Alban Mancheron
email: mancheron@lina.univ-nantes.fr

Christophe Moan
email: moan@lina.univ-nantes.fr

Combinatorial Characterization of the Language Recognized by Factor and Suffix Oracles

Keywords: Automata [1, 2], Suffix Factor Oracle, Suffix Oracle, automata, language, characterization

Analysis requires to elaborate data structures which allow both an efficient storage and use. Among these, we can cite Tries [1], Suffix

Introduction

Within text indexation, several structures were developed. The objective of these methods is to represent a text or a word s, ie. a succession of symbols taken in an arbitrary alphabet denoted by Σ, in order to "quickly" determine whether this word contains some specific sub-word. In which case, we call this sub-word a factor of s.

Cyril Allauzen, Maxime Crochemore and Mathieu Raffinot described a method allowing to build an acyclic automaton, accepting at least the factors of s, having as few states as possible (|s| + 1), and being linear in the number of transitions (2 |s| -1). They named such an automaton a Factor Oracle.

In this automaton, each state is final. Using the same automaton, but only keeping "particular" states as final, one obtains a Suffix Oracle.

This structure has several advantages. First of all, the construction algorithm is easy to understand and implement; this is not the case of the most efficient algorithm for building Suffix Tree's. Next, Oracles are homogeneous automata (ie. all the transitions going to the same state are labeled with the same symbol). That means that we do not need to label edges. This makes this structure very sparing in memory (much more than Suffix Trees or Tries). Indeed, methods based upon this structure obtain good results. Thus, Lefebvre & al. [START_REF] Lefebvre | Computing repeated factors with a factor oracle[END_REF][START_REF] Lefebvre | A heuristic for computing repeats with a factor oracle: application to biological sequences[END_REF][START_REF] Lefebvre | FOR-Repeats: detects repeats on entire chromosomes and between genomes[END_REF] use it for repeated motifs discovery over large genomic data, and obtain results similar to the one obtained using thousands of blastn requests, but in a few seconds. They also use the Factor Oracle in text compression [START_REF] Lefebvre | Compror: on-line lossless data compression with a factor oracle[END_REF], and in some cases they have compression ratio comparable to bzip2 (which is one of the most efficient compression algorithm).

Nevertheless, at least two problems linked to these Oracles are still opened: the first one is the characterization of the language recognized by Oracles; the second one is: does there exist an algorithm, linear in time and space, to build an automaton accepting at least the factors/suffixes of a word s being minimal in number of transitions?

The first open problem is really important. Currently, the main difficulty when using Oracles is to distinguish true positives from false positives. That is why we are interested in the first problem. In the following section, we provide several definitions relating to the construction of Oracles. Then we give the characterization of the language recognized by this structure. To conclude, we show some results about the Oracles.

Definitions

Subsequently, we use the notations hereafter (some of them are issued from [4, p. 2]): we denote by F act(s) (resp. Suff (s) and P ref (s)) the set of the factors (resp. suffixes and prefixes) of s ∈ Σ + , by P ref s (i) the prefix of s having length i ≥ 0. Given x ∈ F act(s), we denote by Nb s (x) the number of occurrences of x in s, and we say that x is repeated if Nb s (x) ≥ 2. Definition 2.1 Given a word s ∈ Σ + and x a factor of s, we define the function P os as the position of the first occurrence of x in s = uxv (u, v ∈ Σ *) such that x is not repeated in ux): P os s (x) = |u| + 1. We also define the function poccur such that poccur s (x) = |u| + |x| = P os s (x) + |x| -1 (denoted by poccur(x, s) in [4, p. 2]).

In the following, we define the Oracles, then we give some notations and definitions peculiar to factors, as well as properties about the newly defined objects. Finally, in order to characterize the language recognized by Oracles, we define particular factors and then operations linked to them.

Oracles

We give below the algorithm of Allauzen & al. [START_REF] Allauzen | Oracle des facteurs, Oracle des Suffixes[END_REF] which describes the Oracle construction (cf. algorithm 1). In the same paper, authors give another algorithm which allows to build the same automaton in linear time on the size of s. Nevertheless, because we are only interested in the properties of the Oracle, we do not give it in this paper. Definition 2.2 [4, pp. 2, 10] Given a word s ∈ Σ * , we define the Factor Oracle of s as the automaton obtained by the algorithm 1 (p. 141), where all the states are final. It is denoted by F O(s). We define the Suffix Oracle of s as the automaton obtained by the same algorithm, where are final only the states such that there exists a path from the initial state recognizing a suffix of s. It is denoted by SO(s). Let u be a word o f minimal l e n g t h r e c o g n i z e d i n t h e s t a t e e i For All We have an order relation between states in these Oracles. Indeed, if we have two states e i and e j such that i ≤ j, we can say that e i ≤ e j .

α ∈ Σ \ {s[i + 1]} Do I f uα ∈ F act(s[i -|u| + 1..|s|]) Then j ← poccur s[i-|u|+1..|s|] (uα) -|u| B u i l d a t

Canonical Factors & Contraction Operation

We first introduce some definitions about particular factors from a given word. We use such factors for defining the contraction operation, as well as properties peculiar to this operation. We next define the sets of words we obtain applying this operation.

At the end of this section, all that we need to characterize the language of Oracles will be defined.

Definition 2.4 Given a word s ∈ Σ * and its Oracle, we define the set of Canonical Factors of s as following:

F s = {min(e i) | 1 ≤ i ≤ |s| ∧ (# out (e i) > 1 ∨ # in (e i) > 1)}
Given a suffix t of s and a Canonical Factor f of s, we say that f is a conserved Canonical Factor of s in t if the first occurrence of f in s is contained in t. We denote by F s,t the set of conserved Canonical Factors of s in t (thus F s,t ⊆ F s).

These particular factors enable us to define a set of couple of specific positions in the word s. Those will be used in order to derive new words from s. Definition 2.5 Given a word s ∈ Σ * and a Canonical Factor f of s such that:

   s = uf v (u, v ∈ Σ *) f v = wf x (w ∈ Σ + , x ∈ Σ *) P os s (f) = |u| + 1
then we call the pair (|u| + 1, |uw| + 1) a contraction of s by f , and s ′ = uf x is the result of this contraction. Notation 2.3 Given a word s ∈ Σ * and a Canonical Factor f ∈ F s , we denote by C f s the set of the contractions of s by f . We denote the set of all the contractions we can operate on s by C * s (≡

f ∈Fs C f s). Let t be a suffix of s = t ′ t (t ′ ∈ Σ *), we denote by C * s,t the subset of C * s such that C * s,t = {(p ′ , q ′) | (p, q) ∈ C * s ∧ p > |t ′ | ∧ (p ′ , q ′) = (p -|t ′ |, q -|t ′ |)}.
Since contractions will be used to produce new words, we only need to consider a subset of the set of contractions. Definition 2.6 A set C of contractions is coherent if and only if it does not contain two contractions (i 1 , j 1), (i 2 , j 2) such that: i 1 < i 2 < j 1 < j 2 . Furthermore, we say that C is minimal if and only if it does not contain two contractions (i 1 , j 1) and (i 2 , j 2) such that i 1 ≤ i 2 < j 2 ≤ j 1 or such that i 1 < j 1 = i 2 < j 2 . Now we can define the operation that, given a word, allows us to build some new specific words. Definition 2.7 Given a word s ∈ Σ * and a coherent and minimal set of contractions C = {(p 1 , q 1), . . . , (p k , q k)} (associated to the set of canonical factors {f 1 , . . . , f k }), then we define the function W ord as following:

W ord(s, C) = s[1..p 1 -1] s[q 1 ..p 2 -1] . . . s[q k-1 ..p k -1] s[q k ..|s|] = s[1..p 1 -1] f 1 s[q 1 + |f 1 |..p 2 -1] . . . f k s[q k + |f k |..|s|]
We call this sequence the result of the contractions from C applied to s.

From now, we only consider coherent and minimal sets of contractions (since we are interested in the results of contractions, it is easy to see why other sets don't need to be considered anymore). Let us notice that whatever the order of contraction, the obtained word remains the same. To illustrate the various definitions given above, we take the example gaccattctc (cf. figures 1 and 2). Then the set of Canonical Factors is F gaccattctc = {a, c, ca, t, tc, ct}, and C * gaccattctc = {(2, 5), [START_REF] Ukkonen | On-line construction of suffix trees[END_REF][START_REF] Allauzen | Oracle des facteurs, Oracle des Suffixes[END_REF], [START_REF] Ukkonen | On-line construction of suffix trees[END_REF][START_REF] Lefebvre | A heuristic for computing repeats with a factor oracle: application to biological sequences[END_REF], [START_REF] Ukkonen | On-line construction of suffix trees[END_REF][START_REF] Lefebvre | Compror: on-line lossless data compression with a factor oracle[END_REF], (6, 7), (6, 9), (7, 9)}. Let C = {(2, 5), (7, 9)} (C ⊆ C * gaccattctc). Hence W ord(gaccattctc, C) = gacc ///attc //tc = gattc. The closure of gaccattctc is:

E(gaccattctc) =
gac, gacatc, gacatctc, gacattc, gacattctc, gaccatc, gaccatctc, gaccattc, gaccattctc, gactc, gatc, gatctc, gattc, gattctc

Characterization of the language recognized by Oracles

Given a word s ∈ Σ * , we saw how to build the corresponding Factor (resp. Suffix) Oracle. This Oracle allows to recognize at least all the factors (resp. suffixes) of s.

Nevertheless, it accepts a certain number of additional words too. For example the word atc is accepted by the Factor (resp. Suffix) Oracle of gaccattctc (cf. figures 1 and 2), whereas it is either a factor nor a suffix of gaccattctc. We defined above the set E(s). In this part, we show that the Suffix Oracle exactly recognizes all the suffixes of the words from E(s). Then, we use this result to show that the Factor Oracle recognizes exactly all the factors of the words from E(s).

We first recall some useful lemmas of [START_REF] Allauzen | Oracle des facteurs, Oracle des Suffixes[END_REF].

i)) = e i = State(w), then State(x) = State(w). Case 2: |x| < |min(e i)|
The state e i being final means that there exists a suffix t of s such that State(t) = e i . According to Lemma 3.1, we deduce that min(e i) ∈ Suff (t) ⊆ Suff (s). Since x and min(e i) are suffixes of w, then |x| < |min(e i)| ⇒ x ∈ Suff (min(e i)). So x is also suffix of s and, by Definition of the Suffix Oracle, State(x) is final.

2

Before tackle demonstrations, we present two lemmas dealing with properties linked to Canonical Factors. Proof (Lemma 3.5) We denote by C i ⊆ C * s a set of contractions having cardinality i. In the same way, we denote by w i f the word obtained applying contractions C i to uf (warning:

Lemma 3.5 Given a word s ∈ Σ * , a Canonical Factor f ∈ F s such that s = uf v (u, v ∈ Σ *) and f is not repeated in uf
w i f = W ord(uf, C i) w i = W ord(u, C i)).
Let us show by induction on the size of

C i that State(W ord(uf, C i)) = State(f) (∀ C i ∈ C * s). Let e x = State(f) (f = min(e x) by Definition of f) and e x ′ i = State(W ord(uf, C i)). If we consider C 0 , then W ord(uf, C 0) = uf . According to Lemma 3.3, x ′ 0 ≥ x.
Furthermore, according to Lemma 3.2 applied to uf , we have x ′ 0 ≤ poccur s (uf). However by Definition of f , poccur s (f) = |uf | = poccur s (uf). This implies x ′ 0 ≤ x, and finally x ′ 0 = x.

Let us show now that if this lemma is true for a set of contractions C i ⊂ C * s , then it is true for a set C i+1 = C i ∪ {(p, q)}. We assume without loss of generality that (p, q) is the last contraction (by ascending order over the positions) in

State(bd) ≤ State(bc) ⇔ State(abd) ≤ State(abc) ⇔ State(w i+1 f) ≤ State(w i f) ⇔ State(w i+1 f) ≤ State(f) But,
S 0 = t , S 0 w = w , C 0 = ∅ , sdec = |s| -|t| % t i s a s u f f i x o f s % Input : S i ∈ Σ * % A s u f f i x o f s t h
f i ← min(e ri) I f (|p i | < |S i w |) Then e r ′ i ← T r
C i+1 ← C i ∪ {c i } , c i = (r i -|f i | + 1 -sdec, r ′ i -|f i | -sdec) (P r o per ty 3.2 , item 2) S i+1 w ← S i w [|p i | -|f i | + 1..|S i w |] (P r o per ty 3.1 , item 3) S i+1 ← t[r ′ i -|f i | -sdec.
.|t|] (P r o per ty 3.1 , item 3)

Return C o n t r a c t o r (S i+1 , S i+1 w , C i+1) Else I f (|S i | > |S i w |) Then C i+1 ← C i ∪ {c i } , c i = (r i -|f i | + 1 -sdec, |s| -|f i | + 1 -sdec) (P r o per ty 3.3) Else C i+1 ← C i (P r o per ty 3.3) End I f Return C i+1 End I f End © ¥
Our goal in this part is to give a characterization of the language accepted by the Oracle of a word s. To do that, we use the algorithm Contractor (cf. algorithm 2). Given a word s ∈ Σ * and its Suffix Oracle SO(s), Contractor needs a word w accepted by SO(s) and a suffix t of s chosen such that w

[1] = t[1] |t| maximal .
The result of Contractor is a set C of contractions such that w = W ord(t, C). After a first brief presentation of Contractor, we will introduce the notations of the algorithm.

We saw (in the Definition) that W ord(t, C), for a set of contractions C, is a concatenation of substrings of t. We can see these sub-words as prefixes of suffixes of t. A jump from one substring to the next one is a contraction. The question is now how to find the correct suffixes and their prefixes. The answer is Contractor. This is a recursive algorithm that finds all the contractions used to contract t in w, by searching the suffixes of t which we talk about. The main idea of Contractor is to read the words t and w from left to right, and when the one-to-one characters differ, to use a contraction in t to reach a further position in order to allows the reading of the same characters than w. The inputs are words S i and S i w (i ≥ 0), and C i a set of contractions. Initially, we have S 0 = t, S 0 w = w and C 0 = ∅. We denote by p i (line 9) the longest prefix of S i and S i w . So, we can write:

t ′ i w ′ i p i e 0 p i f i α α e ri e r ′ i e |s| S i S i+1
S i = p i S ′i S i w = p i S ′i w (3.1)
Let e r i = State(p i) (line 10) and f i = min(e r i) (line 11). Due to Lemma 3.1, we have:

p i = p ′ i f i (p ′ i ∈ Σ *) (3.2)
About the other variables, e r ′ i (line 13) is the state reached by the transition from e r i and labeled by α = S i w [|p i | + 1] = S ′i w [START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences: computer science and computational biology[END_REF], C i+1 is a set of contractions (which has cardinality i + 1). We need to use the variable sdec = |s| -|t| to translate the indexes of each contraction. Indeed, the positions for a contraction are computed using the indexes of the states (each state e i is linked to the i th character of s, not to the character (i -|s| + |t|) of t). Thus, a contraction would be correct for s, but not for t Hence, we proceed as for the Definition of C * s,t , ie. we remove |s| -|t|. The figures 3 and 4 illustrates Contractor, and are useful to understand the properties below. The following Property 3.1 claims some interesting characteristics of the variables used by Contractor.

Property 3.1

For all i ≥ 0, the following assertions are true:

1.

f i α ∈ P ref (p i+1). 2. S i = t[r i -|p i | + 1 -sdec..|t|].
3. S i+1 and S i+1 w are respectively suffixes of S i and S i w ; S i and S i w (i ≥ 0) are respectively suffixes of t and w.

The transition from e r i to e r ′

i and labeled by α always exists.

Proof (Property 3.1)

1. Since f i = min(e r i), and according to Lemma 3.6, we can write s

[r ′ i -|f i |..r ′ i] = t[r ′ i -|f i |-sdec..r ′ i -sdec] = f i α. So S i+1
begins with f i α, and S i+1 w too (line 15). 2. For i = 0 (initialization case), S 0 = t and t is the longest suffix of s beginning by w [START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences: computer science and computational biology[END_REF]. Then we can easily see that if e q = State(S 0 [1])(q > 0), then t[qsdec..|t|] = S 0 and State(p

0) = q + |p 0 | -1 = e r i . Thus S 0 = s[r 0 -|p 0 | + 1 -sdec..|s|].
Now, let us see the recursive case. We have

S i+1 = t[r ′ i -|f i | -sdec.
.|t|] (Contractor, line 16). Since S i+1 w begins by f i α (cf. item 1),

r i+1 = r ′ i +|p i+1 |-|f i |-1. Finally S i+1 = t[r ′ i -|f i | -sdec..|t|] = t[r i+1 -|p i+1 | + 1 -sdec..|t|].
3. This is obvious for S i w because S i+1 w is suffix of S i w by construction (line 15) and S 0 w = w. Concerning S i , we have S 0 = t thus the property is true for i = 0. Let us suppose that S i is suffix of t, and show it for i + 1. We prove now that S i+1 is suffix of S i . From the preceding point (item 2), we have

S i = t[r i -|p i |+1-sdec..|t|]. In Contractor, we have S i+1 = t[r ′ i -|f i |-sdec..|t|] (line 16). According to equality 3.2, r i -|p i | = r i -|p ′ i | -|f i |. Because |p ′ i | ≥ 0, we obtain r i -|f i | ≥ r i -|p i |. Furthermore r ′ i > r i . Finally r ′ i -|f i | > r i -|p i | and S i+1 is a suffix of S i .
4. According to item 3 in this Property, S i w is suffix of w. Then S i w is recognized by O(s) (Lemma 3.4). According to equality 3.1 with S ′i w [START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences: computer science and computational biology[END_REF] = α, the transition must exists. That implies that # out (e r i) ≥ 2, and then, by Definition of the Canonical Factors, we deduce that f i = min(e r i) ∈ F s .

From equality 3.1 and the above Property 3.1 (item 4), we can write:

t = t ′ i S i (t ′ i ∈ Σ *) w = w ′ i S i w = w ′ i p ′ i S i+1 w (w ′ i ∈ Σ *) (3.3)
Before giving more explanations about Contractor, we need to prove the items of the following property.

Property 3.2 For all i ≥ 0: 1. State(w ′ i p i) = State(t ′ i p i) = State(p i) = e r i . 2. c i is a contraction of t ′ i S i (resp. w ′ i S i) by f i . The result of this contraction is t ′ i p ′ i S i+1 (resp. w ′ i p ′ i S i+1 = w ′ i+1 S i+1).
Proof (Property 3.2)

1. This is obvious for i = 0 because t ′ i = w ′ i = ǫ. Let us suppose the property is true for i, and prove this is true for i+1. From Property 3.1 (item 2), we deduce that the word read in O(s) starting from e r i -|p i | to e |s| by using only "main" transitions (ie. transitions of type e j → e j+1) is S i . According to Property 3.1 (item 3) we deduce:

S i = uS i+1 (u ∈ Σ *) (3.4)
So, there exists the state e q (q > r i -|p i |) such that the word read from e q to e |s| using only "main" transitions is S i+1 . In particular, q = r ′ i -|f i | -1. We have t ′ i+1 = t ′ i u (cf. equality 3.3 and 3.4) and State(t ′ i u) = e q . Then, since f i = min(e r i) and since there exists a transition from e r i to e r ′ i labeled by α (cf. Property 3.1, item 4), we have

State(t ′ i+1 f i α) = State(t ′ i uf i α) = State(f i α) = e r ′ i . Furthermore p i+1 = f i αv (v ∈ Σ *). So we can deduce that State(t ′ i+1 f i αv) = State(t ′ i+1 p i+1) = State(p i+1). 2.
From the equalities 3.1, 3.2 and 3.3, we deduce that:

t = t ′ i S i = t ′ i p ′ i f i S ′i (3.5)
Since S i+1 ∈ Suff (S i), we have S i = uS i+1 (u ∈ Σ +). Hence, we deduce from equality 3.5 that t ′ i p ′ i f i S ′i = t ′ i uS i+1 . According to the Property 3.1 (item 1), we have

t ′ i p ′ i f i S ′i = t ′ i uf i αu ′ (u ′ ∈ Σ *). Because we have State(t ′ i p ′ i f i) = State(f i) and |u| > |p ′ i | (S ′i [1] = α)
, we can contract t ′ i S i by f i ; the result is:

t ′ i p ′ i f i αu ′ = t ′ i p ′ i S i+1 (3.6) Since State(w ′ i p i) = State(t ′ i p i), we can deduce that w ′ i S i = w ′ i p i S ′i is contracted by f i in w ′ i p ′ i S i+1 . According to equality 3.3, we deduce that w ′ i+1 = w ′ i p ′ i . Then w ′ i p ′ i S i+1 = w ′ i+1 S i+1 . 2
The Property 3.2 shows us that c i (a contraction of t ′ i S i by f i) is a contraction for t and, more interesting, for w ′ i S i . Before concluding about these contractions, we need to examine the termination of Contractor and its final case. For all i ≥ 0, we have either

|S i w | > |S i+1 w |, nor |S i w | = |S i+1 w | and |p i+1 | > |p i | (if f i = p i).
Since p i > 0, we deduce that we finally obtain p j = S j w (j > i). The following property concerns the final cases of Contractor.

Property 3.3

Let j ≥ 0 be such that p j = S j w . If |S j w | = |S j |, then t needs a last contraction. Else C j is the final set.

Proof (Property 3.3) The word obtained up to now with the contraction of C j is w ′ j p j S ′j (cf. Property 3.2, item 2). If S j w = S j , then S ′j = ǫ and C j is complete (line 20). According to Property 3.2 (item 1), we have State(w ′ j p j) = e r j . Thus min(e r j) ∈ Suff (w) (Lemma 3.1) and min(e r j) ∈ Suff (t) (by Definition of the final state in a Suffix Oracle). Then a last contraction completes the set of contractions (line 22). Now, let us see how a step of Contractor works. We consider the i th call of Contractor, whose inputs are S i = p i S ′i , S i w = p i S ′i w and C i . The contractions already used to contract the beginning of t (ie. t ′ i) into the beginning of w (ie. w ′ i) are in C i . At this point we consider the longest common prefix (denoted by p i) of S i and S i w (p i is both a factor of t and w, Property 3.1). The algorithm has two cases. If

2 s t t ′ i S i t ′ i p i S ′i t ′ i p ′ i f i S ′i t ′ i p ′ i f i f i α t ′ i+1 p i+1 S ′i+1 t ′ i+1 S i+1 contraction w w ′ i S i w w ′ i p i S ′i w w ′ i p ′ i f i S ′i w w ′ i p ′ i f i α w ′ i+1 p i+1 S ′i+1 w w w ′ i+1 S i+1 w
|p i | = |S i
w |, we are in a final case we described above. Else, the prefix p i is not S i w , and then we need at least one other contraction until |p i | = |S i w |. Thus we search for another suffix S i+1 of t with which we can continue to contract. From Property 3.2, we have the contraction is the right one, and we continue with the suffix S i+1 . When we reach the end of the process (ie. the end of w), we return the last up-to-date set C i+1 and w = W ord(t, C i+1).

Because the contraction concerns (x i+1 , y i+1), then we also have |s| -|f i+1 u| + 1 = x i+1 and |s|-|f i+1 u ′ |+1 = y i+1 . This is true because the contractions are in ascending order, so the word s is not yet modified after the positions x i+1 and y i+1 (hence f i+1 u and f i+1 u ′ are suffixes of s). Let q be the state of SO(s) such that q = State(f i+1). According to the Lemma 3.5:

State(v ′ f i+1) = q (3.7)
Furthermore, f i+1 u ′ is a suffix of s, so it is necessary recognized by SO(s). This requires to pass through the state q when the word f i+1 u ′ is read in SO(s). Thus, starting from q, we can read u ′ , and reach a final state. So, according to equality 3.7,

w i+1 = v ′ f i+1 u ′ is
On the basis of this previous result, we can give a similar theorem, which is available for the Factor Oracle instead of being available for the Suffix Oracle. Proof (Theorem 3.2) '⇒': Each factor m of a word from E(s) is recognized by the Factor Oracle of s. Let SO(s) be the Suffix Oracle of s, and u ∈ E(s) be such that m is prefix of a suffix of u, denoted by mv (v ∈ Σ *). Then mv is accepted by SO(s) (cf. Theorem 3.1), thus there exists a single path (e 0 → e x 1 → . . . → e x |m|+|v|) in SO(s) that recognizes mv. Therefore, there exists a path (e 0 → e x 1 → . . . → e x |m|) (with e x |m| final) that recognizes m. '⇐': Each word m recognized by the Factor Oracle of s is factor of a word from E(s). Let SO(s) be the Suffix Oracle of s. If m is recognized by SO(s) then m is a suffix of a word of E(s) (cf. Theorem 3.1). Let us suppose that m is not recognized by SO(s), then m is recognized by F O(s) in the state e x |m| (not final in SO(s)). By construction, e x |m| ∈ {e k |0 ≤ k ≤ |s|}, the set of the states of F O(s), with (e 0 → e 1 → . . . → e |s|) the path that accepts the word s itself (with e |s| , among others, final in SO(s)). Thus, there exits a path from e x |m| to e |s| in SO(s). So, m is prefix of a word recognized by SO(s). That implies that m is prefix of a suffix of some u ∈ E(s). Therefore, m is a factor of a word of E(s). 2

Properties upon Oracles & Future Works

In the conclusion of their article, Cleophas & al. [START_REF] Cleophas | Constructing Factor Oracles[END_REF] show that the Oracle is not minimal in number of transitions among the set of homogeneous automata.

Furthermore, if we consider the set of homogeneous automata recognizing at least all the factors (resp. suffixes) of s, having the same number of states and at most the same number of transitions than the Factor (resp. Suffix) Oracle, we show that the Oracle is not minimal on the number of accepted words. We can see that the Oracle of axttyabcdeatzattwu (cf. figure 5) has 35 transitions. The Factor Oracle accepts 247 words and the Suffix Oracle accepts 39 words, though there exists another homogeneous automaton (cf. figure 6) recognizing at least all the factors (resp. suffixes) of axttyabcdeatzattwu, and having only 34 transitions. The "Factor" version of this automaton recognizes only 236 words and its "Suffix" version accepts only 30 words. This example shows that the Oracle is not minimal in number of accepted words among the set of homogeneous automata having the same number of states and less transitions. We observe that, in some cases, the number of words accepted by Oracles does not allow to give confidence to this structure when it is used for detect factors or suffixes of a word. Because, even if the number of false positive can sometimes be null (eg. aaaaaa . . .), it can also be exponential. Indeed, we can build a word s such that each subset of C * s is coherent and minimal. For example: s = aabbccddee The set C * s of contractions which are available on such a word is {(1, 2), [START_REF] Ukkonen | On-line construction of suffix trees[END_REF][START_REF] Allauzen | Oracle des facteurs, Oracle des Suffixes[END_REF], [START_REF] Allauzen | Factor Oracle: A New Structure for Pattern Matching[END_REF][START_REF] Allauzen | Efficient Experimental String Matching by Weak Factor Recognition[END_REF], . . . , (|s| -1, |s|)}. If we consider any (non-empty) subset C ⊆ (C * s \ {(1, 2)}) of contractions, it is easy to notice that W ord(s, C) / ∈ F act(s). Besides, all the words obtained from such subsets are pairwise different.

The number of these subsets is:

|C * s |-1 i=1 |C * s | -1 i = |s| 2 -1 i=1 |s| 2 -1 i = 2 |s| 2 -1 -1
So the number of words that will be accepted by the Oracles but are not factor/suffix of s is O 2 |s| .

In order to better benefit from this structure, it has to be improved, or to be slightly modified. However, it could be useful for future works to improve the knowledges about the Oracle structure. Effectively, it could be interesting to have either an empirical nor a statistical estimation of the accuracy (time and quality of the results) of the Oracle when substituted to Tries or Suffix Trees in algorithms.

Notation 2 . 1

 21 Given a word s ∈ Σ * , we use the term Oracle to indifferently indicating SO(s) or F O(s), and we denote it by O(s). Algorithm 1: Construction of the Factor Oracle of a word 1 § Input : Σ % A l p h a b e t (s u p p o s e d minimal) % s ∈ Σ * % The word t o p r o c e s s % Output : Oracle % Fact or O r a c l e o f s % Begin Cr ea te t h e i n i t i a l s t a t e l a b e l e d by e 0 For i from 1 t o |s| Do Cr ea te a s t a t e l a b e l e d by e i B u i l d a t r a n s i t i o n from t h e s t a t e e i-1 t o t h e s t a t e e i l a b e l e d by s[i] End For For i from 0 t o |s| -1 Do

Definition 2 . 8

 28 We define E(s) = C⊆C * s W ord(s, C), and we call this set the closure of s.

 , and C ∈ C * a set of contractions. If there exists w ∈ Σ * such that W ord(uf, C) = wf then wf and f are recognized in the same state in the Oracle of s.

 C i+1 . Let b the Canonical Factor used by this contraction. We can write uf = s[1..p -1] s[p..q -1] s[q..|uf |]. Since we choose (p, q) being the last contraction, all the contractions in C i are applicable to s[1..p -1]. So there exists a, c ∈ Σ * such that w i f = a s[p..|uf |] = abc, and d ∈ Σ * such that w i+1 f = a s[q..|uf |] = abd. We also could write ab = W ord(s[1..p -1] b, C i) (the opposite would mean that the contraction (p, q) can't be operate from b), and according to the induction hypothesis, we have State(ab) = State(b). From this, we deduce that State(abc) = State(bc) and State(abd) = State(bd). Since bd(= s[q..|uf |]) is a suffix of bc(= s[p..|uf |]), according to the Lemma 3.4:

Figure 3 :

 3 Figure 3: Illustration of a step in the algorithm Contractor (α = S i w [|p i | + 1]).

Figure 4 :

 4 Figure 4: Visualization of Contractor on S i and S i w .

Theorem 3 . 2

 32 Exactly all the factors of the words from E(s) are recognized by the Factor Oracle of s .

Figure 6 :

 6 Figure6: This automaton (considering only the continuous lines) accepts at least all the factors of the word axttyabcdeatzattwu. The bold transition is the only one which is not present in the Factor Oracle of this word (cf. figure5) though the two dotted ones are present in the Factor Oracle, but not in this automaton.

 Given a word s ∈ Σ * and a word x accepted in the state e i (0 ≤ i ≤ |s|) by the Oracle of s, we define the function State as State(x) = e i . Given a word s ∈ Σ * , we denote by # in (e i) (resp. # out (e i)) the number of ingoing (resp. outgoing) transitions in the state e i (0 ≤ i ≤ |s|) of the Oracle of s.

	Definition 2.3 Lemma 2.1 [4, pp. 2, 3] Given a word s ∈ Σ * and its Oracle, there is a unique		
	word having minimal length accepted at each state e i (0 ≤ i ≤ |s|) of O(s). It is		
	denote it by min(e i).																		
	Lemma 2.2 [4, pp. 2, 3] Given a word s ∈ Σ * , its Oracle and an integer i (0 ≤ i ≤		
	|s|), then min(e i) ∈ F act(s) and i = poccur s (min(e i)).										
	Notation 2.2																				
							t														
			a						t a						c						
	e 0	g	e 1	a	e 2	c	e 3	c	e 4	a	e 5	t	e 6	t	e 7	c	e 8	t	e 9	c	e 10
				c									t								
					Figure 1: Factor Oracle of the word gaccattctc.				
							t														
			a						t a						c						
	e 0	g	e 1	a	e 2	c	e 3	c	e 4	a	e 5	t	e 6	t	e 7	c	e 8	t	e 9	c	e 10
				c									t								
					Figure 2: Suffix Oracle of the word gaccattctc.				

 Lemma 3.1 [4, p. 3] Given a word s ∈ Σ * and an integer i (0 ≤ i ≤ |s|), then min(e i) is suffix of all word recognized in the state e i of the Oracle of s. Lemma 3.2[4, p. 4] Given a word s ∈ Σ * and a factor w of s, then w is recognized in the state e i (1 ≤ i ≤ poccur s (w)) of the Oracle of s.Lemma 3.3 [4, p. 4] Given a word s ∈ Σ * and an integer i (0 ≤ i ≤ |s|), then every path ending by min(e i) in the Oracle of s leads to a state e j such that j ≥ i. Lemma 3.4 [4, p. 5] Given a word s ∈ Σ * and w ∈ Σ * a word accepted by the Oracle of s in state e i , then every suffix of w is also recognized by the Oracle in state e j such that j ≤ i.The proof of this last Lemma is given in[START_REF] Allauzen | Oracle des facteurs, Oracle des Suffixes[END_REF] only for the Factor Oracle. We need to extend this result for the Suffix Oracle.Proof (Lemma 3.4) If we denote by x a suffix of w, the original Lemma gives us that State(x) ≤ State(w). We need to prove that if State(w) is final, then State(x) is final. In order to do this, we have to consider two cases: Case 1: |x| ≥ |min(e i)| That means that min(e i) ∈ Suff (x), thus according to Lemma 3.3, we can conclude that State(x) ≥ State(min(e i)), and since State(min(e

 according to Lemma 3.3, we have State(w i+1 f) ≥ State(f), consequently we obtain State(w i+1 f) = State(f). So, this lemma is true for all C i ⊆ C *

s . 2 Lemma 3.6 Let s be word in Σ * , O(s) be its Oracle, and e i be a state of O(s) such that u = min(e i) and u ∈ F s . Let p be a transition issued from e i labeled by α to a state e i+j (j > 1). Then there exists at the position (i + j -|u|) of s an occurrence of uα. Moreover, we have the contraction (i -|u| + 1, i + j -|u|) of s by u.

Proof (Lemma 3.6) By construction (cf. algorithm 1), the transition p from e i to e i+j is added because there exists a position j in s[i -|u| + 1..|s|] such that: j = poccur s[i-|u|+1..|s|] (uα) -|u|. We also have uα ∈ F act(s) since uα ∈ F act(s[i -|u| + 1|s|]). Cleophas & al.

[START_REF] Cleophas | Constructing Factor Oracles[END_REF]

have proved that since u = min(e i) and uα ∈ F act(s), then i -|u| + poccur s[i-|u|+1..|s|] (uα) = poccur s (uα). Hence, we have i + j = poccur s (uα), and finally s

[i + j -|u|, i + j] = uα.

2

Algorithm 2: Obtaining the contractions generating w starting from t in the Oracle of s § I n i t i a l i z a t i o n :

 accepted by SO(s). To conclude, we just showed that w i is recognized by SO(s), for all i ≤ |C|. Finally, Lemma 3.4 allows to conclude that each suffix of a word of E(s) is recognized by SO(s). Each word recognized by the Suffix Oracle of s is suffix of a word from E(s). Let w be a word accepted by the Suffix Oracle of s, and t be the longest suffix of s (s = s ′ t) such that w[1] = t[START_REF] Gusfield | Algorithms on Strings, Trees, and Sequences: computer science and computational biology[END_REF]. Then there exists a set C of contractions such that w = W ord(t, C) (Lemma 3.7). Since C ⊆ C * s,t , there exists a set C ′ ⊆ C * s , obtained by translating the indexes of C with sdec, such that s ′ w = W ord(s ′ t, C ′). Because s ′ w ∈ E(s), we can conclude that each word accepted by SO(s) is a suffix of a word from E(s).

	'⇐':

 Figure 5: Factor Oracle of the word axttyabcdeatzattwu.

														t							w	w															
									b																												
	e 0	a	e 1	x	e 2	t	e 3	t	e 4	y	e 5	a	e 6	b	e 7	c	e 8	d	e 9	e	e 10	a	e 11	t	e 12	z	e 13	a	e 14	t	e 15	t	e 16	w	e 17	u	e 18
			x	t		y			y																				t								
								b c	d e						z																				
														z																							
																		w u																		
																					w	w															
									b																												
					t																																
	e 0	a	e 1	x	e 2	t	e 3	t	e 4	y	e 5	a	e 6	b	e 7	c	e 8	d	e 9	e	e 10	a	e 11	t	e 12	z	e 13	a	e 14	t	e 15	t	e 16	w	e 17	u	e 18
			x	t					y																												
						y																															
								b c	d e						z																				
														z																							
																		w u																		

As mentioned in[START_REF] Cleophas | Constructing Factor Oracles[END_REF], the term -|u| (line 17) is unfortunately missing in the original algorithm.

Proceedings of the Prague Stringology Conference '04

We can notice that:

1. C is not always minimal. The algorithm could be modified but would become more difficult to understand. However, the minimality is not an objective here. Proof (Lemma 3.7) Let j ≥ 0 such that S j+1 w = p j+1 . Then, according to Property 3.2, we deduce that C j+1 is a coherent set of contractions of t. Then, we have:

The following two theorems are the main purpose of this paper.

Theorem 3.1 Exactly all the suffixes of the words from E(s) are recognized by the Suffix Oracle of s .

Proof (Theorem 3.1) '⇒': Each suffix of a word from E(s) is recognized by the Suffix Oracle of s.

According to Lemma 3.4, if w is accepted by SO(s), then each suffix of w is also accepted by SO(s), so we only need to prove that each word from E(s) is accepted by SO(s).

Let C ∈ C * s be a set of contractions applicable to s. Let us build w = W ord(s, C), and show that w is accepted by SO(s). Let C i be the set of the first i contractions of C (chosen without loss of generality by ascending order over the positions), (x j , y j) be the j th contraction, and f j ∈ F s the Canonical Factor used by (x j , y j) (1 ≤ j ≤ i). We note w j = W ord(s, C j). The property (P) to check is that w i is accepted by SO(s). Because w 0 = s, the property (P) is true for i = 0. Let us suppose that it is true for i, and show that (P) is true for i + 1. We have:

By Definition of the Canonical Factors, f i+1 does not occur in s before the position x i+1 (x i+1 > y i). Thus we can write, in particular, w i and w i+1 as: