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Abstract. Pattern discovery has many applications in finding functio-
nally or structurally important regions in biological sequences (binding
sites, regulatory sites, protein signatures etc.). In this paper we present
a new pattern discovery algorithm, which has the following features:

- it allows to find, in exactly the same manner and without any
prior specification, patterns with fixed length gaps (i.e. sequences of one
or several consecutive wild-cards) and contiguous patterns;

- it allows the use of any pairwise score function, thus offering mul-
tiple ways to define or to constrain the type of the searched patterns;
in particular, one can use substitution matrices (PAM, BLOSUM) to
compare amino acids, or exact matchings to compare nucleotides, or
equivalency sets in both cases.

We describe the algorithm, compare it to other algorithms and give
the results of the tests on discovering binding sites for DNA-binding
proteins (ArgR, LexA, PurR, TyrR respectively) in E. coli, and promoter
sites in a set of Dicot plants.

1 Introduction

In its simplest form, the pattern discovery problem can be stated as follows:
given t sequences S1, S2, . . . , St on an arbitrary alphabet, find subsequences (or
patterns) o1 ∈ S1, o2 ∈ S2, . . . , ot ∈ St such that o1, o2, . . . , ot are similar (accor-
ding to some criterion). More complex formulations include a quorum constraint:
given q, 1 ≤ q ≤ t, at least q similar patterns must be found.

The need to discover similar patterns in biological sequences is straightfor-
ward (finding protein signatures, regulatory sites etc. [2]). Major difficulties are
the NP-hardness of the problem, the diversity of the possible criteria of simila-
rity, the possible types of patterns. All the variations in the formulation of the
problem cannot be efficiently handled by the same, unique algorithm.

The consequence is that many pattern discovery algorithms have appeared
during the last decade (Gibbs sampling, Consensus, Teiresias, Pratt, Meme, Mo-
tif, Smile, Winnower, Splash ...). See [2] for a survey. Most of these algorithms
define a quite precise model (that is, type of the searched pattern, similarity
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notion, score function), even if exceptions exist (e.g., Pratt allows the use of one
among five score functions). Therefore, each such algorithm treats one aspect
of the pattern discovery problem, although when they are considered together
these algorithms form an interesting toolkit... providing one knows to use each
of the tools. Indeed, an annoying problem occurs for a biologist while using most
of these algorithms: (s)he needs to have an important prior knowledge about the
pattern (s)he wants to discover, in order to fix the parameters. Some algorithms
do not discover patterns with gaps (Winnower [10], Projection [3]), while others
need to know if gaps exist and how many are they (Smile [9], Motif [13]); some
algorithms ask for the length of the searched pattern or the number of allowed
errors (Smile [9], Winnower [10], Projection [3], Gibbs sampling [7]); some al-
gorithms find probabilistic patterns (Gibbs Sampling [7], Meme [1], Consensus
[5]); some others often return a too large number of answers (Splash [4], Teire-
sias [11], Pratt [6], Smile [9]); some of them allow to use a degenerate alphabet
and equivalency sets (Teiresias [11], Pratt [6]), and only one of them (Splash [4])
allows to choose a substitution matrix between amino acids or nucleic acids.

While the biologist often does not have the prior knowledge (s)he is asked
for, (s)he usually has another knowledge related to the biological context: usually
(s)he knows the biological significance of the common pattern (s)he is looking
for (binding site, protein signature etc.); sometimes the given sequences have a
particular composition (a character or family of characters appear much more
often than some others); sometimes (s)he has an idea about the substitution
matrix (s)he would like to use. These features could be taken into account while
defining the score functions, but can we afford to propose a special algorithm
for every special score function?

A way to avoid the two drawbacks cited before would be to propose an
algorithm which:

i) needs a minimum prior knowledge on the type of the discovered patterns;

ii) allows a large flexibility with respect to the choice of the score function,

and, of course, is still able to quickly analyse the space of possible solutions in
order to find the best ones. In other words, such an algorithm should be able,
given a minimal description of the biological pattern, to infer a correct model
(the type of the searched pattern, the similarity notion between patterns), to
choose the correct score function among many possible score functions, and
to (quickly) find the best patterns, that is, the ones which correspond to the
searched biological patterns.

Unfortunately, when the facility of use (for a biologist) becomes a priority,
and the suppleness of the algorithm (due to the need to define many types of
patterns) becomes a necessity, the difficulty of the algorithmic problem grows
exponentially: (1) how to deal with all the possible types of patterns, (2) what
score function to use in what cases, (3) what searching procedure could be effi-
cient in all these cases?

The algorithm we propose attempts to give a first (and, without a doubt,
very partial) answer to these questions.
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(1) Certainly, our algorithm is not able to deal with all the possible types of
patterns; but it only imposes one constraint, which can be very strong or
extremely weak depending on one integer parameter e. No condition on the
length of the patterns, or on the number and/or the length of the gaps is
needed; these features are deduced by the algorithm while analysing the
input sequences and their similar regions.

(2) We use a score function f to evaluate the similarity degree between two
patterns x1, x2 of the same length; f can be chosen arbitrarily, and can be
applied either to the full-length patterns x1, x2, or only to the parts of x1, x2

corresponding to significant indices. The significant indices are defined using
an integer parameter Q, and are intended to identify the parts of the patterns
which are common to many (at least Q%) of the input sequences.

(3) The searching procedure is supposed to discover rather general patterns,
but it needs to have a minimum piece of information about the similarity
notion between the patterns. There are mainly two types of similarity: the
direct similarity asks that o1, o2, . . . , ot (on S1, S2, . . . , St respectively) be
similar with respect to some global notion of similarity; the indirect similarity
asks that a (possibly external) pattern s exists which is similar to each of
o1, o2, . . . , ot with respect to some pairwise notion of similarity. For efficiency
reasons, we chose an alternative notion of similarity, which is the indirect
similarity with an internal pattern, i.e. located on one of the input sequences
(unknown initially). See Remark 2 for comments on this choice.

Remark 1. The parameters e, f, Q that we introduce are needed to obtain a
model (pattern type, similarity notion, score function) and to define a searching
procedure, but they are not to be asked to the user (some of them could possibly
be estimated by the user, and the algorithm is then able to use them, but if the
parameters are not given then the algorithm has to propose default values).

Remark 2. The indirect similarity with an internal pattern is less restrictive than,
for instance, the direct similarity in algorithms like Pratt or Teiresias, where all
the discovered patterns o1, o2, . . . , ot have to have exactly the same character
on certain positions i (every oj is, in this case, an internal pattern to which
all the others are similar). And, in general, our choice can be considered less
restrictive than the direct similarity requiring the pairwise similarity of every
pair (oi, oj), since we only ask for a similarity between one pattern and all the
others. Moreover, the indirect similarity with a (possibly external) pattern can
be simulated using our model by adding to the t input sequences a new sequence,
artificially built, which contains all the candidates (but this approach should only
be used when the number of candidates is small).

Finally, notice that our algorithm is not intended to be a generalization of
any of the existing algorithms. It is based on a different viewpoint, in which the
priority is the flexibility of the model, in the aim to be able to adapt the model
to a particular biological problem.
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In Section 2 we present the algorithm and the complexity aspects. The dis-
cussion of the experimental results may be found in Section 3. Further possible
improvements are discussed in Section 4.

2 The algorithm

2.1 Main ideas

The algorithm is based on the following main ideas:

1. Separate the similarity notion and the score function.
That means that building similar patterns, and selecting only the interesting

ones are two different things to do in two different steps. This is because we are
going to define one notion of similarity, and many different score functions.

2. Overlapping patterns with overlapping occurrences form a unique pattern
with a unique occurrence.

In order to speed up the treatment of the patterns, we ask the similarity
notion to be defined such that if patterns x1, x2 overlap on p positions and have
occurrences (that is, patterns similar with them) x′

1, x
′

2 that overlap on the same
p positions, then the union of x′

1, x
′

2 is an occurrence of the union of x1, x2. This
condition is similar to the ones used in alignment algorithms (BLAST, FASTA),
where one needs that a pattern can be extended on the left and on the right, and
still give a unique pattern (and not a set of overlapping patterns). This condition
is not necessary, but is interesting from the viewpoint of the running time.

3. Use the indirect similarity with an internal pattern (say o1 on S1).
This choice allows us to define a unique search procedure for all types of

patterns we consider.

4. The non-interesting positions in the internal pattern o1 (which is similar
to o2, . . . , ot) are considered as gaps.

This is already the case in some well known algorithms: in Pratt and Teire-
sias a position is interesting if it contains the same character in all the similar
patterns; in Gibbs sampling, a position is interesting if it contains a character
whose frequency is statistically significant. In our algorithm, one can define what
“interesting position” means in several different ways: occurrence of the same
character in at least Q% of the patterns; or no other character but A or T in
each pattern; or at least R% of A; and so on. This is a supplementary possibility
offered by the algorithm, which can be refused by the user (then the searched
patterns will be contiguous).

2.2 The basic notions

We consider t sequences S1, S2, . . . , St on an alphabet Σ. For simplicity, we
will assume that all the sequences have the same length n. A subsequence x
of a sequence S is called a pattern. Its length |x| is its number of characters,
and, for given indices (equivalently, positions) a, b ∈ {1, 2, . . . , |x|}, x[a..b] is the
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(sub)pattern of x defined by the indices i, a ≤ i ≤ b. When a = b, we simply
write x[a].

We assume that we have a collection of similarity sets covering Σ (either the
collection of all singletons, as one often does for the DNA alphabet; or the two
sets of purines and pyrimidines, as for the degenerated DNA alphabet; or equi-
valency sets based on chemical/structural features; or similarity sets obtained
from a substitution matrix by imposing a minimal threshold). The similarity
of the characters can either be unweighted (as is usually the case for the DNA
alphabet) or weighted (when the similarity sets are obtained using a substitution
matrix).

Definition 1. (match, mismatch) Two patterns x, y of the same length k are
said to match in position i ≤ k if x[i] and y[i] are in the same similarity set;
otherwise x, y are said to mismatch in position i.

Definition 2. (similarity) Let e > 0 be an integer. Two patterns x, y are similar
with respect to e if they have at most e consecutive mismatches.

From now on, we will consider that e is fixed and we will only say similar
instead of similar with respect to e. Notice that the pairwise similarity notion
above can be very constraining (when e is small), but can also be very weakly
constraining (when e is large).

To define the indirect similarity between a set of patterns (one on each se-
quence), we need to identify one special sequence among the t given sequences.
Say this sequence is S1.

Definition 3. (indirect similarity, common pattern, occurrences) The patterns
o1 ∈ S1, o2 ∈ S2, . . ., ot ∈ St of the same length k are indirectly similar if, for
each j ∈ {1, 2, . . . , t}, o1 and oj are similar. In this case, o1 is called a common
pattern of S1, S2, . . . , St, and o1, o2, . . . , ot are its occurrences.

To define the interesting positions i of a common pattern (see 4. in subsection
2.1.), we use - in order to fix the ideas - one of the possible criteria: we ask that
the character in position i in the common pattern exceed a certain threshold of
matched characters in o1, o2, . . . , ot.

Definition 4. (consensus, gap) Let 0 ≤ Q ≤ 100 be an integer and let o1 ∈ S1

of length k be a common pattern of S1, S2, . . . , Sj (1 ≤ j ≤ t) with occurrences
o1, o2, . . . , oj respectively. Denote

Ai,j = | {l , o1[i] matches ol[i], 1 ≤ l ≤ j}|, for every 1 ≤ i ≤ k

R(Q,j) = {i , Ai,j ≥ Qt/100, 1 ≤ i ≤ k}.

Then the part of o1 corresponding to the indices in R(Q,j), noted o1|R(Q,j), is
the consensus with respect to Q of o1, o2, . . . , oj ; the contiguous parts not in the
consensus are called gaps.
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The use of the parameter Q allows to add (if one wishes) to the compulsory
condition that o1, o2, . . . , oj have to be similar to o1, the supplementary condition
that only the best conserved positions in o1 are to be considered as interesting
(the other positions are assimilated to wild-card positions, that is, they can be
filled in with an arbitrary character). Different values of the pair (e, Q) allow to
define a large range for the similar patterns and their consensus, going from a
very weakly constrained notion of pairwise similarity and a very low significance
of each character in the consensus, to a strongly constrained notion of similarity
and a strong significance of each character in the consensus.

2.3 The main procedure

The main procedure needs a permutation π of the sequences. Without loss of
generality we will describe it assuming that π is 1, 2, . . . , t. The sequences are
successively processed to discover o1, o2, . . . , ot in this order such that o1 is a
maximal common pattern of S1, S2, . . . , St with a high score S (defined below).
Here “maximal” means with respect to extension to the left and to the right.
The “high” score (as opposed to “best”) is due to the use of a heuristic to prune
the search tree.

The idea of the algorithm is to consider each pattern in S1 as a possible
solution, and to successively test its similarity with patterns in S2, . . . , St. At
any step j (2 ≤ j ≤ t), either one or more occurrences of the pattern are found
(and then o1 is kept), or only occurrences of some of its sub-patterns are found
(and then o1 is split in several new candidates). Each pattern is represented as
an interval of indices on the sequence where it occurs.

Definition 5. (offset, restriction) Let O be a set of disjoint patterns on the
sequence S1 (corresponding to a set of candidates o1), let j ∈ {1, 2, . . . , t} and
let δ ∈ {−(n− 1), . . . , n− 1} be an integer called an offset. Then the restriction
of O with respect to Sj and δ is the set

O|(j, δ)={[a..b], [a..b] is a maximal subpattern of some pattern in O such that
1 ≤ a + δ ≤ b + δ ≤ n and S1[a..b] is similar to Sj[a + δ..b + δ]}.

Note that O|(j, δ) is again a set of disjoint intervals (otherwise non disjoint
intervals could be merged to make a larger interval). These are the maximal
parts of the intervals in O which have occurrences on Sj with respect to the
offset δ.

Each [a..b] ∈ O|(j, δ) gives a (possibly new) candidate o1 = S1[a..b] whose
occurrence on Sj is oj = Sj[a + δ..b + δ].

Every such candidate (still called o1) is evaluated using a score function,
and only the most promising of them continue to be tested in the next steps.
The score function is complex, since it has to take into account both the “lo-
cal” similarities between o1 and each occurrence oj (i.e. the matches and their
weights, the mismatches, the lengths of the gaps in o1 etc.) and the “global”
similarity between all the occurrences o1, o2, . . . , oj (represented by the consen-
sus with respect to Q and its gaps). Then, the evaluation of o1 at step j has two
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components: first, the similarity between o1 and oj is evaluated using a Q-score;
then, a global score of o1 at step j is computed based on this Q-score and on the
global score of o1 at step j − 1. The Q-score is defined below. The global score
is implicit, and is calculated by the algorithm.

Let 0 ≤ Q ≤ 100 and suppose we have a score function f defined on every
pair of patterns of the same length. In order to evaluate the score of o1 ∈ S1 and
oj ∈ Sj of length k assuming that o2 ∈ S2, . . . , oj−1 ∈ Sj−1 have already been
found, we define:

Definition 6. (Q-significant index) A Q-significant index of o1, oj is an index
i ∈ {1, . . . , k} such that either (1) i ∈ R(Q,j) and o1, oj match in position i;
or (2) i 6∈ R(Q,j) and o1, oj mismatch in position i. The set containing all the
Q-significant indices of o1, oj is noted I(Q,j).

A Q-significant index is an index that we choose to take into account when
computing the Q-score between o1, oj : in case (1), the character o1[i] is represen-
tative for the characters in the same position in o1, o2, . . . , oj (since it matches
in at least Q percent of the sequences), so we have to strengthen its significance
by rewarding (i.e. giving a positive value to) the match between o1[i] and oj [i];
in case (2), o1[i] is not representative for the characters in the same position in
o1, o2, . . . , oj and we have to strengthen its non-significance by penalizing (i.e.
giving a negative value to) the new mismatch.

The reward or penalization on each Q-significant index is done by the score
function f , which is arbitrary but should preferably take into account the matches
(with their weights) and the mismatches. As an example, it could choose to
strongly reward the matches while weakly penalizing the mismatches, or the
converse, depending on the type of common pattern one would like to obtain
(a long pattern possibly with many gaps, or a shorter pattern with a very few
gaps).

To define the Q-score, note x|I(Q,j) the word obtained from x by concatena-
ting its characters corresponding to the indices in I(Q,j).

Definition 7. (Q-score) The Q-score of o1, oj is done by

fQ(o1, oj) = f(o1|I(Q,j), oj |I(Q,j)).

The algorithm works as follows. At the beginning, the set O of candidates on
S1 contains only one element, the entire sequence S1. This candidate is refined,
by comparing it to S2 and building the sets of new candidates O|(2, δ2), for every
possible offset δ2 (i.e δ2 ∈ {−(n − 1), . . . , n − 1}). The most interesting (after
evaluation) of these sets are further refined by comparing each of them to S3

(with offsets δ3 ∈ {−(n − 1), . . . , n − 1}) and so on. A tree is built in this way,
whose root contains only one candidate (the entire sequence S1), whose internal
nodes at level L correspond to partial solutions (that is, patterns o1 on S1

which have occurrences on S2, . . . , SL and have a high value of the implicit score
function computed by the algorithm) and whose leaves contain the solutions
(that is, the patterns o1 on S1 which have occurrences on S2, . . . , St and have a
high value of the implicit score function computed by the algorithm).
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To explain and to give the main procedure, assume that we have for each
node u :

- its list of offsets δ(u) = δ2δ3 . . . δL(u), corresponding to the path between
the root and u in the tree (L(u) is the level of u); the offset δj signifies that if
o1 = S1[a..b] then oj = Sj [a + δj ..b + δj ] is its occurrence on Sj with offset δj ;

- its set of disjoint patterns O(u) (the current candidates on S1);
- its score score(u);
- its parent parent(u) and its (initially empty) children childp, −(n − 1) ≤

p ≤ n − 1, each of them corresponding to an offset between S1 and SL(u)+1.

The procedure Choose and Refine below realizes both the branching of the
tree, and its pruning. That is, it shows how to build all the children of a node
u which is already in the tree, but it only keeps the most “promising” of these
children. These two steps, branching and pruning, are realized simultaneously by
the procedure; however, it should be noticed that, while the branching method
is unique in our algorithm, the pruning method can be freely defined (according
to its efficiency).

The branching of the tree is done one level at once. For each level L from 2 to
t (see step 6), the list List′ contains the (already built) nodes at level L−1, and
the list List (initially empty) receives successively the most promising nodes v at
level L, together with their parent u (a node from List′) and the corresponding
offset δ between S1 and SL. Then, for each node u at level L − 1 (that is, in
List′), all its possible children v (that is, one for each offset δ) are generated and
their set of candidates O(v) and scores score(v) are calculated (lines 10 to 13).

Here comes the pruning of the tree: only the most “promising” of these nodes
v will be kept in List (using an heuristics), and further developed. The objective
is to find the leaves z with a high implicit score, that is, the ones for which
score(z), computed successively in line 13, is high (and closed to the best score).
In the present version of the procedure, we chose the simplest heuristic: we simply
define an integer P and consider that a node v on level L is promising (lines 14
to 16) if it has one of the P best scores on level L. Therefore, the successively
generated nodes v are successively ranged in List by decreasing order of their
scores, and only the first P nodes of List are kept (line 16). These nodes are
finally introduced in the tree (lines 19, 20). This simple heuristic allows to obtain,
in practical situations, better results than many of the algorithms cited in Section
1 (see Section 3, where the predictive positive value and the sensibility of the
results are also evaluated). Moreover, it has very low cost and provides a bound
P on the number of nodes which are developed on each level of the tree. We
think therefore that this heuristic represents a good compromise between the
quality of the results and the running time. Further improvements, using for
instance an A* approach, can and will be considered subsequently.

Finally (lines 23, 24), the sets of candidates in each leaf are considered as
solutions and are ranged according to the decreasing order of their scores.
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Procedure Choose and Refine

Input: a permutation π = {S1, S2, . . . , St}; integers Q (0 ≤ Q ≤ 100) and P.

Output: a set Sol of solutions o1 on S1 (decreasingly ordered w.r.t. the

final implicit score) and, for each of them, the sequence δ2δ3 . . . δt.

1. begin

2. generate the root r of the tree T; /* the tree to be built */

3. Sol := ∅; L← 1; /* L is the current level */

4. δ(r)← λ; O(r)← {[1..n]}; score(r)← +∞; /*λ is the empty string */

5. List← {(r, 0, λ)}; List′ ← List;

/* List is the decreasingly ordered list of the P most promising nodes */

6. while L < t do

7. List← ∅; L← L + 1;
8. for each (u, a, b) ∈ List′ do

9. for δ ← −(n− 1) to n− 1 do

10. generate a new node v;

11. δ(v)← δ(u).δ; O(v)← O(u)|(L, δ);
12. m← max {fQ(o1, oL), o1 = S1[a..b], oL = SL[a + δ..b + δ]};

[a..b] ∈ O(v)

13. score(v)← min{score(u), m};
14. if (score(v) > 0) and

(|List| < P or score(v) > minw∈Listscore(w)) then

15. insert (v, u, δ) into the ordered list List ;

16. if |List| = P + 1 then remove its last element;

17. endfor

18. endfor;

19. for each (v, u, δ) in List do

20. childδ(u)← v; parent(v)← u;

21. List′ ← List;

22. endwhile;

23. Sol← ∪(u,a,b)∈ListO(u);
24. order the elements o1 in Sol by decreasing order of

min{score(parent(u)), fQ(o1, ot)}
(where o1 ∈ O(u) and ot is its occurrence on St);

25. end.

Remark 3. It can be noticed here that, if o1 is found in a leaf u, only one occur-
rence of o1 is identified on each sequence Sj . In case where at least one sequence
Sj exists such that o1 has more than one occurrence on Sj , two problems can
appear: (1) the same pattern o1 is (uselessly) analysed several times at level
j + 1 and the following ones; (2) o1 counts for two or more solutions among the
P (assumed distinct) best ones we are searching for. Problem (1) can be solved
by identifying, in the nodes at level L, the common candidates; this is done by
fusioning the list of candidates for all the nodes of a given level. In the same way
we solve problem (2) and, in order to find all the occurrences of a solution o1

on all sequences, we use a (more or less greedy) motif searching algorithm. The
theoretical complexity (see Subsection 2.5) is not changed in this way.
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2.4 The cycles and the complete algorithm

We call a cycle any execution of the algorithm Choose and Refine for a given
permutation π (P and Q are the same for all cycles). Obviously, a cycle appro-
ximates the best common patterns which are located on the reference sequence,
Sπ(1). Different cycles can have different reference sequences, and can thus give
different common patterns. To find the best, say, p common patterns, indepen-
dently on the sequence they are located on, at least t cycles are necessary; but
they are not sufficient and it is inconceivable to perform all the t! possible cycles.

Instead, we use a refining procedure (another heuristic) which tries to de-
duce the p best permutations, that is, the permutations π1, π2, . . . , πp which
give the common patterns with p best scores. The main idea is to execute the
procedure Choose and Refine on randomly generated permutations with refe-
rence sequences respectively S1, S2, . . . , St, S1, S2, . . . and so on, until t2 cycles
are executed without modifying the p current best scores. Then the reference
sequences Si1 , Si2 , . . . , Sip

of the permutations which gave the best scores can be
fixed to obtain the first sequence of the permutations π1, π2, . . . , πp respectively.
To obtain the second sequence Sjk

of the permutation πk (1 ≤ k ≤ p), the same
principle is applied to randomly generated permutations whose first sequence is
Sik

and second sequence is S1, S2, . . . , Sik−1, Sik+1, . . . St, S1, S2, . . . and so on.
When (t − 1)2 cycles have been executed without modifying the current best
score, the second sequence of πk is fixed and, in fact, it can be noticed that it is
not worth fixing the other sequences in πk (the score will be slightly modified,
but not the common pattern). The best permutations π1, π2, . . . , πp are then
available.

The complete algorithm then consists in applying the refining procedure to
approximate the p best permutations, and to return the sets Sol corresponding
to these permutations. Section 3 discusses the performances of the complete
algorithm on biological sequences and on randomly generated i.i.d. sequences
with randomly implanted patterns.

2.5 The complexity

Our simple heuristic for pruning the tree insures that the number of developed
vertices is in O(Pt), so that the steps 9 to 17 are executed O(Pt) times. The
most expensive of them are the steps 11 and 12. They can be performed in
O(n2min{(Σα∈Σp2

α)e, 1}) using hash tables to compute the offsets and assuming
that all Sj have i.i.d. letters with the probability of each character α ∈ Σ denoted
pα ([8], [15], [16]). Thus the running time of the procedure Choose and Refine
is in O(Ptn2min{(Σα∈Σp2

α)e, 1}). When the letters are equiprobable, we obtain
O(Ptn2min{e|Σ|−1, 1}).

The number of cycles executed by our refining procedure is limited by pt2N
(where N is the total number of times the best scores change before the two
first sequences of a permutation πk are fixed). Practically, N is always in O(t),
so that the running time of the complete algorithm, when the p best results
are required, can be (practically) considered in O(pP t4n2min{e|Σ|−1, 1}). The
required memory space is in O(tn2).
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Table 1. The 6 sets of input sequences

Set no. Cardinality (t) DNA of Length(min, max) Site type Protein

1 9 E. coli [53,806] binding ArgR
2 8 E. coli [53,806] binding, in tandem ArgR
3 16 E. coli [100,3841] binding LexA
4 18 E. coli [299,5795] binding PurR
5 8 E. coli [251,2594] binding TyrR
6 131 Dicot plants [251, 251] promoter

3 Experimental results

We present here the results of the simplest implementation of the algorithm, that
is, using the nucleotide alphabet {A, C, G, T} where each character is similar
only to itself, and the similarity counts for 1 (while the non-similarity counts
for 0). We implemented several pairwise score functions f , mainly by defining
two components for each such function: a component f1 which indicates how to
reward the contiguous parts only containing matches, and a component f2 which
indicates how to penalize the contiguous parts only containing mismatches.

Example. For instance, if f1(a) = a
√

a, f2(a) = a, the value of f for x =
ACGGCTCTGGAT and y = CCGGTACTGGCT is equal to −f2(1)+ f1(3)−
f2(2) + f1(4)− f2(1) + f1(1) = 10.19 since we have mismatches in positions (1),
(5, 6), (11), and matches in positions (2, 3, 4), (7, 8, 9, 10), (12).

Biological sequences. To test our algorithm on DNA sequences, we used six
input sets; five of them contain (experimentally confirmed) binding sites for
DNA-binding proteins in E. coli and the last one contains (experimentally con-
firmed) promoter sites in Dicot plants (see Table 1). For each of these sets, the
sequence logo [14] of the binding (respectively promoter) sites can be seen in Fi-
gure 1. Sets 1 to 5 were chosen among the 55 sets presented in [12] (whose binding
sites can be found on the page http://arep.med.harvard.edu/ecoli matrices/); the
only criteria of choice were the number and length of the sequences in a set (we
prefered these parameters to have important values, in order to insure a large
search space for our algorithm). Since the sets of sequences were not available on
the indicated site, each sequence was found on GenBank by applying BLASTN
on each binding site, and this is one of the reasons why we limited our tests to
5 over 55 sets of sequences. In order to enrich the type of researched patterns,
we added the 6th set, whose 131 sequences (corresponding to Dicot plants) can
be downloaded on http://www.softberry.com/berry.phtml.

We firstly executed our algorithm on Set 1, with different values for e and Q,
and with different pairwise score functions f (including the default score function
in Pratt). We learned on this first example the best values for the parameters:
e = 5, Q = 70, f formed by f1(a) = f2(a) = a. With these parameters and
with P = 1, p = 1 (thus asking only for the best solution), we performed the
executions on the 5 other input sets (20 executions on each set, in order to be
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Fig. 1. The sequence logos for the binding sites of a) ArgR; b) ArgR (binding site in
tandem); c) LexA; d) PurR; e) TyrR and for the promoter sites in f) a set of Dicot
plants.

sure that different randomly generated permutations in the refining procedure do
not yield different results); we found the consensi below (that means that each of
the 20 executions on a given set found the same consensus). These results have
to be compared with the logos, by noticing that the insignificant characters on
the logos have few chances to be present in the consensus.

- For set 1, we found TGAATxAxxATxCAxxTxxxxTGxxT; the positions of
the pattern on the sequences are very well found; the important length of the
pattern (when compared to its logo) is explained by noticing that 8 of the 9
sequences contain the pattern in the logo twice (consecutively), while the 9th
sequence contains only the beginning of the second occurrence.

- For set 2, TGAATxAxxATxCAxxTAxxxTGxxTxxxAATxCA was found;
the length of the pattern is good, the locations are the good ones. The two
distinct parts of the tandem are not visible here since the distance between
them is simply considered as a gap in the consensus.

- For set 3, we found ACTGTATATxxAxxCAG; the length of the pattern is
good, the positions on the sequences are the good ones.

- For set 4, we found GCxAxCGTTTTC; the algorithm finds very well the
well conserved characters in the pattern and their positions on the sequences,
but cannot find the beginning of the pattern because of the too weak similarity
at this place.

- For set 5, we found TGTAAAxxAAxxTxTAC; the length of the pattern is
good, the positions on the sequences are the good ones.

For these five sets, the results can be considered as being very good, when
compared to the results obtained by the other pattern discovery algorithms. To
make these comparisons, we restricted to the algorithms which are available via
Internet (execution via a web page). We manually analysed the expected results
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in each case (recall that the experimentally confirmed binding sites are known)
and we fairly fixed the parameters of each algorithm, in order to insure that the
solution was correctly defined. We couldn’t make comparisons in terms of real
running time, since the execution conditions of these algorithms were unknown
to us and some of the results were sent by email many hours later. So we limited
to comparisons with concern to the quality of the results and we noticed that only
Gibbs sampling and Consensus (which are probabilistic algorithms) identify the
binding sites with the same precision as our algorithm. Pratt patterns obtained
before refinement are shorter than the ones we find (and the ones one has to
find), and they are less precise (the number of significant characters is lower);
Pratt patterns obtained after refinement are really too long and very imprecise.
Teiresias finds a lot of results (more than 200 for each test), and the searched
result may be anywhere in the list of results; it is therefore impossible to identify
it between the other results; moreover, the results are shorter than the one we
find, and less precise. The too large number of results is also the drawback of
Smile. Meme gives the expected result only in one case (Set 3).

- For set 6, our algorithm is the only one which identifies the pattern searched
TATAAAT (good length, good significant characters), with the only problem
that it finds much more locations (this is because the pattern is very frequent).
The other algorithms find much longer patterns which sometimes include the
searched pattern.

Conclusion. We deduce that on these examples the results of our algorithm
are comparable with the best results of the best existing algorithms. The Q-
significant letters are clearly found; the other ones are not indicated but they
obviously could be computed by the algorithm. The identification of the biolo-
gical patterns with our algorithm for P = 1, p = 1 in all these examples insures
that the formal definition of the biological signals is correct; the good formal
result (i.e. the one corresponding to the biological signal) is not lost in a long
list of formal results (as is the case for algorithms like Teiresias and Smile).
Obviously, if P, p have other values, the best result will be the same, and some
other results will be added, by decreasing order of their score.

Randomly generated input sets. Our algorithm uses two heuristics (one in
the procedure Choose and Refine, the other one in the refining procedure). To
evaluate the performances of the algorithm (and thus of the heuristics), we eva-
luated the predictive positive value (PPV) and the sensibility (S) of its results, for
P = p = 1 (thus looking only for the best pattern). We executed our algorithm
on 1000 arbitrarily generated input sets (at least 10 i.i.d. sequences of length at
least 100 in each set) where we implanted on each sequence several randomly
mutated patterns (of given scores and lengths) at randomly chosen positions.
The average PPV and S values we obtained for these executions are respectively
0.95 and 0.91, which means that, on average, 95% of the pattern found by the
algorithm correspond to the implanted pattern with best score, and that 91 %
of the implanted pattern with best score correspond to the pattern found by the
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algorithm. More precisely, that means that the found pattern is (almost) the
implanted pattern with best score (it is on the same sequence, it recovers about
91 % of the indices which form the implanted pattern), but it is sometimes
a little bit shifted (on the right or on the left), and one possible explanation
(additionally to the one that our method is not exact) is that the insertion of
the pattern with best score sometimes created in the sequence a neighboring
pattern with an even better score.

4 Further improvements

We did not insisted until now on the supplementary features of some other algo-
rithms with respect to ours. We already have an algorithm which is competitive
with the existing ones, but it could be improved by (1) introducing a quorum
q corresponding to a smaller percentage of sequences which have to contain the
pattern; (2) using a better heuristic for pruning the tree (for instance, an A*
approach); (3) testing the algorithm on many different biological inputs, in or-
der to (non-automatically) learn the best parameters for each type of biological
pattern; (4) investigating under which conditions one can improve our algorithm
to use an indirect similarity with an external pattern, by introducing a supple-
mentary, artificially built, sequence containing all the candidates (their number
should be small enough, possibly because a pre-treatment procedure has been
applied). Some of these possible ameliorations are currently in study, the other
ones will be considered subsequently.
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