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International Journal of Foundations of Computer Siene© World Sienti� Publishing Company
COMBINATORIAL CHARACTERIZATION OF THE LANGUAGERECOGNIZED BY FACTOR AND SUFFIX ORACLESALBAN MANCHERONandCHRISTOPHE MOANLaboratoire d'Informatique de Nantes-Atlantique,Université de Nantes,B.P. 92 208, 44 322 Nantes Cedex 3, FraneReeived (reeived date)Revised (revised date)Communiated by Editor's nameABSTRACTSequene Analysis requires to elaborate data strutures, whih allow both an e�-ient storage and use. A new one was introdued in 1999 by Cyril Allauzen, MaximeCrohemore and Mathieu Raffinot. This struture is linear on the size of the repre-sented word both in time and spae. It has the smallest number of states and it aeptsat least all substrings of the represented word. This struture is alled Fator Orale.Authors developed another struture on the basis of Fator Orale, whih has the sameproperties exept it aepts at least all su�xes instead of all fators of the representedword. This struture is then alled Su�x Orale. The haraterization of the languagereognized by the Fator/Su�x Orale of a given word is an open problem, for whihwe provide a solution. Using this result, we show that these strutures may aept anexponential number of words, whih are not fators/su�xes of the given word.Keywords: Fator Orale, Su�x Orale, automata, language, haraterization.1. IntrodutionSeveral strutures have been developed in text indexation: we an ite Tries [1℄,Su�x Automata [1, 2℄, Su�x Trees [1, 3℄. . . Their objetive is to represent a text ora word s (i.e. a suession of symbols taken in an arbitrary alphabet denoted by Σ),in order to �quikly� determine whether this word ontains some spei� sub-word.This sub-word is then alled a fator of s.Allauzen & al. [4, 5, 6℄ desribed a method allowing to build an ayliautomaton, whih aepts at least all fators of s, whih have as few states aspossible (|s|+ 1) and whih is linear in the number of transitions (2 |s| − 1). Wheneah state is �nal in this automaton, the struture is alled a Fator Orale. Bykeeping only �partiular� states as �nal, this automaton beomes a Su�x Orale.1



Several advantages have been desribed for this struture. The onstrutionalgorithm is easy to understand and implement; suh advantage doesn't exist inthe most e�ient algorithm to build Su�x Trees [3℄. Orales are homogeneousautomata, i.e. all transitions ingoing to a same state are labeled with a same symbol.Thus, it is not neessary to label edges anymore. Therefore this struture requiresless memory than Su�x Trees or Tries. Lefebvre & al. [7, 8, 9℄ used it forrepeated motifs disovery over large genomi data and obtained in a few seondssimilar results to the ones obtained by using thousands of blastn requests. Authorsalso used the Fator Orale for text ompression [10℄.However, at least two open questions are linked to these Orales: the �rst oneis about the haraterization of the language reognized by Orales; and the seondquestion onerns the existene of a linear algorithm in time and spae to build anautomaton, whih aepts all fators/su�xes of a word s and whih is minimal innumber of transitions.When using these Orales, the main di�ulty is to distinguish true and falsepositives. Therefore we will provide in the next setion several de�nitions relatedto the onstrution of Orales. We will haraterize the language reognized by thisstruture in setion 3. Finally, some results using Orales will also be desribed.2. De�nitionsIn the following setions, we all Fact(s) (resp. Suff(s) and Pref(s)) the setof fators (resp. su�xes and pre�xes) of s ∈ Σ+. We all Prefs(i) the pre�x of s,whih has length i ≥ 0. Given x ∈ Fact(s), Nbs(x) is the number of ourrenes of
x in s and x is repeated if and only if Nbs(x) ≥ 2.De�nition 1 Given a word s ∈ Σ+ and x a fator of s, we de�ne the funtion Posas the position of the �rst ourrene of x in s = uxv (u, v ∈ Σ∗): Poss(x) = |u|+1.We also de�ne the funtion poccur suh that poccurs(x) = |ux| = Poss(x)+ |x|−1.2.1. OralesThe Orale onstrution is de�ned by the algorithm of Allauzen & al. [4℄(see algorithm 1). Authors gave another algorithm to build the same automaton inlinear time on the size of s. However, sine we are only interested in properties ofthe Orale, we do not report it in this paper.De�nition 2 [4℄ Given a word s ∈ Σ∗, we de�ne the Fator Orale of s as theautomaton obtained by the algorithm 1, where all states are �nal. It is denoted by
FO(s). We de�ne the Su�x Orale of s as the automaton obtained by the samealgorithm, where a state ei (0 ≤ i ≤ |s|) is �nal if and only if there exists a pathlabeled by a su�x of s from the initial state to the state ei. It is denoted by SO(s).We use the term Orale to equally designate the Fator or the Su�x Orale ofa word s and we denote it by O(s). We de�ne a relation of order between states inthese Orales. Indeed, if we have two states ei and ej suh that i ≤ j, then ei ≤ ej .aAs mentioned in [11℄, the term −|u| (line 17) is unfortunately missing in the original algorithm.2



Algorithm 1: Constrution of the Fator Orale of a worda�1 Input : Σ % Alphabet ( supposed minimal ) %2 s ∈ Σ∗ % The word to proess %3 Output : Oracle % Fator Orale o f s %45 Begin6 Create the i n i t i a l s t a t e l abe l ed by e078 For i from 1 to |s| Do9 Create a s t a t e l abe l ed by ei10 Build a t r a n s i t i o n from the s t a t e ei−1 to the s t a t e ei l abe l ed by s[i]11 End For1213 For i from 0 to |s| − 1 Do14 Let u be a word o f minimal length r e ogn i z ed at s t a t e ei15 For All α ∈ Σ \ {s[i + 1]} Do16 I f uα ∈ Fact(s[i− |u| + 1..|s|]) Then17 j ← poccurs[i−|u|+1..|s|](uα) − |u|18 Build a t r an s i t i o n from the s t a t e ei to ei+j l abe l ed by α19 End I f20 End For All21 End For22 End
	�De�nition 3 Given a word s ∈ Σ∗ and a word x aepted at the state ei (0 ≤ i ≤

|s|) in the Orale of s, we de�ne the funtion State as State(x) = ei.Lemma 1 [4℄ Given a word s ∈ Σ∗, a unique word with minimal length is aeptedat eah state ei (0 ≤ i ≤ |s|) in the Orale of s. It is denoted by min(ei).Lemma 2 [4℄ Given a word s ∈ Σ∗, its Orale and an integer i (0 ≤ i ≤ |s|), then
min(ei) ∈ Fact(s) and i = poccurs(min(ei)).Notation 1 Given a word s ∈ Σ∗, let #in(ei) and #out(ei) denote the number ofingoing/outgoing transitions to/from state ei (0 ≤ i ≤ |s|) in the Orale of s.2.2. Canonial Fators & Contration OperationIn this setion, we will de�ne partiular fators from a given word and an op-eration needed to haraterize the language. Then we will de�ne the sets of wordsobtained with this operation.De�nition 4 Given a word s ∈ Σ∗ and its Orale, we de�ne the set of CanonialFators of s as Fs = {min(ei) | 1 ≤ i ≤ |s| ∧ (#out(ei) > 1 ∨ #in(ei) > 1)}. Givena su�x t of s and a Canonial Fator f of s, f is a onserved Canonial Fator of sin t if the �rst ourrene of f in s appears in t. The set of the onserved CanonialFators of s in t is denoted by Fs,t (thus Fs,t ⊆ Fs).De�nition 5 Given a word s ∈ Σ∗ and a repeated Canonial Fator f of s suhthat:







s = ufv (u, v ∈ Σ∗)
fv = wfx (w ∈ Σ+, x ∈ Σ∗)
Poss(f) = |u| + 1then the pair (|u| + 1, |uw| + 1) is a ontration of s by f .3



Notation 2 Given a word s ∈ Σ∗ and a Canonial Fator f ∈ Fs, Cf
s is the set ofontrations of s by f and C∗s (≡

⋃

f∈Fs

Cf
s ) is the set of all the ontrations we anapply to s. Given a su�x t of s = t′t (t, t′ ∈ Σ∗), then C∗s,t is the subset of C∗s suhthat C∗s,t = {(p, q) | (p, q) ∈ C∗s ∧ p > |t′|}.In the following, we will use sets of ontrations to produe new words from agiven one. Then we will use these words to haraterize the language reognized byOrales.De�nition 6 A set C of ontrations is oherent if and only if it does not ontaintwo ontrations (i1, j1), (i2, j2) suh that: i1 < i2 < j1 < j2. Furthermore, C isminimal if and only if it does not ontain two ontrations (i1, j1) and (i2, j2) suhthat i1 ≤ i2 < j2 ≤ j1 or suh that i1 < j1 = i2 < j2.De�nition 7 Given a word s ∈ Σ∗ and a oherent and minimal set of ontrations

C = {(p1, q1), . . . , (pk, qk)} (assoiated to the set of anonial fators {f1, . . . , fk}),then we de�ne the funtion Word as following:
Word(s, C) = s[1..p1 − 1] s[q1..p2 − 1] . . . s[qk−1..pk − 1] s[qk..|s|].s

f1 f2 . . . fk
f1 f2 . . . fk

f1 f2 . . . fkFig. 1. Words obtained using the ontration operation (see De�nition 5).We are only interested by words obtained by the ontration operation. Sowe will only onsider oherent and minimal sets of ontrations without loss ofgenerality. Note that the word remains the same whatever the order of ontrations(see �gure 1).De�nition 8 We de�ne E(s) =
⋃

C⊆C∗s

Word(s, C), as the losure of s.Example: Consider the word gaccattctc (see �gure 2). Its set of Canonial Fatorsis Fgaccattctc = {a, c, ca, t, tc, ct} and then C∗gaccattctc = {(2, 5), (3, 4), (3, 8), (3, 10),

(6, 7), (6, 9), (7, 9)}. Now, onsider the set C = {(2, 5), (7, 9)} (C ⊆ C∗gaccattctc), then
Word(gaccattctc, C) = gacc///attc//tc = gattc. The losure of gaccattctc is:
E(gaccattctc) =

{

gac, gacatc, gacatctc, gacattc, gacattctc, gaccatc, gaccatctc,
gaccattc, gaccattctc, gactc, gatc, gatctc,gattc, gattctc

}

.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10g a   a t t  t a  t ta tFig. 2. Su�x Orale of gaccattctc. In the Fator Orale, all states are �nal.4



3. Charaterization of the language reognized by OralesGiven a word s ∈ Σ∗, we saw how to build the orresponding Fator (resp. Su�x)Orale. This Orale allows to reognize the fators (resp. su�xes) of s, but it alsoaepts additional words. For example the word atc is aepted by the Fator(resp. Su�x) Orale of gaccattctc (see �gure 2), whereas it is neither a fator nora su�x of this sequene. We will see that the Su�x Orale of s exatly reognizesall su�xes of words from E(s) and we will use this result to prove that the FatorOrale of s exatly reognizes all fators of words from E(s).We use following Lemmas to prove the result onerning Su�x Orales. TheseLemmas have been proved in [4℄.Lemma 3 [4℄ Given a word s ∈ Σ∗ and an integer i (0 ≤ i ≤ |s|), then min(ei) issu�x of all words reognized at state ei in the Orale of s.Lemma 4 [4℄ Given a word s ∈ Σ∗ and a fator w of s, then w is reognized atstate ei (1 ≤ i ≤ poccurs(w)) in the Orale of s.Lemma 5 [4℄ Given a word s ∈ Σ∗ and an integer i (0 ≤ i ≤ |s|), then every pathending by min(ei) in the Orale of s leads to a state ej suh that j ≥ i.Lemma 6 [4℄ Given a word s ∈ Σ∗ and w ∈ Σ∗ a word aepted at state ei (0 ≤

i ≤ |s|) in the Orale of s, then every su�x of w is also reognized by the Orale atstate ej suh that j ≤ i.The proof of Lemma 6 is only given in [4℄ for Fator Orales. We need this resultto be true for Su�x Orales.Proof. The original Lemma gives us that if x is a su�x of w, then State(x) ≤

State(w). We need to prove that if State(w) is �nal, then State(x) is �nal. There-fore, we have to onsider two ases. When |x| ≥ |min(ei)|, we have min(ei) ∈

Suff(x) and thus, aording to Lemma 5, State(x) ≥ State(min(ei)). Sine
State(min(ei)) = ei = State(w), we onlude that State(x) = State(w). Whenwe have |x| < |min(ei)|, sine the state ei is �nal, then there exists a su�x t of
s suh that State(t) = ei. Aording to Lemma 3, we onlude that min(ei) ∈

Suff(t) ⊆ Suff(s). Sine x and min(ei) are su�xes of w, then |x| < |min(ei)| ⇒

x ∈ Suff(min(ei)). So x is also su�x of s and aording to De�nition of the Su�xOrale State(x) is �nal. �We use these previous results to show that the two following Lemmas.Lemma 7 Given a word s ∈ Σ∗, a Canonial Fator f of s = ufv (u, v ∈ Σ∗)suh that f is not repeated in uf and a set C of ontrations (C ∈ C∗s ) suh that
Word(uf, C) = wf , then the Orale of s aepts wf and f at the same state.Proof. We denote by Ci ⊆ C∗s a set of ontrations, whih has ardinality i. Inthe same way, we denote by wif the word obtained when we apply ontrations Cito uf (warning: wif = Word(uf, Ci) ; wi = Word(u, Ci)). By indution on thesize of Ci, we show that State(Word(uf, Ci)) = State(f) for all Ci ∈ C∗s .Let ex = State(f) (f = min(ex) by De�nition of f) and ex′

i
= State(Word(uf, Ci)).If we onsider C0, then Word(uf, C0) = uf . Aording to Lemma 5, x′0 ≥ x.Furthermore, aording to Lemma 4 applied to uf , we have x′0 ≤ poccurs(uf).5



However by De�nition of f , poccurs(f) = |uf | = poccurs(uf). Therefore we have
x′0 ≤ x and x′0 = x.If this lemma is true for a set Ci ⊂ C∗s of ontrations, then it is true for a set Ci+1 =

Ci ∪ {(p, q)}. We assume without loss of generality (see �gure 1) that (p, q) is thelast ontration in Ci+1 (by asending order over positions). Let b be the CanonialFator used by this ontration. We an write uf = s[1..p − 1] s[p..q − 1] s[q..|uf |].Sine (p, q) is hosen as the last ontration, all ontrations in Ci are appliableto s[1..p − 1]. So we de�ne a, c ∈ Σ∗ suh that wif = a s[p..|uf |] = abc and
d ∈ Σ∗ suh that wi+1f = a s[q..|uf |] = abd. Also ab = Word(s[1..p − 1] b, Ci): theopposite would mean that ontration (p, q) an't be operated from b and aordingto the indution hypothesis, State(ab) = State(b). From this, we onlude that
State(abc) = State(bc) and State(abd) = State(bd). We know that bd (= s[q..|uf |])is a su�x of bc (= s[p..|uf |]) and aording to Lemma 6:

State(bd) ≤ State(bc)
⇔ State(abd) ≤ State(abc)
⇔ State(wi+1f) ≤ State(wif)
⇔ State(wi+1f) ≤ State(f)However, aording to Lemma 5, we have State(wi+1f) ≥ State(f) and therefore

State(wi+1f) = State(f). This lemma is then true for all Ci ⊆ C∗s . �ue0
f v

f = min(ei)

wf = Word(uf, C)

ei e|s|Fig. 3. Illustration of Lemma 7.Now, we show how to obtain a ontration, starting with transition of type
ei → ej with j > i + 1 (that we all an external transition in the subsequent).Lemma 8 Given a word s ∈ Σ∗ and an integer i (0 ≤ i < |s|) suh that #out(ei) >

1, let p be a external transition from state ei to state ei+j (j > 1) labeled by αand u = min(ei). Then an ourrene of u α exists at position (i + j − |u|) of s(see �gure 5 � page 8). Moreover, the ontration (i − |u|+ 1, i− |u|+ j) of s by uexists too.Proof. Aording to the onstrution algorithm (see algorithm 1), the transition
p is added from ei to ei+j beause a position j in s[i− |u|+ 1..|s|] is suh that: j =

poccurs[i−|u|+1..|s|](uα) − |u|. We also have uα ∈ Fact(s) beause uα ∈ Fact(s[i −

|u|+1..|s|]). Cleophas & al. [11℄ proved that sine u = min(ei) and uα ∈ Fact(s),then i − |u|+ poccurs[i−|u|+1..|s|](uα) = poccurs(uα). We have i + j = poccurs(uα)and �nally s[i + j − |u|, i + j] = uα. �We use algorithm Contrator (see algorithm 2) to give a haraterization of thelanguage aepted by the Orale of a word s. Given a word s ∈ Σ∗ and its Su�xOrale SO(s), initial inputs of Contrator are a word w aepted by SO(s) and t,the maximal su�x of s beginning with w[1]. This algorithm outputs a set C ∈ C∗sof ontrations suh that w = Word(t, C).6



Algorithm 2: Contrations needed to transform s = t′t (t, t′ ∈ Σ∗) into t′w�1 I n i t i a l i z a t i o n : S0 = t , Sw
0 = w , C0 = ∅ , sdec = |s| − |t| % t i s a s u f f i x o f s %23 Input : Si ∈ Σ∗ % A su f f i x o f s t ha t an s t i l l be " ontrated" %4 Sw

i ∈ Σ∗ % The word to proess %5 Ci % Set of ontrat ions %6 Output : a s e t o f on t ra t i on s78 Begin9 pi ← l onge s t ommon pr e f i x between Si and Sw
i (Claim 1, item 1)10 eqi

← State(pi) (Claim 1, item 2)11 fi ← min(eqi
)12 I f ( |pi| < |S
w
i |) Then13 eri

←Trans i t i on(eqi
, Sw

i [|pi| + 1]) (Claim 1, item 4)14 Ci+1 ← Ci ∪ {ci} , ci = (qi − |fi| + 1, ri − |fi|) (Claim 2, item 2)15 Sw
i+1 ← Sw

i [|pi| − |fi| + 1..|Sw
i |] (Claim 1, item 3)16 Si+1 ← t[ri − |fi| − sdec..|t|] (Claim 1, item 3)17 Return Contrator (Si+1, Sw

i+1, Ci+1)18 Else19 I f ( |Si| > |S
w
i |) Then20 Ci+1 ← Ci ∪ {ci} , ci = (qi − |fi| + 1, |s| − |fi| + 1) (Claim 3)21 Else22 Ci+1 ← Ci (Claim 3)23 End I f24 Return Ci+125 End I f26 End

	�By De�nition 7, given a word s ∈ Σ∗ suh that s = t′t (t, t′ ∈ Σ∗) and a set
C ∈ C∗s,t of ontrations, t′w = Word(s, C) is then a onatenation of substrings of
s. These substrings an be assimilated as pre�xes of su�xes of s. A ontration isthen a �jump� from one substring to the next one. The main idea of this algorithmis to read from left to right the sequenes t and w, in order to ompute the longestommon pre�xes between given su�xes of t and w. After eah stage, the algorithmomputes the length of the �jump� to go to the next su�x of t to onsider.Inputs are words Si, Sw

i (i ≥ 0) and a set Ci of ontrations. We initialize S0 = t,
Sw

0 = w, C0 = ∅ and pi (line 9) as the longest pre�x of Si and Sw
i . So:

Si = piS
′
i and Sw

i = piS
′w
i . (1)Let eqi

= State(pi) and fi = min(eqi
) ((lines 10 and 11), Lemma 3 provides:

pi = p′ifi (p′i ∈ Σ∗). (2)The variable eri
(line 13) is the state reahed by the transition from eqi

andlabeled by α = Sw
i [|pi| + 1] = S′wi [1]. The set Ci+1 has ardinality i + 1. Thevariable sdec = |s| − |t| is neessary to ompute Si+1 (line 15), beause eah state

ei is linked to the ith harater of s, not to the harater (i − |s| + |t|) of t.Claim 1 Following assertions are true for all i ≥ 0 (see �gure 4):1. fiα ∈ Pref(pi+1).2. Si = t[qi − |pi| + 1 − sdec..|t|].3. Si+1 and Sw
i+1 are respetively su�xes of Si and Sw

i ; Si and Sw
i (i ≥ 0) arerespetively su�xes of t and w.4. Transition from eqi

to eri
labeled by α always exists.7



s t
t′i Si

t′i pi S′
i

t′i p′
i fi S′

i

t′i p′
i fi fiα

t′i+1
pi+1 S′

i+1

t′i+1 Si+1ontration
w w′

i Si
w

w′
i

pi S′w
i

w′
i p′

i fi S′w
i

w′
i p′

i fi α

w′
i+1

pi+1 S′w
i+1w w′

i+1 Sw
i+1Fig. 4. Visualization of Contrator on Si and Sw

i .Proof.1. Sine fi = min(eqi
) and aording to Lemma 8, we have s[ri − |fi|..ri] =

t[ri − |fi| − sdec..ri − sdec] = fiα. So Si+1 and Sw
i+1 begin with fiα (line 15).2. For i = 0 (initialization ase), S0 = t and t is the longest su�x of sbeginning by w[1]. If ex = State(S0[1]) (x > 0), then t[x − sdec..|t|] = S0 and

State(p0) = x+ |p0|−1 = eqi
. Thus we onlude that S0 = s[q0−|p0|+1−sdec..|s|].At iteration i, we have Si+1 = t[ri − |fi| − sdec..|t|] (line 16). Sine Sw

i+1 beginsby fiα (item 1), we onlude that qi+1 = ri + |pi+1| − |fi| − 1 and �nally we have
Si+1 = t[ri − |fi| − sdec..|t|] = t[qi+1 − |pi+1| + 1 − sdec..|t|].3. This assertion is true for Sw

i beause Sw
i+1 is su�x of Sw

i by onstrution(line 15) and Sw
0 = w. Conerning Si, we have S0 = t thus the property is true for

i = 0. Suppose that Si is su�x of t, from item 2, we have Si = t[qi−|pi|+1−sdec..|t|].We also have Si+1 = t[ri − |fi| − sdec..|t|] (line 16). So we onlude using Eq. (2)that qi−|pi| = qi −|p′i|− |fi|. Sine |p′i| ≥ 0, we have qi−|fi| ≥ qi−|pi| and ri > qi.Finally, we onlude that ri − |fi| > qi − |pi| and that Si+1 is a su�x of Si.4. Aording to item 3, Sw
i is su�x of w. Then Sw

i is aepted by O(s)(Lemma 6). Using Eq. (1) with S′wi [1] = α the transition must exist and implies
#out(eqi

) ≥ 2. So fi = min(eqi
) ∈ Fs by De�nition of Canonial Fators. �From Eq. (1) and Claim 1 (item 4):

{

t = t′iSi (t′i ∈ Σ∗)
w = w′iS

w
i = w′ip

′
iS

w
i+1 (w′i ∈ Σ∗).

(3)
t′i

w′
ipi

e0
pi fi α

α

eqi
eri

e|s|

Si

Si+1

Fig. 5. Illustration of a step in the algorithm Contrator (α = Sw
i [|pi| + 1]).Claim 2 For all i ≥ 0 (see �gure 5):1. State(w′ipi) = State(t′ipi) = State(pi) = eqi

.2. ci is a ontration of t′iSi (resp. w′iSi) provided by fi. Result of this on-tration is t′ip
′
iSi+1 (resp. w′ip

′
iSi+1 = w′i+1Si+1).8



Proof.1. For i = 0, t′i = w′i = ǫ. Let us suppose that the property is true for i andtherefore for i+1. From Claim 1 (item 2), we onlude that Si labeled a path usingonly �main� transitions (i.e. transitions of type ej → ej+1) from eqi−|pi| to e|s| in
O(s). Aording to Claim 1 (item 3) we onlude that:

Si = uSi+1 (u ∈ Σ∗). (4)So, the state ex (x > qi − |pi|) is suh that Si+1 labeled a path using only �main�transitions from ex to e|s| in O(s) and more preisely x = ri − |fi| − 1. We have
t′i+1 = t′iu (Eq. (3) and (4)) and State(t′iu) = ex. Sine fi = min(eqi

) and thereis a transition from eqi
to eri

labeled by α (Claim 1, item 4), State(t′i+1fiα) =

State(t′iufiα) = State(fiα) = eri
and furthermore, pi+1 = fiαv (v ∈ Σ∗). So wehave State(t′i+1fiαv) = State(t′i+1pi+1) = State(pi+1).2. From Eq. (1), (2) and (3), we onlude that:

t = t′iSi = t′ip
′
ifiS

′
i. (5)Sine Si+1 ∈ Suff(Si), we have Si = uSi+1 (u ∈ Σ+) and from Eq. (5), t′ip

′
ifiS

′
i =

t′iuSi+1. Aording to Claim 1 (item 1), we have t′ip
′
ifiS

′
i = t′iufiαu′ (u′ ∈ Σ∗).Sine we have State(t′ip

′
ifi) = State(fi) and |u| > |p′i| (beause S′i[1] 6= α), we anontrat t′iSi by fi and t′ip
′
ifiαu′ = t′ip

′
iSi+1. We an onlude that w′iSi = w′ipiS

′
iis ontrated by fi in w′ip

′
iSi+1 beause State(w′ipi) = State(t′ipi). Aording toEq. (3), we onlude that w′i+1 = w′ip

′
i and w′ip

′
iSi+1 = w′i+1Si+1. �Claim 2 shows that a ontration ci of t′iSi by fi is also a ontration for t andfor w′iSi. Consider the ith iteration, we have |Sw

i | > |Sw
i+1| or |Sw

i | = |Sw
i+1| and

|pi+1| > |pi| (if fi = pi). Sine pi > 0, we ensure that reursion stops at iteration
j > i with pj = Sw

j (j > i).Claim 3 Given an integer i ≥ 0 suh that pi = Sw
i , then t needs a last ontrationif and only if |Sw

i | 6= |Si|.Proof. The word obtained with the set Ci of ontrations is w′ipiS
′
i (Claim 2,item 2). If Sw

i = Si, then we have S′i = ǫ and we onlude that Ci is omplete(line 20). If Sw
i 6= Si, aording to Claim 2 (item 1), we have State(w′ipi) = eqi

. ByDe�nition of the �nal state in a Su�x Orale, min(eqi
) ∈ Suff(w) (Lemma 3) and

min(eqi
) ∈ Suff(t). A last ontration is needed to omplete the set of ontrations(line 22). �Considering the ith all of Contrator, inputs are Si = piS

′
i, Sw

i = piS
′w
i and

Ci. This set is the set of ontrations neessary to transform t′i ∈ Pref(t) into
w′i ∈ Pref(w). The variable pi refers to the longest ommon pre�x of Si and Sw

i(pi is both a fator of t and w, Claim 1). Two ases may our for this all (line 12.When |pi| = |Sw
i |, the reursion ends. Otherwise, |pi| 6= |Sw

i | and at least anotherontration is neessary until |pj | = |Sw
j | (j > i). From Claim 2, the ith ontrationallows to ontinue with the su�x Si+1. At the end of the proess (i.e. the end of

w), we return the set C = Cj and Lemma 9 ensures that w = Word(t, C).9



Lemma 9 Given a word s ∈ Σ∗, its Su�x Orale, a word w ∈ Σ∗ aepted by
SO(s) and the longest su�x t of s suh that w[1] = t[1], then Contrator(t, w, ∅)outputs a set C, whih is suh that w = Word(t, C).Proof. Let i ≥ 0 suh that Sw

i+1 = pi+1. Aording to Claim 2, we onludethat Ci+1 is a oherent set of ontrations of t. Sine pi+1 is pre�x of Si+1 we have:
Word(t, Ci+1) = w′i+1Si+1 = w′i+1S

w
i+1u = w′i+1pi+1u (u ∈ Σ∗)If u = ǫ, we have Word(t, Ci+1) = w (Eq. (3)). Else (Claim 3) a ultimate ontration

ci+1 by fi+1 transforms w′i+1S
w
i+1u into w′i+1S

w
i+1 = w = Word(t, Ci+1 ∪ {ci+1}).Finally Contrator provides a set C suh that w = Word(t, C). �We an notie that:1. C is not always minimal.2. C is oherent. Let (a, b) and (c, d) be two ontrations suessively added to

C. We have a < b and c < d beause ri > qi and |s| > qi (lines 14 and 20). If
eqi+1 = State(pi+1) = eri

, then b = c, else pi+1 = fiαv (α = Sw
[ |pi|+1], v 6= ǫ)and eqi+1 > eri

, therefore b < c.Following theorems are the main purpose of this paper:Theorem 1 Exatly all su�xes of words from E(s) are reognized by the Su�xOrale of s .Proof.`⇒': Eah su�x of words from E(s) is reognized by the Su�x Orale of s.Aording to Lemma 6, if w is aepted by SO(s), eah su�x of w is also aeptedby SO(s). So we only need to prove that eah word from E(s) is aepted by SO(s).Let C ∈ C∗s be a set of ontrations appliable to s and w = Word(s, C). The set
Ci is the set of the �rst i ontrations of C (hosen without loss of generality byasending order over positions � see �gure 1), (xj , yj) is the jth ontration, whihuse the Canonial Fator fj (1 ≤ j ≤ i) and wj = Word(s, Cj). The property (P )to prove is that if wi (0 ≤ i < |C|) is aepted by SO(s), then wi+1 is aepted too.We have:

{

wi = s[1..x1 − 1] s[y1..x2 − 1] . . . s[yi..|s|]
s[yi..yi + |fi| − 1] = fiBy De�nition of the Canonial Fators, fi+1 does not our in s before position

xi+1 (xi+1 > yi). We have wi = v′fi+1u and wi+1 = v′fi+1u
′ with v′ = s[1..x1 −

1]s[y1..x2 − 1] . . . s[yi..xi+1 − 1] and fi+1u = u′′fi+1u
′ (u′′ ∈ Σ+).Considering the ontration (xi+1, yi+1), we have |s| − |fi+1u| + 1 = xi+1 and

|s|−|fi+1u
′|+1 = yi+1 (beause the ontrations are in asending order). The word

s is then not yet modi�ed after positions xi+1, so fi+1u and fi+1u
′ are su�xes of

s. Consider the state q = State(fi+1) of SO(s), aording to Lemma 7:
State(v′fi+1) = q. (6)The su�x fi+1u

′ of s is neessarily reognized by SO(s). So the path aeptingthis su�x in SO(s) go through the state q. Starting from q, we an read u′ and10



reah a �nal state and therefore, aording to Eq. (6), SO(s) also aepts the word
wi+1 = v′fi+1u

′. Finally, the property (P ) is true for all i (0 ≤ i < |C|) and sine
w0 = s, we an prove by indution on i that the Su�x Orale of s reognizes allwords wi (0 ≤ i ≤ |C|). Lemma 6 allows to onlude that eah su�x of words from
E(s) is reognized by SO(s).`⇐': Eah word reognized by the Su�x Orale of s is su�x of a word from E(s).Let w be a word aepted by the Su�x Orale of s and t be the longest su�xof s = t′t (t, t′ ∈ Σ∗) beginning with w[1]. Then a set C of ontrations suhthat t′w = Word(t′t, C) exists (Lemma 9). Sine the word w is su�x of t′w and
t′w ∈ E(s), eah word aepted by SO(s) is a su�x of a word from E(s). �On the basis of Theorem 1 we give a similar result, whih is available for FatorOrales instead of Su�x Orales.Theorem 2 Exatly all fators of words from E(s) are reognized by the FatorOrale of s .Proof.`⇒': Eah fator of words from E(s) is reognized by the Fator Orale of s.Let SO(s) be the Su�x Orale of s, u ∈ E(s) and m a fator (i.e. a pre�x of asu�x) of u = mv (v ∈ Σ∗). Then mv is aepted by SO(s) (Theorem 1). Thus, apath (e0 → ex1 → . . . → ex|mv|

) exists in SO(s), whih reognizes mv. Therefore,we onlude that m labeled a path (e0 → ex1 → . . . → ex|m|
) (with ex|m|

�nal).`⇐': Eah word reognized by the Fator Orale of s is fator of a word from E(s).Let SO(s) be the Su�x Orale of s and m a word aepted by FO(s). If SO(s)reognizes m then m is a su�x of a word from E(s) (Theorem 1). Suppose that
SO(s) does not reognize m. Then FO(s) reognizes m at state ex|m|

(not �nal in
SO(s)). Furthermore, the path (e0 → e1 → . . . → e|s|) exists in O(s) and e|s| is�nal in SO(s). We onlude that a path from ex|m|

to e|s| exists in SO(s). Then,the word m is pre�x of a word reognized by SO(s) and therefore m is pre�x of asu�x of some u ∈ E(s). Thus, m is a fator of a word of E(s). �4. Properties upon Orales & Future WorksAording to Cleophas & al. [11℄, the Orale is not minimal in number oftransitions among the set of homogeneous automata. Furthermore, if we onsiderthe set of homogeneous automata, whih reognize at least all fators (resp. suf-�xes) of s and whih have the same number of states and at most the same numberof transitions than the Fator (resp. Su�x) Orale, we show that the Orale isnot minimal on the number of aepted words. The Orale of axttyabcdeatzattwu(see �gure 6) has 35 transitions, the Fator Orale aepts 247 words and the Su�xOrale aepts 39 words. Though another homogeneous automaton (see �gure 7),whih reognizes at least all fators (resp. su�xes) of axttyabcdeatzattwu and whihhas only 34 transitions exists. The �Fator� version of this automaton reognizesonly 236 words and its �Su�x� version aepts only 30 words. Moreover, we pro-vide an example whih has both less transitions, and less aepted words than theorresponding Orale. 11



e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18a x t y b  d e z w ux b tt t y z wy wa b  d e a t z ta t t w uFig. 6. Fator Orale of the word axttyabcdeatzattwu.
e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18a x t y b  d e z w ux bt t t y z wy wa b  d e a t z a t t w uFig. 7. This automaton (onsidering only the ontinuous lines) aepts allfators of the word axttyabcdeatzattwu. The bold transition (from e1 to e3) isthe only one, whih is not present in the Fator Orale of this word (see �gure 6)though the two dotted ones (from e1 to e12 and from e12 to e16) are presentin the Fator Orale, but not in this automaton.In some ases, we observe that the number of words aepted by Orales doesnot allow on�dene to this struture when it is used to detet fators or suf-�xes of words. Even if the number of false positive an sometimes be equal to 0(e.g. aaaaaa . . .), it an also be exponential. Indeed, we an build a word s suh thateah subset of C∗s is oherent and minimal. For example: s = aabbccddee . . ., the set

C∗s of ontrations, whih are available on suh a word, is {(1, 2), (3, 4), . . . , (|s| −

1, |s|)}. If we onsider any non-empty subset C ⊆ (C∗s \ {(1, 2)}) of ontrations, itis easy to notie that Word(s, C) /∈ Fact(s). Besides, all words obtained from suhsubsets are pairwise di�erent.Number of subsets is:|C∗s |−1
∑

i=1

(

|C∗s | − 1

i

)

=

|s|
2 −1
∑

i=1

( |s|
2 − 1

i

)

= 2
|s|
2 −1 − 1. Then,the number of words, whih are aepted by the Orales and are not fator/su�xof s, is O(

2|s|
).To better use this struture, we need to improve or to slightly modify it. How-ever, better knowledge about the Orale struture would be useful for future works.Indeed, it ould be interesting to have an empirial or a statistial estimation of theauray of the Orale (time and quality of the results), when it is substituted toTries or Su�x Trees in algorithms.5. AknowledgmentsWe would like to thank Céline Barré to have improved the English writingof this artile. We also thank Irena Rusu for its useful omments and to haveimproved earlier versions of this artile. 12
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