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ated by Editor's nameABSTRACTSequen
e Analysis requires to elaborate data stru
tures, whi
h allow both an e�-
ient storage and use. A new one was introdu
ed in 1999 by Cyril Allauzen, MaximeCro
hemore and Mathieu Raffinot. This stru
ture is linear on the size of the repre-sented word both in time and spa
e. It has the smallest number of states and it a

eptsat least all substrings of the represented word. This stru
ture is 
alled Fa
tor Ora
le.Authors developed another stru
ture on the basis of Fa
tor Ora
le, whi
h has the sameproperties ex
ept it a

epts at least all su�xes instead of all fa
tors of the representedword. This stru
ture is then 
alled Su�x Ora
le. The 
hara
terization of the languagere
ognized by the Fa
tor/Su�x Ora
le of a given word is an open problem, for whi
hwe provide a solution. Using this result, we show that these stru
tures may a

ept anexponential number of words, whi
h are not fa
tors/su�xes of the given word.Keywords: Fa
tor Ora
le, Su�x Ora
le, automata, language, 
hara
terization.1. Introdu
tionSeveral stru
tures have been developed in text indexation: we 
an 
ite Tries [1℄,Su�x Automata [1, 2℄, Su�x Trees [1, 3℄. . . Their obje
tive is to represent a text ora word s (i.e. a su

ession of symbols taken in an arbitrary alphabet denoted by Σ),in order to �qui
kly� determine whether this word 
ontains some spe
i�
 sub-word.This sub-word is then 
alled a fa
tor of s.Allauzen & al. [4, 5, 6℄ des
ribed a method allowing to build an a
y
li
automaton, whi
h a

epts at least all fa
tors of s, whi
h have as few states aspossible (|s|+ 1) and whi
h is linear in the number of transitions (2 |s| − 1). Whenea
h state is �nal in this automaton, the stru
ture is 
alled a Fa
tor Ora
le. Bykeeping only �parti
ular� states as �nal, this automaton be
omes a Su�x Ora
le.1



Several advantages have been des
ribed for this stru
ture. The 
onstru
tionalgorithm is easy to understand and implement; su
h advantage doesn't exist inthe most e�
ient algorithm to build Su�x Trees [3℄. Ora
les are homogeneousautomata, i.e. all transitions ingoing to a same state are labeled with a same symbol.Thus, it is not ne
essary to label edges anymore. Therefore this stru
ture requiresless memory than Su�x Trees or Tries. Lefebvre & al. [7, 8, 9℄ used it forrepeated motifs dis
overy over large genomi
 data and obtained in a few se
ondssimilar results to the ones obtained by using thousands of blastn requests. Authorsalso used the Fa
tor Ora
le for text 
ompression [10℄.However, at least two open questions are linked to these Ora
les: the �rst oneis about the 
hara
terization of the language re
ognized by Ora
les; and the se
ondquestion 
on
erns the existen
e of a linear algorithm in time and spa
e to build anautomaton, whi
h a

epts all fa
tors/su�xes of a word s and whi
h is minimal innumber of transitions.When using these Ora
les, the main di�
ulty is to distinguish true and falsepositives. Therefore we will provide in the next se
tion several de�nitions relatedto the 
onstru
tion of Ora
les. We will 
hara
terize the language re
ognized by thisstru
ture in se
tion 3. Finally, some results using Ora
les will also be des
ribed.2. De�nitionsIn the following se
tions, we 
all Fact(s) (resp. Suff(s) and Pref(s)) the setof fa
tors (resp. su�xes and pre�xes) of s ∈ Σ+. We 
all Prefs(i) the pre�x of s,whi
h has length i ≥ 0. Given x ∈ Fact(s), Nbs(x) is the number of o

urren
es of
x in s and x is repeated if and only if Nbs(x) ≥ 2.De�nition 1 Given a word s ∈ Σ+ and x a fa
tor of s, we de�ne the fun
tion Posas the position of the �rst o

urren
e of x in s = uxv (u, v ∈ Σ∗): Poss(x) = |u|+1.We also de�ne the fun
tion poccur su
h that poccurs(x) = |ux| = Poss(x)+ |x|−1.2.1. Ora
lesThe Ora
le 
onstru
tion is de�ned by the algorithm of Allauzen & al. [4℄(see algorithm 1). Authors gave another algorithm to build the same automaton inlinear time on the size of s. However, sin
e we are only interested in properties ofthe Ora
le, we do not report it in this paper.De�nition 2 [4℄ Given a word s ∈ Σ∗, we de�ne the Fa
tor Ora
le of s as theautomaton obtained by the algorithm 1, where all states are �nal. It is denoted by
FO(s). We de�ne the Su�x Ora
le of s as the automaton obtained by the samealgorithm, where a state ei (0 ≤ i ≤ |s|) is �nal if and only if there exists a pathlabeled by a su�x of s from the initial state to the state ei. It is denoted by SO(s).We use the term Ora
le to equally designate the Fa
tor or the Su�x Ora
le ofa word s and we denote it by O(s). We de�ne a relation of order between states inthese Ora
les. Indeed, if we have two states ei and ej su
h that i ≤ j, then ei ≤ ej .aAs mentioned in [11℄, the term −|u| (line 17) is unfortunately missing in the original algorithm.2



Algorithm 1: Constru
tion of the Fa
tor Ora
le of a worda�1 Input : Σ % Alphabet ( supposed minimal ) %2 s ∈ Σ∗ % The word to pro
ess %3 Output : Oracle % Fa
tor Ora
le o f s %45 Begin6 Create the i n i t i a l s t a t e l abe l ed by e078 For i from 1 to |s| Do9 Create a s t a t e l abe l ed by ei10 Build a t r a n s i t i o n from the s t a t e ei−1 to the s t a t e ei l abe l ed by s[i]11 End For1213 For i from 0 to |s| − 1 Do14 Let u be a word o f minimal length r e 
ogn i z ed at s t a t e ei15 For All α ∈ Σ \ {s[i + 1]} Do16 I f uα ∈ Fact(s[i− |u| + 1..|s|]) Then17 j ← poccurs[i−|u|+1..|s|](uα) − |u|18 Build a t r an s i t i o n from the s t a t e ei to ei+j l abe l ed by α19 End I f20 End For All21 End For22 End
	�De�nition 3 Given a word s ∈ Σ∗ and a word x a

epted at the state ei (0 ≤ i ≤

|s|) in the Ora
le of s, we de�ne the fun
tion State as State(x) = ei.Lemma 1 [4℄ Given a word s ∈ Σ∗, a unique word with minimal length is a

eptedat ea
h state ei (0 ≤ i ≤ |s|) in the Ora
le of s. It is denoted by min(ei).Lemma 2 [4℄ Given a word s ∈ Σ∗, its Ora
le and an integer i (0 ≤ i ≤ |s|), then
min(ei) ∈ Fact(s) and i = poccurs(min(ei)).Notation 1 Given a word s ∈ Σ∗, let #in(ei) and #out(ei) denote the number ofingoing/outgoing transitions to/from state ei (0 ≤ i ≤ |s|) in the Ora
le of s.2.2. Canoni
al Fa
tors & Contra
tion OperationIn this se
tion, we will de�ne parti
ular fa
tors from a given word and an op-eration needed to 
hara
terize the language. Then we will de�ne the sets of wordsobtained with this operation.De�nition 4 Given a word s ∈ Σ∗ and its Ora
le, we de�ne the set of Canoni
alFa
tors of s as Fs = {min(ei) | 1 ≤ i ≤ |s| ∧ (#out(ei) > 1 ∨ #in(ei) > 1)}. Givena su�x t of s and a Canoni
al Fa
tor f of s, f is a 
onserved Canoni
al Fa
tor of sin t if the �rst o

urren
e of f in s appears in t. The set of the 
onserved Canoni
alFa
tors of s in t is denoted by Fs,t (thus Fs,t ⊆ Fs).De�nition 5 Given a word s ∈ Σ∗ and a repeated Canoni
al Fa
tor f of s su
hthat:







s = ufv (u, v ∈ Σ∗)
fv = wfx (w ∈ Σ+, x ∈ Σ∗)
Poss(f) = |u| + 1then the pair (|u| + 1, |uw| + 1) is a 
ontra
tion of s by f .3



Notation 2 Given a word s ∈ Σ∗ and a Canoni
al Fa
tor f ∈ Fs, Cf
s is the set of
ontra
tions of s by f and C∗s (≡

⋃

f∈Fs

Cf
s ) is the set of all the 
ontra
tions we 
anapply to s. Given a su�x t of s = t′t (t, t′ ∈ Σ∗), then C∗s,t is the subset of C∗s su
hthat C∗s,t = {(p, q) | (p, q) ∈ C∗s ∧ p > |t′|}.In the following, we will use sets of 
ontra
tions to produ
e new words from agiven one. Then we will use these words to 
hara
terize the language re
ognized byOra
les.De�nition 6 A set C of 
ontra
tions is 
oherent if and only if it does not 
ontaintwo 
ontra
tions (i1, j1), (i2, j2) su
h that: i1 < i2 < j1 < j2. Furthermore, C isminimal if and only if it does not 
ontain two 
ontra
tions (i1, j1) and (i2, j2) su
hthat i1 ≤ i2 < j2 ≤ j1 or su
h that i1 < j1 = i2 < j2.De�nition 7 Given a word s ∈ Σ∗ and a 
oherent and minimal set of 
ontra
tions

C = {(p1, q1), . . . , (pk, qk)} (asso
iated to the set of 
anoni
al fa
tors {f1, . . . , fk}),then we de�ne the fun
tion Word as following:
Word(s, C) = s[1..p1 − 1] s[q1..p2 − 1] . . . s[qk−1..pk − 1] s[qk..|s|].s

f1 f2 . . . fk
f1 f2 . . . fk

f1 f2 . . . fkFig. 1. Words obtained using the 
ontra
tion operation (see De�nition 5).We are only interested by words obtained by the 
ontra
tion operation. Sowe will only 
onsider 
oherent and minimal sets of 
ontra
tions without loss ofgenerality. Note that the word remains the same whatever the order of 
ontra
tions(see �gure 1).De�nition 8 We de�ne E(s) =
⋃

C⊆C∗s

Word(s, C), as the 
losure of s.Example: Consider the word gaccattctc (see �gure 2). Its set of Canoni
al Fa
torsis Fgaccattctc = {a, c, ca, t, tc, ct} and then C∗gaccattctc = {(2, 5), (3, 4), (3, 8), (3, 10),

(6, 7), (6, 9), (7, 9)}. Now, 
onsider the set C = {(2, 5), (7, 9)} (C ⊆ C∗gaccattctc), then
Word(gaccattctc, C) = gacc///attc//tc = gattc. The 
losure of gaccattctc is:
E(gaccattctc) =

{

gac, gacatc, gacatctc, gacattc, gacattctc, gaccatc, gaccatctc,
gaccattc, gaccattctc, gactc, gatc, gatctc,gattc, gattctc

}

.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10g a 
 
 a t t 
 t 
a 
 t ta 
tFig. 2. Su�x Ora
le of gaccattctc. In the Fa
tor Ora
le, all states are �nal.4



3. Chara
terization of the language re
ognized by Ora
lesGiven a word s ∈ Σ∗, we saw how to build the 
orresponding Fa
tor (resp. Su�x)Ora
le. This Ora
le allows to re
ognize the fa
tors (resp. su�xes) of s, but it alsoa

epts additional words. For example the word atc is a

epted by the Fa
tor(resp. Su�x) Ora
le of gaccattctc (see �gure 2), whereas it is neither a fa
tor nora su�x of this sequen
e. We will see that the Su�x Ora
le of s exa
tly re
ognizesall su�xes of words from E(s) and we will use this result to prove that the Fa
torOra
le of s exa
tly re
ognizes all fa
tors of words from E(s).We use following Lemmas to prove the result 
on
erning Su�x Ora
les. TheseLemmas have been proved in [4℄.Lemma 3 [4℄ Given a word s ∈ Σ∗ and an integer i (0 ≤ i ≤ |s|), then min(ei) issu�x of all words re
ognized at state ei in the Ora
le of s.Lemma 4 [4℄ Given a word s ∈ Σ∗ and a fa
tor w of s, then w is re
ognized atstate ei (1 ≤ i ≤ poccurs(w)) in the Ora
le of s.Lemma 5 [4℄ Given a word s ∈ Σ∗ and an integer i (0 ≤ i ≤ |s|), then every pathending by min(ei) in the Ora
le of s leads to a state ej su
h that j ≥ i.Lemma 6 [4℄ Given a word s ∈ Σ∗ and w ∈ Σ∗ a word a

epted at state ei (0 ≤

i ≤ |s|) in the Ora
le of s, then every su�x of w is also re
ognized by the Ora
le atstate ej su
h that j ≤ i.The proof of Lemma 6 is only given in [4℄ for Fa
tor Ora
les. We need this resultto be true for Su�x Ora
les.Proof. The original Lemma gives us that if x is a su�x of w, then State(x) ≤

State(w). We need to prove that if State(w) is �nal, then State(x) is �nal. There-fore, we have to 
onsider two 
ases. When |x| ≥ |min(ei)|, we have min(ei) ∈

Suff(x) and thus, a

ording to Lemma 5, State(x) ≥ State(min(ei)). Sin
e
State(min(ei)) = ei = State(w), we 
on
lude that State(x) = State(w). Whenwe have |x| < |min(ei)|, sin
e the state ei is �nal, then there exists a su�x t of
s su
h that State(t) = ei. A

ording to Lemma 3, we 
on
lude that min(ei) ∈

Suff(t) ⊆ Suff(s). Sin
e x and min(ei) are su�xes of w, then |x| < |min(ei)| ⇒

x ∈ Suff(min(ei)). So x is also su�x of s and a

ording to De�nition of the Su�xOra
le State(x) is �nal. �We use these previous results to show that the two following Lemmas.Lemma 7 Given a word s ∈ Σ∗, a Canoni
al Fa
tor f of s = ufv (u, v ∈ Σ∗)su
h that f is not repeated in uf and a set C of 
ontra
tions (C ∈ C∗s ) su
h that
Word(uf, C) = wf , then the Ora
le of s a

epts wf and f at the same state.Proof. We denote by Ci ⊆ C∗s a set of 
ontra
tions, whi
h has 
ardinality i. Inthe same way, we denote by wif the word obtained when we apply 
ontra
tions Cito uf (warning: wif = Word(uf, Ci) ; wi = Word(u, Ci)). By indu
tion on thesize of Ci, we show that State(Word(uf, Ci)) = State(f) for all Ci ∈ C∗s .Let ex = State(f) (f = min(ex) by De�nition of f) and ex′

i
= State(Word(uf, Ci)).If we 
onsider C0, then Word(uf, C0) = uf . A

ording to Lemma 5, x′0 ≥ x.Furthermore, a

ording to Lemma 4 applied to uf , we have x′0 ≤ poccurs(uf).5



However by De�nition of f , poccurs(f) = |uf | = poccurs(uf). Therefore we have
x′0 ≤ x and x′0 = x.If this lemma is true for a set Ci ⊂ C∗s of 
ontra
tions, then it is true for a set Ci+1 =

Ci ∪ {(p, q)}. We assume without loss of generality (see �gure 1) that (p, q) is thelast 
ontra
tion in Ci+1 (by as
ending order over positions). Let b be the Canoni
alFa
tor used by this 
ontra
tion. We 
an write uf = s[1..p − 1] s[p..q − 1] s[q..|uf |].Sin
e (p, q) is 
hosen as the last 
ontra
tion, all 
ontra
tions in Ci are appli
ableto s[1..p − 1]. So we de�ne a, c ∈ Σ∗ su
h that wif = a s[p..|uf |] = abc and
d ∈ Σ∗ su
h that wi+1f = a s[q..|uf |] = abd. Also ab = Word(s[1..p − 1] b, Ci): theopposite would mean that 
ontra
tion (p, q) 
an't be operated from b and a

ordingto the indu
tion hypothesis, State(ab) = State(b). From this, we 
on
lude that
State(abc) = State(bc) and State(abd) = State(bd). We know that bd (= s[q..|uf |])is a su�x of bc (= s[p..|uf |]) and a

ording to Lemma 6:

State(bd) ≤ State(bc)
⇔ State(abd) ≤ State(abc)
⇔ State(wi+1f) ≤ State(wif)
⇔ State(wi+1f) ≤ State(f)However, a

ording to Lemma 5, we have State(wi+1f) ≥ State(f) and therefore

State(wi+1f) = State(f). This lemma is then true for all Ci ⊆ C∗s . �ue0
f v

f = min(ei)

wf = Word(uf, C)

ei e|s|Fig. 3. Illustration of Lemma 7.Now, we show how to obtain a 
ontra
tion, starting with transition of type
ei → ej with j > i + 1 (that we 
all an external transition in the subsequent).Lemma 8 Given a word s ∈ Σ∗ and an integer i (0 ≤ i < |s|) su
h that #out(ei) >

1, let p be a external transition from state ei to state ei+j (j > 1) labeled by αand u = min(ei). Then an o

urren
e of u α exists at position (i + j − |u|) of s(see �gure 5 � page 8). Moreover, the 
ontra
tion (i − |u|+ 1, i− |u|+ j) of s by uexists too.Proof. A

ording to the 
onstru
tion algorithm (see algorithm 1), the transition
p is added from ei to ei+j be
ause a position j in s[i− |u|+ 1..|s|] is su
h that: j =

poccurs[i−|u|+1..|s|](uα) − |u|. We also have uα ∈ Fact(s) be
ause uα ∈ Fact(s[i −

|u|+1..|s|]). Cleophas & al. [11℄ proved that sin
e u = min(ei) and uα ∈ Fact(s),then i − |u|+ poccurs[i−|u|+1..|s|](uα) = poccurs(uα). We have i + j = poccurs(uα)and �nally s[i + j − |u|, i + j] = uα. �We use algorithm Contra
tor (see algorithm 2) to give a 
hara
terization of thelanguage a

epted by the Ora
le of a word s. Given a word s ∈ Σ∗ and its Su�xOra
le SO(s), initial inputs of Contra
tor are a word w a

epted by SO(s) and t,the maximal su�x of s beginning with w[1]. This algorithm outputs a set C ∈ C∗sof 
ontra
tions su
h that w = Word(t, C).6



Algorithm 2: Contra
tions needed to transform s = t′t (t, t′ ∈ Σ∗) into t′w�1 I n i t i a l i z a t i o n : S0 = t , Sw
0 = w , C0 = ∅ , sdec = |s| − |t| % t i s a s u f f i x o f s %23 Input : Si ∈ Σ∗ % A su f f i x o f s t ha t 
an s t i l l be " 
ontra
ted" %4 Sw

i ∈ Σ∗ % The word to pro
ess %5 Ci % Set of 
ontra
t ions %6 Output : a s e t o f 
on t ra
 t i on s78 Begin9 pi ← l onge s t 
ommon pr e f i x between Si and Sw
i (Claim 1, item 1)10 eqi

← State(pi) (Claim 1, item 2)11 fi ← min(eqi
)12 I f ( |pi| < |S
w
i |) Then13 eri

←Trans i t i on(eqi
, Sw

i [|pi| + 1]) (Claim 1, item 4)14 Ci+1 ← Ci ∪ {ci} , ci = (qi − |fi| + 1, ri − |fi|) (Claim 2, item 2)15 Sw
i+1 ← Sw

i [|pi| − |fi| + 1..|Sw
i |] (Claim 1, item 3)16 Si+1 ← t[ri − |fi| − sdec..|t|] (Claim 1, item 3)17 Return Contra
tor (Si+1, Sw

i+1, Ci+1)18 Else19 I f ( |Si| > |S
w
i |) Then20 Ci+1 ← Ci ∪ {ci} , ci = (qi − |fi| + 1, |s| − |fi| + 1) (Claim 3)21 Else22 Ci+1 ← Ci (Claim 3)23 End I f24 Return Ci+125 End I f26 End

	�By De�nition 7, given a word s ∈ Σ∗ su
h that s = t′t (t, t′ ∈ Σ∗) and a set
C ∈ C∗s,t of 
ontra
tions, t′w = Word(s, C) is then a 
on
atenation of substrings of
s. These substrings 
an be assimilated as pre�xes of su�xes of s. A 
ontra
tion isthen a �jump� from one substring to the next one. The main idea of this algorithmis to read from left to right the sequen
es t and w, in order to 
ompute the longest
ommon pre�xes between given su�xes of t and w. After ea
h stage, the algorithm
omputes the length of the �jump� to go to the next su�x of t to 
onsider.Inputs are words Si, Sw

i (i ≥ 0) and a set Ci of 
ontra
tions. We initialize S0 = t,
Sw

0 = w, C0 = ∅ and pi (line 9) as the longest pre�x of Si and Sw
i . So:

Si = piS
′
i and Sw

i = piS
′w
i . (1)Let eqi

= State(pi) and fi = min(eqi
) ((lines 10 and 11), Lemma 3 provides:

pi = p′ifi (p′i ∈ Σ∗). (2)The variable eri
(line 13) is the state rea
hed by the transition from eqi

andlabeled by α = Sw
i [|pi| + 1] = S′wi [1]. The set Ci+1 has 
ardinality i + 1. Thevariable sdec = |s| − |t| is ne
essary to 
ompute Si+1 (line 15), be
ause ea
h state

ei is linked to the ith 
hara
ter of s, not to the 
hara
ter (i − |s| + |t|) of t.Claim 1 Following assertions are true for all i ≥ 0 (see �gure 4):1. fiα ∈ Pref(pi+1).2. Si = t[qi − |pi| + 1 − sdec..|t|].3. Si+1 and Sw
i+1 are respe
tively su�xes of Si and Sw

i ; Si and Sw
i (i ≥ 0) arerespe
tively su�xes of t and w.4. Transition from eqi

to eri
labeled by α always exists.7



s t
t′i Si

t′i pi S′
i

t′i p′
i fi S′

i

t′i p′
i fi fiα

t′i+1
pi+1 S′

i+1

t′i+1 Si+1
ontra
tion
w w′

i Si
w

w′
i

pi S′w
i

w′
i p′

i fi S′w
i

w′
i p′

i fi α

w′
i+1

pi+1 S′w
i+1w w′

i+1 Sw
i+1Fig. 4. Visualization of Contra
tor on Si and Sw

i .Proof.1. Sin
e fi = min(eqi
) and a

ording to Lemma 8, we have s[ri − |fi|..ri] =

t[ri − |fi| − sdec..ri − sdec] = fiα. So Si+1 and Sw
i+1 begin with fiα (line 15).2. For i = 0 (initialization 
ase), S0 = t and t is the longest su�x of sbeginning by w[1]. If ex = State(S0[1]) (x > 0), then t[x − sdec..|t|] = S0 and

State(p0) = x+ |p0|−1 = eqi
. Thus we 
on
lude that S0 = s[q0−|p0|+1−sdec..|s|].At iteration i, we have Si+1 = t[ri − |fi| − sdec..|t|] (line 16). Sin
e Sw

i+1 beginsby fiα (item 1), we 
on
lude that qi+1 = ri + |pi+1| − |fi| − 1 and �nally we have
Si+1 = t[ri − |fi| − sdec..|t|] = t[qi+1 − |pi+1| + 1 − sdec..|t|].3. This assertion is true for Sw

i be
ause Sw
i+1 is su�x of Sw

i by 
onstru
tion(line 15) and Sw
0 = w. Con
erning Si, we have S0 = t thus the property is true for

i = 0. Suppose that Si is su�x of t, from item 2, we have Si = t[qi−|pi|+1−sdec..|t|].We also have Si+1 = t[ri − |fi| − sdec..|t|] (line 16). So we 
on
lude using Eq. (2)that qi−|pi| = qi −|p′i|− |fi|. Sin
e |p′i| ≥ 0, we have qi−|fi| ≥ qi−|pi| and ri > qi.Finally, we 
on
lude that ri − |fi| > qi − |pi| and that Si+1 is a su�x of Si.4. A

ording to item 3, Sw
i is su�x of w. Then Sw

i is a

epted by O(s)(Lemma 6). Using Eq. (1) with S′wi [1] = α the transition must exist and implies
#out(eqi

) ≥ 2. So fi = min(eqi
) ∈ Fs by De�nition of Canoni
al Fa
tors. �From Eq. (1) and Claim 1 (item 4):

{

t = t′iSi (t′i ∈ Σ∗)
w = w′iS

w
i = w′ip

′
iS

w
i+1 (w′i ∈ Σ∗).

(3)
t′i

w′
ipi

e0
pi fi α

α

eqi
eri

e|s|

Si

Si+1

Fig. 5. Illustration of a step in the algorithm Contra
tor (α = Sw
i [|pi| + 1]).Claim 2 For all i ≥ 0 (see �gure 5):1. State(w′ipi) = State(t′ipi) = State(pi) = eqi

.2. ci is a 
ontra
tion of t′iSi (resp. w′iSi) provided by fi. Result of this 
on-tra
tion is t′ip
′
iSi+1 (resp. w′ip

′
iSi+1 = w′i+1Si+1).8



Proof.1. For i = 0, t′i = w′i = ǫ. Let us suppose that the property is true for i andtherefore for i+1. From Claim 1 (item 2), we 
on
lude that Si labeled a path usingonly �main� transitions (i.e. transitions of type ej → ej+1) from eqi−|pi| to e|s| in
O(s). A

ording to Claim 1 (item 3) we 
on
lude that:

Si = uSi+1 (u ∈ Σ∗). (4)So, the state ex (x > qi − |pi|) is su
h that Si+1 labeled a path using only �main�transitions from ex to e|s| in O(s) and more pre
isely x = ri − |fi| − 1. We have
t′i+1 = t′iu (Eq. (3) and (4)) and State(t′iu) = ex. Sin
e fi = min(eqi

) and thereis a transition from eqi
to eri

labeled by α (Claim 1, item 4), State(t′i+1fiα) =

State(t′iufiα) = State(fiα) = eri
and furthermore, pi+1 = fiαv (v ∈ Σ∗). So wehave State(t′i+1fiαv) = State(t′i+1pi+1) = State(pi+1).2. From Eq. (1), (2) and (3), we 
on
lude that:

t = t′iSi = t′ip
′
ifiS

′
i. (5)Sin
e Si+1 ∈ Suff(Si), we have Si = uSi+1 (u ∈ Σ+) and from Eq. (5), t′ip

′
ifiS

′
i =

t′iuSi+1. A

ording to Claim 1 (item 1), we have t′ip
′
ifiS

′
i = t′iufiαu′ (u′ ∈ Σ∗).Sin
e we have State(t′ip

′
ifi) = State(fi) and |u| > |p′i| (be
ause S′i[1] 6= α), we 
an
ontra
t t′iSi by fi and t′ip
′
ifiαu′ = t′ip

′
iSi+1. We 
an 
on
lude that w′iSi = w′ipiS

′
iis 
ontra
ted by fi in w′ip

′
iSi+1 be
ause State(w′ipi) = State(t′ipi). A

ording toEq. (3), we 
on
lude that w′i+1 = w′ip

′
i and w′ip

′
iSi+1 = w′i+1Si+1. �Claim 2 shows that a 
ontra
tion ci of t′iSi by fi is also a 
ontra
tion for t andfor w′iSi. Consider the ith iteration, we have |Sw

i | > |Sw
i+1| or |Sw

i | = |Sw
i+1| and

|pi+1| > |pi| (if fi = pi). Sin
e pi > 0, we ensure that re
ursion stops at iteration
j > i with pj = Sw

j (j > i).Claim 3 Given an integer i ≥ 0 su
h that pi = Sw
i , then t needs a last 
ontra
tionif and only if |Sw

i | 6= |Si|.Proof. The word obtained with the set Ci of 
ontra
tions is w′ipiS
′
i (Claim 2,item 2). If Sw

i = Si, then we have S′i = ǫ and we 
on
lude that Ci is 
omplete(line 20). If Sw
i 6= Si, a

ording to Claim 2 (item 1), we have State(w′ipi) = eqi

. ByDe�nition of the �nal state in a Su�x Ora
le, min(eqi
) ∈ Suff(w) (Lemma 3) and

min(eqi
) ∈ Suff(t). A last 
ontra
tion is needed to 
omplete the set of 
ontra
tions(line 22). �Considering the ith 
all of Contra
tor, inputs are Si = piS

′
i, Sw

i = piS
′w
i and

Ci. This set is the set of 
ontra
tions ne
essary to transform t′i ∈ Pref(t) into
w′i ∈ Pref(w). The variable pi refers to the longest 
ommon pre�x of Si and Sw

i(pi is both a fa
tor of t and w, Claim 1). Two 
ases may o

ur for this 
all (line 12.When |pi| = |Sw
i |, the re
ursion ends. Otherwise, |pi| 6= |Sw

i | and at least another
ontra
tion is ne
essary until |pj | = |Sw
j | (j > i). From Claim 2, the ith 
ontra
tionallows to 
ontinue with the su�x Si+1. At the end of the pro
ess (i.e. the end of

w), we return the set C = Cj and Lemma 9 ensures that w = Word(t, C).9



Lemma 9 Given a word s ∈ Σ∗, its Su�x Ora
le, a word w ∈ Σ∗ a

epted by
SO(s) and the longest su�x t of s su
h that w[1] = t[1], then Contra
tor(t, w, ∅)outputs a set C, whi
h is su
h that w = Word(t, C).Proof. Let i ≥ 0 su
h that Sw

i+1 = pi+1. A

ording to Claim 2, we 
on
ludethat Ci+1 is a 
oherent set of 
ontra
tions of t. Sin
e pi+1 is pre�x of Si+1 we have:
Word(t, Ci+1) = w′i+1Si+1 = w′i+1S

w
i+1u = w′i+1pi+1u (u ∈ Σ∗)If u = ǫ, we have Word(t, Ci+1) = w (Eq. (3)). Else (Claim 3) a ultimate 
ontra
tion

ci+1 by fi+1 transforms w′i+1S
w
i+1u into w′i+1S

w
i+1 = w = Word(t, Ci+1 ∪ {ci+1}).Finally Contra
tor provides a set C su
h that w = Word(t, C). �We 
an noti
e that:1. C is not always minimal.2. C is 
oherent. Let (a, b) and (c, d) be two 
ontra
tions su

essively added to

C. We have a < b and c < d be
ause ri > qi and |s| > qi (lines 14 and 20). If
eqi+1 = State(pi+1) = eri

, then b = c, else pi+1 = fiαv (α = Sw
[ |pi|+1], v 6= ǫ)and eqi+1 > eri

, therefore b < c.Following theorems are the main purpose of this paper:Theorem 1 Exa
tly all su�xes of words from E(s) are re
ognized by the Su�xOra
le of s .Proof.`⇒': Ea
h su�x of words from E(s) is re
ognized by the Su�x Ora
le of s.A

ording to Lemma 6, if w is a

epted by SO(s), ea
h su�x of w is also a

eptedby SO(s). So we only need to prove that ea
h word from E(s) is a

epted by SO(s).Let C ∈ C∗s be a set of 
ontra
tions appli
able to s and w = Word(s, C). The set
Ci is the set of the �rst i 
ontra
tions of C (
hosen without loss of generality byas
ending order over positions � see �gure 1), (xj , yj) is the jth 
ontra
tion, whi
huse the Canoni
al Fa
tor fj (1 ≤ j ≤ i) and wj = Word(s, Cj). The property (P )to prove is that if wi (0 ≤ i < |C|) is a

epted by SO(s), then wi+1 is a

epted too.We have:

{

wi = s[1..x1 − 1] s[y1..x2 − 1] . . . s[yi..|s|]
s[yi..yi + |fi| − 1] = fiBy De�nition of the Canoni
al Fa
tors, fi+1 does not o

ur in s before position

xi+1 (xi+1 > yi). We have wi = v′fi+1u and wi+1 = v′fi+1u
′ with v′ = s[1..x1 −

1]s[y1..x2 − 1] . . . s[yi..xi+1 − 1] and fi+1u = u′′fi+1u
′ (u′′ ∈ Σ+).Considering the 
ontra
tion (xi+1, yi+1), we have |s| − |fi+1u| + 1 = xi+1 and

|s|−|fi+1u
′|+1 = yi+1 (be
ause the 
ontra
tions are in as
ending order). The word

s is then not yet modi�ed after positions xi+1, so fi+1u and fi+1u
′ are su�xes of

s. Consider the state q = State(fi+1) of SO(s), a

ording to Lemma 7:
State(v′fi+1) = q. (6)The su�x fi+1u

′ of s is ne
essarily re
ognized by SO(s). So the path a

eptingthis su�x in SO(s) go through the state q. Starting from q, we 
an read u′ and10



rea
h a �nal state and therefore, a

ording to Eq. (6), SO(s) also a

epts the word
wi+1 = v′fi+1u

′. Finally, the property (P ) is true for all i (0 ≤ i < |C|) and sin
e
w0 = s, we 
an prove by indu
tion on i that the Su�x Ora
le of s re
ognizes allwords wi (0 ≤ i ≤ |C|). Lemma 6 allows to 
on
lude that ea
h su�x of words from
E(s) is re
ognized by SO(s).`⇐': Ea
h word re
ognized by the Su�x Ora
le of s is su�x of a word from E(s).Let w be a word a

epted by the Su�x Ora
le of s and t be the longest su�xof s = t′t (t, t′ ∈ Σ∗) beginning with w[1]. Then a set C of 
ontra
tions su
hthat t′w = Word(t′t, C) exists (Lemma 9). Sin
e the word w is su�x of t′w and
t′w ∈ E(s), ea
h word a

epted by SO(s) is a su�x of a word from E(s). �On the basis of Theorem 1 we give a similar result, whi
h is available for Fa
torOra
les instead of Su�x Ora
les.Theorem 2 Exa
tly all fa
tors of words from E(s) are re
ognized by the Fa
torOra
le of s .Proof.`⇒': Ea
h fa
tor of words from E(s) is re
ognized by the Fa
tor Ora
le of s.Let SO(s) be the Su�x Ora
le of s, u ∈ E(s) and m a fa
tor (i.e. a pre�x of asu�x) of u = mv (v ∈ Σ∗). Then mv is a

epted by SO(s) (Theorem 1). Thus, apath (e0 → ex1 → . . . → ex|mv|

) exists in SO(s), whi
h re
ognizes mv. Therefore,we 
on
lude that m labeled a path (e0 → ex1 → . . . → ex|m|
) (with ex|m|

�nal).`⇐': Ea
h word re
ognized by the Fa
tor Ora
le of s is fa
tor of a word from E(s).Let SO(s) be the Su�x Ora
le of s and m a word a

epted by FO(s). If SO(s)re
ognizes m then m is a su�x of a word from E(s) (Theorem 1). Suppose that
SO(s) does not re
ognize m. Then FO(s) re
ognizes m at state ex|m|

(not �nal in
SO(s)). Furthermore, the path (e0 → e1 → . . . → e|s|) exists in O(s) and e|s| is�nal in SO(s). We 
on
lude that a path from ex|m|

to e|s| exists in SO(s). Then,the word m is pre�x of a word re
ognized by SO(s) and therefore m is pre�x of asu�x of some u ∈ E(s). Thus, m is a fa
tor of a word of E(s). �4. Properties upon Ora
les & Future WorksA

ording to Cleophas & al. [11℄, the Ora
le is not minimal in number oftransitions among the set of homogeneous automata. Furthermore, if we 
onsiderthe set of homogeneous automata, whi
h re
ognize at least all fa
tors (resp. suf-�xes) of s and whi
h have the same number of states and at most the same numberof transitions than the Fa
tor (resp. Su�x) Ora
le, we show that the Ora
le isnot minimal on the number of a

epted words. The Ora
le of axttyabcdeatzattwu(see �gure 6) has 35 transitions, the Fa
tor Ora
le a

epts 247 words and the Su�xOra
le a

epts 39 words. Though another homogeneous automaton (see �gure 7),whi
h re
ognizes at least all fa
tors (resp. su�xes) of axttyabcdeatzattwu and whi
hhas only 34 transitions exists. The �Fa
tor� version of this automaton re
ognizesonly 236 words and its �Su�x� version a

epts only 30 words. Moreover, we pro-vide an example whi
h has both less transitions, and less a

epted words than the
orresponding Ora
le. 11



e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18a x t y b 
 d e z w ux b tt t y z wy wa b 
 d e a t z ta t t w uFig. 6. Fa
tor Ora
le of the word axttyabcdeatzattwu.
e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 e17 e18a x t y b 
 d e z w ux bt t t y z wy wa b 
 d e a t z a t t w uFig. 7. This automaton (
onsidering only the 
ontinuous lines) a

epts allfa
tors of the word axttyabcdeatzattwu. The bold transition (from e1 to e3) isthe only one, whi
h is not present in the Fa
tor Ora
le of this word (see �gure 6)though the two dotted ones (from e1 to e12 and from e12 to e16) are presentin the Fa
tor Ora
le, but not in this automaton.In some 
ases, we observe that the number of words a

epted by Ora
les doesnot allow 
on�den
e to this stru
ture when it is used to dete
t fa
tors or suf-�xes of words. Even if the number of false positive 
an sometimes be equal to 0(e.g. aaaaaa . . .), it 
an also be exponential. Indeed, we 
an build a word s su
h thatea
h subset of C∗s is 
oherent and minimal. For example: s = aabbccddee . . ., the set

C∗s of 
ontra
tions, whi
h are available on su
h a word, is {(1, 2), (3, 4), . . . , (|s| −

1, |s|)}. If we 
onsider any non-empty subset C ⊆ (C∗s \ {(1, 2)}) of 
ontra
tions, itis easy to noti
e that Word(s, C) /∈ Fact(s). Besides, all words obtained from su
hsubsets are pairwise di�erent.Number of subsets is:|C∗s |−1
∑

i=1

(

|C∗s | − 1

i

)

=

|s|
2 −1
∑

i=1

( |s|
2 − 1

i

)

= 2
|s|
2 −1 − 1. Then,the number of words, whi
h are a

epted by the Ora
les and are not fa
tor/su�xof s, is O(

2|s|
).To better use this stru
ture, we need to improve or to slightly modify it. How-ever, better knowledge about the Ora
le stru
ture would be useful for future works.Indeed, it 
ould be interesting to have an empiri
al or a statisti
al estimation of thea

ura
y of the Ora
le (time and quality of the results), when it is substituted toTries or Su�x Trees in algorithms.5. A
knowledgmentsWe would like to thank Céline Barré to have improved the English writingof this arti
le. We also thank Irena Rusu for its useful 
omments and to haveimproved earlier versions of this arti
le. 12
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