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ABSTRACT

Sequence Analysis requires to elaborate data structures, which allow both an effi-
cient storage and use. A new one was introduced in 1999 by Cyril ALLAvuzEN, Maxime
CrocHEMORE and Mathieu RarrinoT. This structure is linear on the size of the repre-
sented word both in time and space. It has the smallest number of states and it accepts
at least all substrings of the represented word. This structure is called Factor Oracle.
Authors developed another structure on the basis of Factor Oracle, which has the same
properties except it accepts at least all suffixes instead of all factors of the represented
word. This structure is then called Suffix Oracle. The characterization of the language
recognized by the Factor/Suffix Oracle of a given word is an open problem, for which
we provide a solution. Using this result, we show that these structures may accept an
exponential number of words, which are not factors/suffixes of the given word.

Keywords: Factor Oracle, Suffix Oracle, automata, language, characterization.

1. Introduction

Several structures have been developed in text indexation: we can cite Tries [1],
Suffix Automata [1, 2], Suffix Trees [1, 3]... Their objective is to represent a text or
a word s (i.e. a succession of symbols taken in an arbitrary alphabet denoted by X),
in order to “quickly” determine whether this word contains some specific sub-word.
This sub-word is then called a factor of s.

ALLAUZEN & al. [4, 5, 6] described a method allowing to build an acyclic
automaton, which accepts at least all factors of s, which have as few states as
possible (|s| + 1) and which is linear in the number of transitions (2|s| — 1). When
each state is final in this automaton, the structure is called a Factor Oracle. By
keeping only “particular” states as final, this automaton becomes a Suffix Oracle.




Several advantages have been described for this structure. The construction
algorithm is easy to understand and implement; such advantage doesn’t exist in
the most efficient algorithm to build Suffix Trees [3]. Oracles are homogeneous
automata, i.e. all transitions ingoing to a same state are labeled with a same symbol.
Thus, it is not necessary to label edges anymore. Therefore this structure requires
less memory than Suffix Trees or Tries. LEFEBVRE & al. [7, 8, 9] used it for
repeated motifs discovery over large genomic data and obtained in a few seconds
similar results to the ones obtained by using thousands of BLASTn requests. Authors
also used the Factor Oracle for text compression [10].

However, at least two open questions are linked to these Oracles: the first one
is about the characterization of the language recognized by Oracles; and the second
question concerns the existence of a linear algorithm in time and space to build an
automaton, which accepts all factors/suffixes of a word s and which is minimal in
number of transitions.

When using these Oracles, the main difficulty is to distinguish true and false
positives. Therefore we will provide in the next section several definitions related
to the construction of Oracles. We will characterize the language recognized by this
structure in section 3. Finally, some results using Oracles will also be described.

2. Definitions

In the following sections, we call Fact(s) (resp. Suff(s) and Pref(s)) the set
of factors (resp. suffixes and prefixes) of s € ¥T. We call Pref(i) the prefix of s,
which has length ¢ > 0. Given = € Fact(s), Nbs(x) is the number of occurrences of
2 in s and z is repeated if and only if Nbs(z) > 2.
Definition 1 Given a word s € X1 and x a factor of s, we define the function Pos
as the position of the first occurrence of x in s = uxv (u,v € ¥*): Poss(x) = |u|+1.
We also define the function poccur such that poccurs(x) = |ux| = Poss(x)+ |x| — 1.

2.1. Oracles

The Oracle construction is defined by the algorithm of ALLAUZEN & al. [4]
(see algorithm 1). Authors gave another algorithm to build the same automaton in
linear time on the size of s. However, since we are only interested in properties of
the Oracle, we do not report it in this paper.

Definition 2 [}] Given a word s € ¥*, we define the Factor Oracle of s as the
automaton obtained by the algorithm 1, where all states are final. It is denoted by
FO(s). We define the Suffix Oracle of s as the automaton obtained by the same
algorithm, where a state e; (0 < i < |s|) is final if and only if there exists a path
labeled by a suffix of s from the initial state to the state e;. It is denoted by SO(s).

We use the term Oracle to equally designate the Factor or the Suffix Oracle of
a word s and we denote it by O(s). We define a relation of order between states in
these Oracles. Indeed, if we have two states e; and e; such that ¢ < j, then e; <e;.

2As mentioned in [11], the term —|u/| (line 17) is unfortunately missing in the original algorithm.



Algorithm 1: Construction of the Factor Oracle of a word?

~
i| Input: ¥ % Alphabet (supposed minimal) %

2 s€X* % The word to process %

3| Output: Oracle % Factor Oracle of s %

4

5| Begin

6 Create the initial state labeled by eg

7

8 For i from 1 to |s| Do

9 Create a state labeled by e;

10 Build a transition from the state e;—; to the state e; labeled by s[i
11 End For

12

13 For i from 0 to |s|—1 Do

14 Let uw be a word of minimal length recognized at state e;

15 For All o€ X\ {s[i+ 1]} Do

16 If ua € Fact(s[i — |u| + 1..|s|]) Then

17 J — poccur i ju|+1..|s)) (ue) — |u|

18 Build a transition from the state e; to e;y; labeled by «
19 End If

20 End For All

21 End For

22| End

Definition 3 Given a word s € ¥* and a word x accepted at the state e; (0 < i <
|s|) in the Oracle of s, we define the function State as State(x) = e;.

Lemma 1 [/] Given a word s € ¥*, a unique word with minimal length is accepted
at each state e; (0 < i <|s|) in the Oracle of s. It is denoted by min(e;).

Lemma 2 [/] Given a word s € ¥*, its Oracle and an integer i (0 < i < |s|), then
min(e;) € Fact(s) and i = poccurs(min(e;)).

Notation 1 Given a word s € ¥*, let #,,(e;) and #out(e;) denote the number of
ingoing/outgoing transitions to/from state e; (0 <i < |s|) in the Oracle of s.

2.2. Canonical Factors € Contraction Operation

In this section, we will define particular factors from a given word and an op-

eration needed to characterize the language. Then we will define the sets of words
obtained with this operation.
Definition 4 Given a word s € ¥* and its Oracle, we define the set of Canonical
Factors of s as Fs = {min(e;) |1 < i <|s| A (#out(ei) > 1V #in(e;) > 1)}. Given
a suffix t of s and a Canonical Factor f of s, [ is a conserved Canonical Factor of s
in t if the first occurrence of f in s appears int. The set of the conserved Canonical
Factors of s in t is denoted by Fs (thus Fs i C Fs).

Definition 5 Given a word s € ¥* and a repeated Canonical Factor f of s such

that:
s = ufv (u,v € %)
fu = wfx (we Xt xeX)
Poss(f) = |u|+1

then the pair (|u| + 1, |luw| + 1) is a contraction of s by f.




Notation 2 Given a word s € ¥* and a Canonical Factor f € Fs, C{ is the set of
contractions of s by f and C; (= U Cg} is the set of all the contractions we can

JEFs
apply to s. Given a suffivt of s =t't (t,t' € ¥*), then C;, is the subset of C5 such

that C:, = {(p,q) | (p,q) €C5 N p>|t'[}.

In the following, we will use sets of contractions to produce new words from a
given one. Then we will use these words to characterize the language recognized by
Oracles.

Definition 6 A set C of contractions is coherent if and only if it does not contain
two contractions (i1, j1), (i2,72) such that: iy < is < j1 < jo. Furthermore, C is
minimal if and only if it does not contain two contractions (i1, j1) and (iz,j2) such
that i1 <9 < jo < j1 or such that i1 < j1 =i < ja.

Definition 7 Given a word s € ¥* and a coherent and minimal set of contractions

C=A{p1,q1),---,(pr,qr)} (associated to the set of canonical factors {f1,..., frx}),
then we define the function Word as following:

Word(s,C) = s[1..p1 — 1] s[q1..p2 — 1] ... S[qr—1--pr — 1] s[qk.-|s]]-

I \: fI‘.lfz : "
Fig. 1. Words obtained using the contraction operation (see Definition 5).

We are only interested by words obtained by the contraction operation. So
we will only consider coherent and minimal sets of contractions without loss of
generality. Note that the word remains the same whatever the order of contractions
(see figure 1).

Definition 8 We define £(s) = U Word(s,C), as the closure of s.

cce:
Example: Consider the word gaccattcte (see figure 2). Its set of Canonical Factors
is Fyaccattete = {a,¢,ca,t te,ct} and then C,ooopere = {(2,5),(3,4),(3,8),(3,10),
(6,7),(6,9),(7,9)}. Now, consider the set C = {(2,5),(7,9)} (C C C},ccattere)s then

Word(gaccattcte,C) = gditattete = gatte. The closure of gaccattcte is:

£ (gaccattcte) = { gac, gacatce, gacatcte, gacatte, gacattcte, gaccate, gaccatcte, }

gaccattc, gaccattcte, gacte, gate, gatcte, gatte, gaticte

()o@ 1))

Fig. 2. Suffix Oracle of gaccattcte. In the Factor Oracle, all states are final.




3. Characterization of the language recognized by Oracles

Given a word s € ¥*, we saw how to build the corresponding Factor (resp. Suffix)
Oracle. This Oracle allows to recognize the factors (resp. suffixes) of s, but it also
accepts additional words. For example the word atc is accepted by the Factor
(resp. Suffix) Oracle of gaccattcte (see figure 2), whereas it is neither a factor nor
a suffix of this sequence. We will see that the Suffix Oracle of s exactly recognizes
all suffixes of words from £(s) and we will use this result to prove that the Factor
Oracle of s exactly recognizes all factors of words from &(s).

We use following Lemmas to prove the result concerning Suffix Oracles. These
Lemmas have been proved in [4].

Lemma 3 [/] Given a word s € ¥* and an integer i (0 < i < |s|), then min(e;) is
suffiz of all words recognized at state e; in the Oracle of s.

Lemma 4 [/] Given a word s € ¥* and a factor w of s, then w is recognized at
state e; (1 < i < poccurs(w)) in the Oracle of s.

Lemma 5 [/] Given a word s € ¥* and an integer i (0 <1i < |s|), then every path
ending by min(e;) in the Oracle of s leads to a state e; such that j > i.

Lemma 6 [/] Given a word s € ¥* and w € ¥* a word accepted at state e; (0 <
1 < |s]) in the Oracle of s, then every suffix of w is also recognized by the Oracle at
state e; such that j <.

The proof of Lemma 6 is only given in [4] for Factor Oracles. We need this result
to be true for Suffix Oracles.

Proof. The original Lemma gives us that if = is a suffix of w, then State(x) <
State(w). We need to prove that if State(w) is final, then State(z) is final. There-
fore, we have to consider two cases. When |z| > |min(e;)|, we have min(e;) €
Suff(z) and thus, according to Lemma 5, State(x) > State(min(e;)). Since
State(min(e;)) = e; = State(w), we conclude that State(z) = State(w). When
we have |z| < |min(e;)|, since the state e; is final, then there exists a suffix ¢ of
s such that State(t) = e;. According to Lemma 3, we conclude that min(e;) €
Suff(t) C Suff(s). Since x and min(e;) are suffixes of w, then |z| < |min(e;)| =
x € Suff(min(e;)). So x is also suffix of s and according to Definition of the Suffix
Oracle State(x) is final. O

We use these previous results to show that the two following Lemmas.
Lemma 7 Given a word s € X*, a Canonical Factor f of s = ufv (u,v € ¥*)
such that f is not repeated in uf and a set C of contractions (C € CI) such that
Word(uf,C) =wf, then the Oracle of s accepts wf and [ at the same state.

Proof. We denote by C; C C! a set of contractions, which has cardinality 7. In
the same way, we denote by w; f the word obtained when we apply contractions C;
to uf (warning: w;f = Word(uf,C;) # w; = Word(u,C;)). By induction on the
size of C;, we show that State(Word(uf,C;)) = State(f) for all C; € C¥.

Let e, = State(f) (f = min(e;) by Definition of f) and e, = State(Word(uf,C;)).
If we consider Cy, then Word(uf,Co) = uf. According to Lemma 5, x, > z.
Furthermore, according to Lemma 4 applied to uf, we have xj, < poccurs(uf).



However by Definition of f, poccurs(f) = |uf| = poccurs(uf). Therefore we have
xy < x and zj) = .

If this lemma is true for a set C; C C} of contractions, then it is true for a set C;+; =
C; U{(p,q)}. We assume without loss of generality (see figure 1) that (p,q) is the
last contraction in C;11 (by ascending order over positions). Let b be the Canonical
Factor used by this contraction. We can write uf = s[1..p — 1] s[p..q — 1] s[q..|uf]].
Since (p,q) is chosen as the last contraction, all contractions in C; are applicable
to s[l.p — 1]. So we define a,c € ¥* such that w;f = as[p..|uf|] = abc and
d € ¥* such that w41 f = asfqg..|uf|] = abd. Also ab = Word(s[1..p — 1]b,C;): the
opposite would mean that contraction (p, ¢) can’t be operated from b and according
to the induction hypothesis, State(ab) = State(b). From this, we conclude that
State(abc) = State(be) and State(abd) = State(bd). We know that bd (= s[q..|uf]])
is a suffix of be (= s[p..Juf|]) and according to Lemma 6:

State(bd) < State(bc)
& State(abd) < State(abe)
< State(wi41f) < State(w;f)
& State(wit1f) < State(f)
However, according to Lemma 5, we have State(w;41f) > State(f) and therefore
State(w;y1f) = State(f). This lemma is then true for all C; C C¥. O

wf=Word(uf,C)

%,,,u,,,,»,if;, 777777777 V-------- e
€0 *‘~\‘_\ ’,>;‘__’»’6i e‘s‘
F=min(e;)

Fig. 3. Illustration of Lemma 7.

Now, we show how to obtain a contraction, starting with transition of type
e; — e; with j >4+ 1 (that we call an external transition in the subsequent).
Lemma 8 Given a word s € ¥* and an integer i (0 < i < |s|) such that #out(e;) >
1, let p be a external transition from state e; to state e;y; (j > 1) labeled by o
and uw = min(e;). Then an occurrence of uw« exists at position (i + j — |ul|) of s
(see figure 5 — page 8). Moreover, the contraction (i — |u|+ 1,7 — |u| +j) of s by u
ezists too.

Proof. According to the construction algorithm (see algorithm 1), the transition
p is added from e; to e;4; because a position j in s[i — |u| +1..]s|] is such that: j =
POCCUT g[i—|y|+1..|s] () — [u]. We also have ua € Fact(s) because ua € Fact(s[i —
|u|+1..]s]]). CLEOPHAS & al. [11] proved that since u = min(e;) and ua € Fact(s),
then i — |u| 4+ poccurf;—ju|+1..|s)(ua) = poccurs(ua). We have i + j = poccurs(ua)
and finally s[i + 7 — |u|,7 + j] = ua. O

We use algorithm Contractor (see algorithm 2) to give a characterization of the
language accepted by the Oracle of a word s. Given a word s € ¥* and its Suffix
Oracle SO(s), initial inputs of Contractor are a word w accepted by SO(s) and ¢,
the maximal suffix of s beginning with w[1]. This algorithm outputs a set C € C¥
of contractions such that w = Word(t,C).
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Algorithm 2: Contractions needed to transform s = t't (t,t' € £*) into t'w

Initialization: So=t, Sy =w, Co=0, sdec=|s|—[t| % t is a suffiz of s %
Input: S, € % A suffiz of s that can still be "contracted” %
S e ¥* % The word to process %
Ci % Set of contractions %
Qutput: a set of contractions
Begin
pi < longest common prefix between S; and S}’ (Claim 1, item 1)
eq; + State(p;) (Claim 1, item 2)
fi = min(eq;)
If (|pil < |S¥|) Then
er, —Transition (eq,,S;"[|p:| + 1]) (Claim 1, item 4)
Civ1 — CiU{ci}, ci = (qi—|fil + 1,7 — | fil) (Claim 2, item 2)
Sy = SPllpil = [ fil +1..1S71] (Claim 1, item 3)
Siy1 — t[ri — | fi] — sdec..|t]] (Claim 1, item 3)
Return Contractor(Sit+1,5%1,Cit1)
Else
If (|Si| >|S;”]) Then
Cit1— CiU{ci}, ci=(q — |fil +1,1s| = |fil + 1) (Claim 3)
Else
Ci+1 (—CZ (Clalm 3)
End If
Return C; 1
End If
End

By Definition 7, given a word s € ¥* such that s = t't (¢,¢/ € ¥*) and a set
C € C;, of contractions, t'w = Word(s,C) is then a concatenation of substrings of
s. These substrings can be assimilated as prefixes of suffixes of s. A contraction is
then a “‘jump” from one substring to the next one. The main idea of this algorithm
is to read from left to right the sequences ¢t and w, in order to compute the longest
common prefixes between given suffixes of ¢ and w. After each stage, the algorithm
computes the length of the “jump” to go to the next suffix of ¢ to consider.

Inputs are words S;, S (¢ > 0) and a set C; of contractions. We initialize Sy = ¢,
S¥ =w, Co =0 and p; (line 9) as the longest prefix of S; and S¥. So:

Si = piS; and S = piSi®. (1)

Let eq, = State(p;) and f; = min(eq,) ((lines 10 and 11), Lemma 3 provides:
pi=pifi (p; €X"). (2)
The variable e,, (line 13) is the state reached by the transition from e, and
labeled by o = S¥[|p;| + 1] = S/™[1]. The set Ci+1 has cardinality ¢ + 1. The

variable sdec = |s| — |t] is necessary to compute S;41 (line 15), because each state
e; is linked to the i'" character of s, not to the character (i — |s| + |¢|) of ¢.

Claim 1 Following assertions are true for all i > 0 (see figure /):
1. iné S Pref(pi+1).
2. S; =tlgi — |pi| + 1 — sdec..|t]].
8. Siy1 and S}, are respectively suffives of S; and S;"; S; and S} (i > 0) are
respectively suffizes of t and w.
4. Transition from ey, to e,, labeled by o always exists.
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Fig. 4. Visualization of Contractor on S; and S;.

Proof.

1. Since f; = min(e,,) and according to Lemma 8, we have s[r; — |fi|..ri] =
tlrs — | fil = sdec..r; — sdec] = fia. So Siyq1 and S} begin with f;a (line 15).

2. For i = 0 (initialization case), Sy = t and ¢ is the longest suffix of s
beginning by w[1]. If e, = State(Sp[1]) (x > 0), then t[x — sdec..|t|]] = Sy and
State(pg) = x+|po|—1 = ey, Thus we conclude that Sy = s[go — |po|+1— sdec..|s]].
At iteration i, we have S;11 = t[r; — |fi| — sdec..|t|] (line 16). Since S}’ ; begins
by fi« (item 1), we conclude that g;+1 = r; + |pi+1] — |fi] — 1 and finally we have
Sit1 = tri — |fi| — sdec..|t|] = t[git1 — |piv1| + 1 — sdec..|t|].

3. This assertion is true for S}’ because S}, is suffix of S} by construction
(line 15) and S’ = w. Concerning S;, we have Sy = ¢ thus the property is true for
i = 0. Suppose that S; is suffix of ¢, from item 2, we have S; = t[g; —|pi|+1—sdec..|t|].
We also have S;11 = t[r; — | fi| — sdec..|t]] (line 16). So we conclude using Eq. (2)
that ¢; — [p;| = ¢; — |p}| — | f|- Since [p}| > 0, we have ¢; — |f;| > ¢; — |pi| and r; > g¢;.
Finally, we conclude that r; — | f;| > ¢; — |pi| and that S;11 is a suffix of S;.

4. According to item 3, S¥ is suffix of w. Then S} is accepted by O(s)
(Lemma 6). Using Eq. (1) with S/"[1] = « the transition must exist and implies

H#Hout(egq,) > 2. So fi = min(eq,) € Fs by Definition of Canonical Factors. O
From Eq. (1) and Claim 1 (item 4):
t = tS; (t; e %) (3)
w = wSP = wpp;Sy, (w;eXr).
Sit1
wép_i ) o
O e T fi atn T €ls|
[ S;

Fig. 5. Illustration of a step in the algorithm Contractor (o = S¥[|ps| + 1]).

Claim 2 For all i > 0 (see figure 5):
1. State(w]p;) = State(t,p;) = State(p;) = ey, .
2. ¢; is a contraction of t,S; (resp. w.S;) provided by f;. Result of this con-

traction is t;p;Siy1 (resp. wip;Siy1 = Wi, Siy1).



Proof.

1. For i = 0, t; = w} = e. Let us suppose that the property is true for ¢ and
therefore for i+ 1. From Claim 1 (item 2), we conclude that S; labeled a path using
only “main” transitions (i.e. transitions of type e; — e;y1) from eq, _p,,| to ef5 in
O(s). According to Claim 1 (item 3) we conclude that:

S; = ’U,Sprl (u € E*) (4)

So, the state e, (x > ¢; — |p;|) is such that S;;; labeled a path using only “main”
transitions from e, to e, in O(s) and more precisely z = r; — |f;| — 1. We have
ti 1 = tju (Eq. (3) and (4)) and State(tju) = e,. Since f; = min(e,,) and there
is a transition from e, to e,, labeled by a (Claim 1, item 4), State(t;,,fio) =
State(tiuf;o) = State(fia) = e, and furthermore, p;+1 = fiav (v € ¥*). So we
have State(t;,, fiow) = State(t; pit1) = State(piy1).

2. From Eq. (1), (2) and (3), we conclude that:

t=1'S; = t'plfiS. (5)

Since S;+1 € Suff(S;), we have S; = uS;+1 (u € ¥1) and from Eq. (5), t/p}fiS! =
tuSit1. According to Claim 1 (item 1), we have ¢)p]f;S; = tiufiou’ (v € X*).
Since we have State(t}plf;) = State(f;) and |u] > |p}| (because S.[1] # «), we can
contract t;5; by f; and t/p; ficu' = t;p;S;11. We can conclude that w}S; = w;p;S!
is contracted by f; in wip,S;+1 because State(wip;) = State(t;p;). According to
Eq. (3), we conclude that wj ; = wip; and wip]Si;1 = w;,Sit1. O

Claim 2 shows that a contraction ¢; of ¢}S; by f; is also a contraction for ¢ and
for w}S;. Consider the i*" iteration, we have |S¥| > [S¥ | or |S¥| = |S¥ | and
|pic1] > |pi| Gf fi = p;). Since p; > 0, we ensure that recursion stops at iteration
J > i with p; =S¥ (j > ).

Claim 3 Given an integer i > 0 such that p; = S}*, then t needs a last contraction
if and only if | S| # |S;i].

Proof. The word obtained with the set C; of contractions is w.p;S; (Claim 2,
item 2). If S} = S;, then we have S; = € and we conclude that C; is complete
(line 20). If S # S;, according to Claim 2 (item 1), we have State(w]p;) = eq,. By
Definition of the final state in a Suffix Oracle, min(ey,) € Suff(w) (Lemma 3) and
min(eq,) € Suff(t). A last contraction is needed to complete the set of contractions
(line 22). O

Considering the i*" call of Contractor, inputs are S; = p; S, S¥* = p;S/¥ and

C;. This set is the set of contractions necessary to transform t; € Pref(t) into
w; € Pref(w). The variable p; refers to the longest common prefix of S; and S
(pi is both a factor of ¢ and w, Claim 1). Two cases may occur for this call (line 12.
When |p;| = |S?], the recursion ends. Otherwise, |p;| # |S}’| and at least another
contraction is necessary until |p;| = [S¥’| (j > 7). From Claim 2, the ith contraction
allows to continue with the suffix S;;;. At the end of the process (i.e. the end of
w), we return the set C = C; and Lemma 9 ensures that w = Word(t,C).



Lemma 9 Given a word s € X%, its Suffix Oracle, a word w € X* accepted by
SO(s) and the longest suffiz t of s such that w[l] = t[1], then Contractor(t,w,()
outputs a set C, which is such that w = Word(t,C).

Proof. Let i > 0 such that S}, = p;y1. According to Claim 2, we conclude
that C; 41 is a coherent set of contractions of ¢. Since p;41 is prefix of S; 1 we have:

Word(t,Ci+1) = wiy1Sis1 = wip S u = Wi piyiu (u € X7)

If u = €, we have Word(t,C;+1) = w (Eq. (3)). Else (Claim 3) a ultimate contraction
civ1 by fiq1 transforms wj, ;Si% u into wi S{, =w = Word(t,Cit1 U {cit1}).
Finally Contractor provides a set C such that w = Word(t,C). O

We can notice that:
1. C is not always minimal.
2. C is coherent. Let (a,b) and (¢, d) be two contractions successively added to
C. We have a < b and ¢ < d because ; > ¢; and |s| > ¢; (lines 14 and 20). If
€qir1 = State(pir1) = ey, then b= c, else piy1 = fiow (v = S |pi|+1],v # €)
and eg, ., > e, therefore b < c.

Following theorems are the main purpose of this paper:
Theorem 1 Ezactly all suffizes of words from E(s) are recognized by the Suffix
Oracle of s .

Proof.
‘=": Fach suffix of words from E(s) is recognized by the Suffix Oracle of s.
According to Lemma 6, if w is accepted by SO(s), each suffix of w is also accepted
by SO(s). So we only need to prove that each word from £(s) is accepted by SO(s).
Let C € Cf be a set of contractions applicable to s and w = Word(s,C). The set
C; is the set of the first ¢ contractions of C (chosen without loss of generality by
ascending order over positions — see figure 1), (z;,y;) is the 4" contraction, which
use the Canonical Factor f; (1 < j <) and w; = Word(s,Cj). The property (P)
to prove is that if w; (0 <i < |C]) is accepted by SO(s), then w;1; is accepted too.
We have:

{ w; = s[l.zy —1]s[yr..xa — 1] ... s[y;..|s]]
slyiyi + il =11 = fi

By Definition of the Canonical Factors, f;+1 does not occur in s before position
Ziy1 (i1 > yi). We have w; = o' fip1u and wijpq = o' fiqw/ with o' = s[l.zq —
s[yr..we — 1] ... s[yi-wiz1 — 1] and fir1u =" fir1u' (v’ € XT).

Considering the contraction (z;4+1,¥;+1), we have |s| — |fit1u| +1 = 2,11 and
|s| = |fix1u'|+1 = yi+1 (because the contractions are in ascending order). The word
s is then not yet modified after positions z;1+1, so fiyiu and f;11u’ are suffixes of
s. Consider the state ¢ = State(f;+1) of SO(s), according to Lemma 7:

State(v' fiv1) = q. (6)

The suffix f;;1u’ of s is necessarily recognized by SO(s). So the path accepting
this suffix in SO(s) go through the state ¢g. Starting from ¢, we can read v’ and
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reach a final state and therefore, according to Eq. (6), SO(s) also accepts the word
wi+1 = V' fiyru'. Finally, the property (P) is true for all (0 < ¢ < |C|) and since
wy = s, we can prove by induction on 4 that the Suffix Oracle of s recognizes all
words w; (0 <7 <|C|). Lemma 6 allows to conclude that each suffix of words from
&(s) is recognized by SO(s).

‘<" Each word recognized by the Suffiz Oracle of s is suffix of a word from E(s).

Let w be a word accepted by the Suffix Oracle of s and ¢ be the longest suffix
of s = t't (t,t’ € ¥*) beginning with w[1]. Then a set C of contractions such
that t'w = Word(t't,C) exists (Lemma 9). Since the word w is suffix of 'w and
t'w € E(s), each word accepted by SO(s) is a suffix of a word from £(s). O

On the basis of Theorem 1 we give a similar result, which is available for Factor
Oracles instead of Suffix Oracles.
Theorem 2 FEzactly all factors of words from E(s) are recognized by the Factor
Oracle of s .

Proof.
‘="t Each factor of words from E(s) is recognized by the Factor Oracle of s.
Let SO(s) be the Suffix Oracle of s, u € £(s) and m a factor (i.e. a prefix of a
suffix) of u = mv (v € £*). Then mu is accepted by SO(s) (Theorem 1). Thus, a
path (eo — €z, — ... — eg,, ) exists in SO(s), which recognizes mv. Therefore,
we conclude that m labeled a path (eg — ez, — ... — ew\m\) (with €] final).

‘<": Each word recognized by the Factor Oracle of s is factor of a word from E(s).
Let SO(s) be the Suffix Oracle of s and m a word accepted by FO(s). If SO(s)
recognizes m then m is a suffix of a word from £(s) (Theorem 1). Suppose that
SO(s) does not recognize m. Then F'O(s) recognizes m at state e, (not final in
SO(s)). Furthermore, the path (eg — e; — ... — ejy) exists in O(s) and e, is
final in SO(s). We conclude that a path from e, to ey exists in SO(s). Then,
the word m is prefix of a word recognized by SO(s) and therefore m is prefix of a
suffix of some u € £(s). Thus, m is a factor of a word of £(s). O

4. Properties upon Oracles & Future Works

According to CLEOPHAS & al. [11], the Oracle is not minimal in number of
transitions among the set of homogeneous automata. Furthermore, if we consider
the set of homogeneous automata, which recognize at least all factors (resp. suf-
fixes) of s and which have the same number of states and at most the same number
of transitions than the Factor (resp. Suffix) Oracle, we show that the Oracle is
not minimal on the number of accepted words. The Oracle of axttyabedeatzattwu
(see figure 6) has 35 transitions, the Factor Oracle accepts 247 words and the Suffix
Oracle accepts 39 words. Though another homogeneous automaton (see figure 7),
which recognizes at least all factors (resp. suffixes) of axttyabedeatzattwu and which
has only 34 transitions exists. The “Factor” version of this automaton recognizes
only 236 words and its “Suffix” version accepts only 30 words. Moreover, we pro-
vide an example which has both less transitions, and less accepted words than the
corresponding Oracle.
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Fig. 7. This automaton (considering only the continuous lines) accepts all
factors of the word azttyabedeatzattwu. The bold transition (from eq to e3) is
the only one, which is not present in the Factor Oracle of this word (see figure 6)
though the two dotted ones (from e; to ej2 and from eq2 to ejg) are present
in the Factor Oracle, but not in this automaton.

In some cases, we observe that the number of words accepted by Oracles does
not allow confidence to this structure when it is used to detect factors or suf-
fixes of words. Even if the number of false positive can sometimes be equal to 0
(e.g. aaaaaa . . .), it can also be exponential. Indeed, we can build a word s such that
each subset of C; is coherent and minimal. For example: s = aabbceddee . . ., the set
C* of contractions, which are available on such a word, is {(1,2),(3,4),...,(]s| —
1,]s])}. If we consider any non-empty subset C C (C¥\ {(1,2)}) of contractions, it
is easy to notice that Word(s,C) ¢ Fact(s). Besides, all words obtained from such
subsets are pairwise different.

G e o1y Es gl ol
Number of subsets is: s = 2 =22""—1. Then
> (57 -2 () 7
the number of words, which are accepted by the Oracles and are not factor/suffix
of s, is O(2/*!).

To better use this structure, we need to improve or to slightly modify it. How-
ever, better knowledge about the Oracle structure would be useful for future works.
Indeed, it could be interesting to have an empirical or a statistical estimation of the
accuracy of the Oracle (time and quality of the results), when it is substituted to
Tries or Suffix Trees in algorithms.
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