ J ⊂ {1, · · · , n}, ( J ∈ KΣ ⇔ pos(xj , j ∈ J) ∈ Σ )

This complex KΣ is the underlying complex of Σ. We recall a theorem which will be very important in
the sequel:

Proposition 4.1: Let X be a normal separated toric variety and Σ its fan. We suppose that Σ is
simplicial. Then, the three following assertions are equivalent:

1. X is compact.

2. Σ is complete in Rn.

3. Σ’s underlying simplicial complex is a (n− 1)-sphere.
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4.1 Toric varieties

To begin with, it is clear that S and V are separated normal toric varieties. As it is explained in [CLS],
we can associate to a separated normal toric variety with group of one-parameter subgroups N a fan Σ
in the real vector space NR = N ⊗R whose cones are rational with respect to the lattice N3. So, we can
compute the fan associated to S:

Proposition 4.2: Let (ei)
n
i=1 be the canonical basis for Rn. Then, the fan describing S in Rn is

Σ(S) = { pos(ei, i ∈ I)/ I ∈ P}

Proof: To compute the fan of a toric variety, one has to calculate limits for its one-parameter subgroups.
The embedding of (C∗)n in S is the inclusion and the one-parameter subgroups of (C∗)n have the form
λm(t) = (tm1 , . . . , tmn) with m = (m1, . . . ,mn) ∈ Zn.
So, the limit of λm(t) when t tends to 0 exists in Cn if and only if mi ≥ 0 for every i. In this case, the
limit is ǫ = (ǫ1, . . . , ǫn) with ǫj = δmj ,0 (Kronecker’s symbol).
Of course, the limit has to be in S, which implies for Iǫ to be acceptable. But Iǫ = {j/mj = 0} so the
condition means exactly that {j/mj > 0} belongs to P . �

Example 6: For the fundamental set E = {{1, 2, 5}, {1, 4, 5}, {2, 3, 5}, {3, 4, 5}} of example 1, we have
S = {z/(z1, z3) 6= 0, (z2, z4) 6= 0, z5 6= 0}. As a consequence, the fan Σ(S) is the fan in R5 whose facets
are the 2−dimensional cones pos(e1, e2), pos(e1, e4), pos(e2, e3) and pos(e3, e4) (where e1, . . . , e5 is the
canonical basis of C5).

Remark: We can also easily compute orbits of S for the action of (C∗)n. For I ⊂ {1, . . . , n}, we set
OI = {z ∈ Cn/Iz = Ic}. Then if z ∈ S, its orbit is OIc

z
.

So, we can describe S as the partition: S =
⊔

I∈P

OI

Moreover, in the orbit-cone correspondance between S and Σ(S) (cf. [CLS] ch.3), OI corresponds to
σI = pos(ej/j ∈ I).

Remark: In quite the same way, we can show that the fan of V is Σ(V) = {pos(ei, i ∈ I)/I ∈ P} in Rn−1,
with (e1, . . . , en−1) defined as the canonical basis of Rn−1 and en = −(e1 + · · · + en−1).

In [CLS], it is proven that X is an irreducible separated compact normal toric variety. In the next section,
we will detail the construction with the view to identify its group of one-paramater subgroup and the
structure of its fan.

Example 7: For the good system (E , l) with E = {{1, 2, 5}, {1, 4, 5}, {2, 3, 5}{3, 4, 5}} and l1 = l3 = 1,
l2 = l4 = i and l5 = 0, the algebraic action is

(α, t, s) · z = (αtz1, αsz2, αtz3, αsz4, αz5)

Using the automorphism of (C∗)3 defined by φ(α, t, s) = (α, αt, αs), we can see that the quotient X of
the algebraic action is also the quotient of S by the action defined by

(α, t, s) · z = (tz1, sz2, tz3, sz4, αz5)

so X is the product P1×P1 and the projection N → X comes from the usual definition of P2 as a quotient
of S3.

To conclude this section, let f : (C∗)2m+1 −→ (C∗)n be the map defined by

f(u, t, s) = (X l̃1
2m+1(u, t, s), · · · , X l̃n

2m+1(u, t, s))

The algebraic acceptable action on Cn is just the restriction to Im(f) of the natural action of the torus
(C∗)n on Cn.

3a cone σ is said to be rational for N if there a family S of elements of N such that σ = pos(S). Moreover, if S is free
in NR, we say that σ is simplicial
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Proposition 4.3: Ker(f) is finite.

Proof: Let t be in Ker(f). Then X l̃j (t) = 1 for every j. We set t = (r1e
2iπθ1 , . . . , r2m+1e

2iπθ2m+1) and

lj = (l1j , . . . , l
2m
j ) and we have r1r

l1j
2 . . . r

l2mj
2m+1 = 1 for every j. That means that we have A.v = 0 where

A = (ai,j) is the real matrix defined by ai,j = l̃i
j

and v is the vector v = (ln(rj)). Since l1, . . . ln affinely

spans R2m, we can extract an inversible matrix Ã of order 2m+ 1 from A and we can deduce that v = 0.
This means that |tj | = 1 for every j. Moreover, if θ = (θ1, . . . , θ2m+1), we get that Ã.θ is an element of

Z2m+1. Consequently, θ is an element of 1
δ
Zn, where δ = det(Ã). Finally, we can deduce that eiθj is a

δ−th root of unity for every j. Particularly, there are only a finite number of elements in the kernel of f .
�

Remark: Generally, f is not injective. For instance, if we consider E = {{1, 2, 4}, {2, 3, 4}} and l1 =
1, l2 = i, l3 = p, l4 = −1 − i, where p is a nonzero positive integer. (E , l) is a good system and for p = 4,
f is not injective. Note that for p = 3, f is injective.

Definition: We define TN as the quotient group (C∗)n /Im(f)

We recall that (C∗)
n

is included in S as an dense Zariski open subset. (C∗)n is invariant by the action of
(C∗)2m+1. This implies that TN can be embedded in X as an dense open subset. Moreover, the action of
(C∗)n on S commutes with the action of (C∗)2m+1, so the action of TN on itself can be extended to an
action on X . In [CLS], it is proven that X is an irreducible separated compact normal algebraic variety.

4.2 The algebraic torus TN

We note F : C2m+1 → Cn the linear map defined by

F (U, T, S) = (U+ < aj , T > + < bj, S >)
j

The matrix of F has (1, lj) as j-th row so F has maximal rank. So, F is injective. The family fj = F (ej),
with (e1, . . . , e2m+1) the canonical basis of C2m+1 is a basis for Im(F ). We can notice that each fj has
integer coordinates. We complete this basis to a basis (f1, . . . , fn) of Cn with integer coordinates. Next,

we define the map G : Cn → Cn−2m−1 by linearity and G(fj) =

{
0 j ∈ {1, . . . , 2m + 1}
gj otherwise

(with (g2m+2, . . . , gn) the canonical basis of Cn−2m−1)

It is clear by construction that the following sequence is exact:

0 // C2m+1 F // Cn G // Cn−2m−1 // 0

Moreover, we have
F (Z2m+1) ⊂ Zn, G(Zn) ⊂ Zn−2m−1

Let t ∈ (C∗)
2m+1

and T be some element of C2m+1 such that t = exp (T ). We put g (t) = exp (G (T )).
The previous remark has for consequence that g is well defined. Moreover, we have:

Proposition 4.4: g is a group homomorphism and the following diagram is commutative:

(C∗)
2m+1 f // (C∗)

n g // (C∗)
n−2m−1

C2m+1

exp

OOOO

� � F // Cn

exp

OOOO

G // // Cn−2m−1

exp

OOOO

Finally, we can prove that:

Proposition 4.5: g is surjective and Ker(g) = Im(f)

Proof: The surjectivity of g is clear (since G and exp are surjective).
So, we have only to show that Ker(g) = Im(f). By the construction of F and G and by commutativity of
the previous diagram, we have for every t = exp(T ), g◦f(t) = g◦f ◦exp(t) = exp◦G◦F (T ) = exp(0) = 1
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so Im(f) ⊂ Ker(g).
Conversely, let t belong to Ker(g). We put t = exp(T ), for some T ∈ Cn and we have 1 = g(t) so
exp(G(T )) = 1.
As a consequence, G(T ) ∈ 2iπZn−2m−1, i.e.

G(T ) = (2iπq2m+2, . . . , 2iπqn) = 2iπq2m+2g2m+2 + . . . 2iπqngn = G(2iπq2m+2f2m+2 + . . . 2iπqnfn)

So T − (2iπq2m+2f2m+2 + . . . 2iπqnfn) ∈ Ker(G) = Im(F ). We can write that

T = λ1f1 + . . . λ2m+1f2m+1 + 2iπq2m+2f2m+2 + . . . 2iπqnfn

Finally, T = F (λ1e1 + . . . λ2m+1e2m+1) + 2iπ(q2m+2f2m+2 + . . . qnfn), which implies that

t = exp(F (λ1e1 + . . . λ2m+1e2m+1)) = f(exp(λ1e1 + . . . λ2m+1e2m+1)) ∈ Im(f) �

Particularly, TN = (C∗)n/Im(f) is isomorphic to (C∗)n−2m−1 (and, as it was claimed in the previous
section, X is a toric variety). We note g for the isomorphism between TN and (C∗)n−2m−1 induced by g.

Definition: We note λu
T for the one-parameter subgroup of TN defined by λu

T = g−1 ◦ λu
n−2m−1. Since

g is an isomorphism, every one-parameter subgroup of TN has this form.

Notation: Let φ : T1 → T2 be a group homomorphism between two algebraic torus T1 and T2. We will
note φ∗ for the morphism between the groups of one-parameter subgroup of T1 and T2 induced by φ:
φ∗(λ) = φ ◦ λ.

The group of one-parameter subgroup of (C∗)
n

is {λu
n/u ∈ Zn} which we will identify with Zn via u ↔ λu

n.
Via this map, the map F and G are exactly the morphisms induced by f and g (respectively):

Proposition 4.6: With the above identification, we have F = f∗ and G = g∗. Precisely:

1. For every v in Z2m+1, f ◦ λv
2m+1 is the one-parameter subgroup λ

F (v)
n of (C∗)

n
.

2. For every v in Zn, g ◦ λv
n is the one-parameter subgroup λ

G(v)
n−2m−1 of (C∗)

n−2m−1
.

Proof: Let us take some t ∈ C∗.
1) We have λv

2m+1(t) = (tv1 , ..., tv2m+1) so

f ◦ λv
2m+1(t) = (tv1+v2a

1
j+···+vm+1a

m
j +···+v2m+1a

m
j )j = (t<v,l̃j>)j = λF (v)

n (t)

2) Let us pick some T ∈ Cn such that t = exp(T ). We put w = G(v) = (w1, ..., wn−2m−1). If we note gj
(resp. Gj) for the coordinates functions of g (resp. G) in the canonical bases, we can easily verify that
gj ◦ exp = exp ◦Gj and that wj = Gj(v) for every j.
Next, we have λv

n(t) = (tv1 , . . . , tvn) = (eTv1 , . . . , eTvn), so g ◦ λv
n(t) = g(eTv1 , . . . , eTvn) = exp ◦

G(Tv1, . . . , T vn) = exp(G1(Tv), . . . , Gn−2m−1(Tv)) = (eG1(Tv), . . . , eGn−2m−1(Tv)).
Finally, g ◦ λv

n(t) = (eTG1(v), . . . , eTGn−2m−1(v)) = (eTw1 , . . . , eTwn−2m−1) = λw
n−2m−1(t). �

We would like to identify the group N of one-parameter subgroups of TN with some lattice in Cn/Im(F ).
A natural candidate is described as follow: Let Π be the canonical surjection Cn → Cn/Im(F ) and
G : Cn/Im(F ) → Cn−2m−1 be the linear isomorphism induced by G. Notice that G is also a Z−module

isomorphism between Zn−2m−1 and Π(Zn). If u belongs to Zn, we set λ
Π(u)
T for the one-parameter

subgroup λ
G(u)
T (notice that this definition make sense since Im(F ) = Ker(G)). As a consequence, we

have: N = {λ
Π(u)
T /u ∈ Zn} which can be identified with Π(Zn) = Zn/Im(F ).

Now, we can define an ”exponential” map between Cn/Im(F ) and TN : we define exp : Cn/Im(F ) → TN

by setting exp(Π(z)) = π ◦ (exp(z)) for every element z in Cn. The fact that Ker(g) = Im(f) implies
that this map is well defined.(Alternatively, we can define this exponential as the map g−1 ◦ exp ◦G). By

construction, we have π ◦exp = exp◦Π and exp◦G = g ◦exp. Moreover, for every v ∈ Zn, π ◦λv
n = λ

Π(v)
T ,

that is to say that Π = π∗.
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To sum up, we have the following commutative diagram:

0 // C2m+1 � � F //

F

%%LLLLLLLLLL

exp

����

Cn

F̃
zzzz

G // //

Π

&& &&NNNNNNNNNNN

exp

����

Cn−2m−1 //

exp

����

T4

G̃

xx
0

Im(F )
, �

i

::uuuuuuuuu

����

Cn/Im(F )

G

66nnnnnnnnnnnn

exp

����

(C∗)2m+1
f

f

%% %%KKKKKKKKKK

// (C∗)n

π

&& &&MMMMMMMMMMM

g // // (C∗)n−2m−1 // 1

Im(f)
, �

i

::vvvvvvvvv

TN

g

77nnnnnnnnnnnnn

(C∗)n/Im(f)

4.3 Study of the projection π

In this last section, we are in position to prove the first part of theorem 1. Let Σ denote the fan
in NR = N ⊗ R associated to X (this fan exists since X is separated and normal). In order to use
proposition 4.1, we have to prove that Σ is simplicial. According to [CLS], we just have to prove that X
is an orbifold.

As it was shown previously, the holomorphic acceptable action on S is free and the algebraic action on
S has only finite stabilizers. Consequently, every stabilizer for the action of K on N is finite. So, X is
the quotient of the compact variety N by the action of a compact Lie group K and every stabilizer for
this action is finite.

Finally, since it is a continuous map defined on a compact set, we can claim that the map

φn : K −→ N
h 7→ h · n

is proper for every element n in N . By Holmann’s theorem (cf. [O], §5.1), we get that X is indeed an
orbifold. Taking advantage of proposition 4.1, we have proved that KΣ, the underlying complex of the
fan Σ, is a (n− 2m− 2)−sphere.

Now, the following proposition will prove theorem 1:

Theorem 6: KΣ and P are isomorphic simplicial complexes.

Proof: Fisrt of all, π is by construction a toric morphism. According to [CLS], this implies that π is
equivariant (for the toric actions of (C∗)n and TN), so π sends an orbit OI in S to an orbit in X . We

set ÕI to be the unique orbit in X containing π(OI). Moreover, the map π∗ (identified with Π) from Rn

into NR preserves the cones.

We can easily show that S and X have exactly the same number of orbits, i.e that the quotient of X by
its torus TN is in bijection with the quotient of S by its torus (C∗)

n
. Since π is surjective, we get that

the assignation OI → ÕI (induced by π) is bijective. As a consequence, Π induces a bijection between
the cones of Σ(S) and those of Σ

If σ is a cone belonging to Σ(S), we note O(σ) the orbit in S associated to σ (cf [CLS], ch.3). Particularly,
O(σI) = OI . We will also note in the same way the orbits in X . Moreover, the image of the cone σ by

Π will be noted σ̃. So, we have Õ(σ) = O(σ̃).
Still from [CLS], π preserves the partial order of faces: if τ is a face of σ in Σ(S), then τ̃ is a face of σ̃.

On the other hand, a slight modification of the proof of the fact that (C∗)n/Im(f) (i.e. π (O∅)) is

isomorphic to (C∗)
n−2m−1

shows that π(O(σ)) is isomorphic to (C∗)n−2m−1−dim(σ). At the level of
cones, this means that cones of Σ(S) with the same dimension are sent to cones of Σ with the same
dimension. In particular, Π sends rays to rays. This last property means that Π induces a bijection
between vertices of P and vertices of KΣ, bijection which we also note Π.
It is clear by what preceeds that this very last map is an simplicial complex isomorphism. �
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As a consequence, P is indeed a simplicial sphere. More precisely, what we have is a particular type of
simplicial spheres, namely spheres which are underlying simplicial complex of some complete fan:

Definition: Let K be a d-sphere. K is said to be rationally starshaped if there exists a lattice N in
Rd+1, a point p0 ∈ N and a realization4 |K| for K in Rd+1 such that every vertex of |K| belongs to N
and every ray emanating from p0 intersects |K| in exactly one point. The realization |K| is said to be
starshaped and we say that p0 belongs to the kernel of |K|.

Corollary 3: Let (E , l) be a good system verifying (K). Then its associated complex P is a rationally
starshaped sphere.

Proof: We have already seen that P is a simplicial sphere combinatorially equivalent to KΣ. If we put
Σ(1) = {ρ1, . . . , ρv} for the distincts rays of Σ and u1, . . . , uv for generators of ρ1, . . . , ρv (respectively) in
N , then the geometric simplicial complex C whose simplexes are Conv(ui, i ∈ I) for I in P is obviously
a realization of P in Rn−2m−1 with rational vertices. The point 0 is in the kernel of C so P is rationally
starshaped. �

5 Inverse construction

5.1 The construction

In this section, we give a realization theorem: for every rationally starshaped sphere, there exists a good
system whose associated sphere is the given one. In [M], p.86, the same kind of theorem is proven for
simple polytopes and LVM manifolds. One of the main interests of this theorem is that it gives us a
clue to answer to an open question: does there exist a LVMB manifold who has not the same topology
than a LVM manifold? The idea is to use this theorem to construct a LVMB manifold from a rationally
starshaped sphere P which is not polytopal and that this manifold has a particular topology. For example,
we expect that the LVMB manifold coming from the Brckner’s sphere or the Barnette’s one (the two
4-spheres with 8 vertices which are not polytopal) are good candidates.

Let P be a rationally starshaped d-sphere with v vertices (up to a simplicial isomorphism, we will assume
that these vertices are 1, 2, . . . , v). So, there exists a lattice N and a realization |P| of P in Rd+1 all of
whose vertices belong to N . We can assume that 0 is in the kernel of |P| and that N is Zd+1.
To begin, we suppose that v is even and we put v = 2m. We note E the set defined by

{P ∈ {1, ..., v + d + 1}/P c is a facet of P}

and E0 = {{0} ∪ P/P ∈ E} We also note A the matrix whose columns are x1, . . . , xv. We label its rows
x1, . . . , xd+1, and finally, we have:

Theorem 7: If e1, . . . , ev is the canonical basis of Rv, then (E0, (0, e1, . . . , ev,−x1, . . . ,−xd+1)) is a good
system of type (v + 1, d + v + 2) whose associated complex is P .

First, since P is a d−sphere, it is a pure complex whose facets have d elements. As a consequence, every
subset in E0 has v + 1 elements. So, E0 is a fundamental set of type (v + 1, v + d + 2) (as usual, we will
note the set of its acceptable subsets A0). Notice that, since every facet of P has vertices in {1, . . . , v},
E0 has d + 2 indispensable elements. Moreover, by definition, E0’s associated complex is clearly P . Since
P is a sphere, hence a pseudo-manifold, proposition 2.4 implies that E0 is minimal for the SEU property.
We can also notice that the same is true for E (with set of acceptable subsets A).

Secondly, we have to check that the vectors 0, e1, e2, . . . , ev,−x1, . . . ,−xd+1 ”fits” with E0 to make a
good system. We put ρj = pos(xj) for the ray generated by xj , j = 1, . . . , v. We also note Σ(P) the fan
defined by Σ(P) = {pos(xj , j ∈ I)/I ∈ P}. Then, by definition, Σ(P) is a simplicial fan whose underlying
complex is P . As a consequence, Σ(P) is rational with respect to N and complete (since P is a sphere,
cf. proposition 4.1). We set X for the compact normal toric variety associated to Σ(P). Following [Ha],
we will construct X as a quotient of a quasi-affine toric variety by the action of an algebraic torus.

In what follows, (ej)j=1,...,N is the canonical basis of CN (for any N). Let Σ̃ be the fan in Rv+d+1

whose cones are pos(ej , j ∈ J), J ∈ P . Obviously, Σ̃ is a noncomplete simplicial fan whose underlying

complex is P , too. We note X̃ the (quasi-affine) toric variety associated to this fan. Then, the open set

S = {z ∈ Cv+d+1/Iz ∈ A} is exactly the set X̃. Indeed, the computation of the proof of proposition 4.2

4The fact that a d−sphere has a realization in Rd+1 is an open question (cf. [MW], §5).
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shows that the fan of S is the fan in Rv+d+1 whose rays are generated by the canonical basis and whose
underlying complex is P . Thus, S and X̃ have exactly the same fan, so they agree. We can also observe
that

S0 = C∗ × S = {(z0, z) ∈ Cv+d+2/Iz0,z ∈ A0}

has the same fan, but seen in Rv+d+2.

Finally, we define the map f : (C∗)v → (C∗)v+d+1 by f(t) = (t,X−x1

v (t), . . . , X−xd+1

v (t)). Note that

t = (Xe1
v (t), . . . , Xev

v (t)). According to [Ha], X is the quotient of X̃ = S by the restriction of the toric

action of (C∗)v+d+1 restricted to Im(f). It’s a geometric quotient because Σ̃ is simplicial.

Considering l0 = 0, l1 = e1, . . . , l2m = e2m,−x1, . . . , lv+d+2 = −xd+1 as elements of Cm, we can define an
holomorphic action of (C∗) × Cm on S0 by setting

(α, T ) · (z0, z) = (αe<lj ,T>zj)
v+d+2
j=0 ∀α ∈ C∗, t ∈ Cm, (z0, z) ∈ S0

It is clear that (E0, l) verifies (K). Moreover, the algebraic acceptable action associated to this system
has X for quotient. Indeed, a computation shows that this algebraic action is defined by

(α, t) · (z0, z) = (αz0, f(t) · z) ∀α ∈ C∗, t ∈ (C∗)2m, (z0, z) ∈ S0

If we note V0 = {[z0, z]/(z0, z) ∈ S0} the ”projectivization” of S0, then the orbit space for the algebraic
action is the quotient of V0 by the action defined by

t · [z0, z] = [z0, f(t) · z] ∀t ∈ (C∗)2m, [z0, z] ∈ V0

But V0 = {[1, z]/z ∈ S} is homeomorphic to S so the claim is proved.

The only thing we have to check is that (E0, l) is a good system, that is the orbit space N for the
holomorphic action is a complex manifold. We have seen that X is a geometric quotient so the action of
(C∗)2m is proper (see, for example, [BBCM], p.28). As a consequence, the action of Cm is proper too,
and since there is no compact subgroups in Cm (except {0} of course), its action is free. Finally, the
action is proper and free so N can be endowed with a structure of complex compact manifold.

Remark: 1) Since N is a complex compact manifold, the imbrication condition is fulfilled (cf. theorem 3).
This gives also another proof for the fact that the SEU property is also fulfilled.
2) The transformation of (x1, . . . , xv, e1, . . . , ed+1) to (e1, . . . , ev,−x1, . . . ,−xd+1) is called a linear trans-
form of (x1, . . . , xv, e1, . . . , ed+1) (see [E] for example). In [M], the construction of a LVM manifold
starting from a simple polytope used a special kind of linear transform called Gale (or affine) transform
(see. [E])

Now, we suppose that v = 2m + 1 is odd. The construction is very similar. However, we have an
additional step: we define an action of (C∗)v+1 on S0 by

(t0, t) · (z0, z) = (t0z0, f(t) · z) = (t0z0, X
e1(t)z1, . . . , X

−xd+1

(t)zv+d+1)

where f and the action of Im(f) are defined as above, and e0 is the first vector of Cv+1 with coordinates
(z0, z1, . . . , zv+1). The orbit space for this last action is still X . The rest is as above: we define a
fundamental set E∗ = { {−1} ∪ E / E ∈ E0 } and we have:

Theorem 8: If e0, . . . , ev is the canonical basis of Rv+1, then (E∗, (0, e0, e1, . . . , ev, (0,−x1), . . . , (0,−xd+1)))
is a good system of type (v + 2, d + v + 3) whose associated complex is P .

5.2 LVMB manifolds and moment-angle complexes

In this section, we follow closely the definitions and notations of [BP]. We use the previous result of the
above section to show that many moment-angle complexes with even dimension can be endowed with a
complex structure as a LVMB manifold.

Definition: Let K be a simplicial complex on {1, . . . , n} with dimension d−1. If σ ⊂ {1, . . . , n}, we put

Cσ = {t ∈ [0, 1]n/tj = 1 ∀j /∈ σ}
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and

Bσ = {z ∈ Dn/|zj| = 1 ∀j /∈ σ}

The moment-angle complex associated to K is

ZK,n =
⋃

σ∈K

Bσ

Example 8: For instance, if K is the border of the n-simplex, Z̃K is the sphere S2n−1 (cf. [BP]).

In [BP], lemma 6.13, it is shown that if K is a simplicial sphere, then ZK,n is a closed manifold. Moreover,

in [Bo], to prove theorem 3 (p.1268 in [Bo]), Bosio introduces the set M̂ ′
1 defined by

M̂ ′
1 = { z ∈ Dn/ Jz ∈ A }

where Jz = { k ∈ {1, . . . , n}/ |zj | = 1 }. This set is the quotient of S by the restriction of the holomorphic

to R∗
+ × Cm and as a consequence, N is the quotient of M̂ ′

1 by the diagonal action of S1 defined by:

eiθ · z = ( eiθz1, . . . , e
iθzn ) ∀θ ∈ R, z = (z1, . . . , zn) ∈ M̂ ′

1 ⊂ Cn

Proposition 5.1: We have M̂ ′
1 = ZP,n

Proof: Indeed, we have:

M̂ ′
1 =

⋃

σ∈P

{z ∈ Dn/∀j /∈ σ, |zj | = 1}

=
⋃

τ∈A

{z ∈ Dn/τ ⊂ Iz}

= {z ∈ Dn/Jz ∈ A} �

Proposition 5.2: Let (E , l) be a good system with type (2m + 1, n, k) and N the LVMB associated to
this system. If k > 0, then N is homeomorphic to a moment-angle complex.

Proof: For the clarity of the proof, we assume that n is indispensable. Let P be the sphere associated to E
and S the open subset of Cn whose quotient by the holomorphic action is N . According to proposition 5.1,

the quotient M̂ ′
1 = S/(R∗

+ × Cm) can be identified with ZP,n.

Let φ be the map defined by

φ : ZP,n → Cn−1

z 7→
(

z1
zn
, . . . , zn−1

zn

)

Since n is indispensable, we have |zn| = 1 for every ZP,n so φ is well defined. Moreover, φ is continuous
and a simple calculation shows that φ is invariant for the diagonal action and φ(ZP,n) = ZP,n−1. We
claim that if φ(z) = φ(w), then z and w belong to the same orbit for the diagonal action. Indeed, if
φ(z) = φ(w), we have

(
z1
zn

, . . . ,
zn−1

zn

)
=

(
w1

wn

, . . . ,
wn−1

wn

)

We have |zn| = |wn| = 1, so we put zn
wn

= eiα and we have z = eiαw.

As a consequence, φ induce a map φ : N → ZP,n−1 which is continuous and bijective. Actually, this is
an homeomorphism since the inverse map φ−1 is the continuous map

φ−1 : ZP,n−1 → N
z 7→ [(z, 1)]

where [(z, 1)] denotes the equivalence class of (z, 1) ∈ ZP,n of the diagonal action.
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Corollary 4: Let P be a rationally starshaped sphere. Then there exists N ∈ N∗ such that ZP,N can
be endowed with a complex structure as LVMB manifold.

Proof: Since P is a rationally starshaped sphere, there exists a good system (E , l) with type (2m+1, n, k)
whose associated complex is P (cf. the previous subsection). Moreover, our construction of (E , l) implies
that k > 0. So, as stated in proposition 5.2, N is homeomorphic to ZP,n−1. So, we put N = n− 1 and
we endow ZP,N with the complex structure induced by this homeomorphism.

Remark: Let N0 be the smallest integer N as in corollary 4. Then, for every q ∈ N, ZP,N0+2q can also be
endowed with a complex structure and then we have ZP,N0+2q = ZP,N0

× (S1)2q. Indeed, let Λ be the
matrix whose columns are the vectors of the good system (E , l) given in the proof of corollary 4. We put

Ẽ = { P ∪ {N0 + 1, N0 + 2}/ P ∈ E} and we define λ1, . . . , λn+2 as the columns of the matrix




Λ 0 0
−1 · · · − 1 1 0
−1 · · · − 1 −1 1




Then it is easy to show that (Ẽ , (λ1, . . . , λn+2)) is a good system and that we have ZP,N0+2 = ZP,N0
×

(S1)2
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