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Abstract. A mathematical model involving a syntrophic relationship between
two populations of bacteria in a continuous culture is proposed. A detailed
qualitative analysis is carried out as well as the analysis of the local and
global stability of the equilibria. We demonstrate, under general assump-
tions of monotonicity which are relevant from an applied point of view, the
asymptotic stability of the positive equilibrium point which corresponds to the
coexistence of the two bacteria. A syntrophic relationship in the anaerobic
digestion process is proposed as a real candidate for this model.

1. Introduction. A synthrophic relationship between two organisms refers to a
situation where the species exhibit mutualism but where, in contrast to what hap-
pens in a purely symbiotic relationship, one of the species can grow without the
other. Such a situation can be mathematically formalized as follows: assume that a
first species denoted X1 grows on a substrate S1 forming an intermediate product
S2. This intermediate product is required for its growth by a second species X2.
Since the substrate needed for its growth by the second bacteria is the product of
the first bioreaction, the second bacteria cannot grow if the first one is not present.

An important feature of our work is that it involves mutualism. Such an in-
teraction is quite common in nature which explains why a number of models have
already been proposed in the literature. Katsuyama et al. [11], describing pesticide
degradation proposed a model involving two mutualistic species, while a more gen-
eral case was considered by Kreikenbohm and Bohl [12]. Since mutualism generally
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involves species interacting through intermediate products, other studies have con-
sidered mutualistic relationships in food webs. For instance, Bratbak and Thingstad
[3], and, more recently, Aota and Nakajima [1] have explored mutualism between
phytoplankton and bacteria through carbon excretion by phytoplankton. A model
studied by Freedman et al. [10] was proposed to explain the observed coexistence
of such species. Another characteristic of the present work is that it involves several
substrates. A considerable number of studies have appeared in the literature over
the last years treating this subject. For a recent review of this field, the reader may
refer for instance to Chase and Leibold [5] or Ballyk and Wolkowicz [2]. However,
in previous studies the models have usually been very specific. In particular, the
mathematical analysis of the models have been designed for specific growth rates
that are explicitly given (in most cases as Monod functions).

To extend the study of mutualism to more general systems, we have recently con-
sidered more general assumptions, notably with respect to the growth rate functions
considered in the models in using qualitative hypotheses, cf. [7]. Furthermore, we
have assumed that the species X1 may be inhibited by the product S2 that it has
produced itself while the species X2 was simply limited by S2. An example of such
interaction is anaerobic digestion in which mutualistic relationships allow certain
classes of bacteria to coexist. A mutualistic relation has also been considered in [6].
See [8] for another model of coexistence in the chemostat.

In this paper, following [9], we revisit the model proposed in [7] in incorporating
two main changes which significantly extend the range of practical situations covered
by the model. First, we assume that there is some S2 in the influent or, to put
it differently, the limiting substrate S2 on which the species X2 grows is not only
produced by the species X1 but is also available even if the speciesX1 is not present.
The second modification to the model is that the second species is assumed to be
inhibited by an excess of S1, the limiting substrate on which the first species grows.
To illustrate the usefulness of such extensions of the original model proposed by El
Hajji et al. [7], the biological interpretation of these hypotheses within the context
of the anaerobic process is given in the appendix.

The paper is organized as follows. In Section 2, we propose a modification of
the model studied in [7] that involves four differential equations. In Section 3, the
system is reduced to a planar system, for which equilibria are determined and their
local stability properties established. In Section 4, when the system has a single
positive equilibrium, the global asymptotic stability is demonstrated using Dulac’s
criterion (which rules out the possibility of the existence of periodic solutions for the
reduced planar system), the Poincaré-Bendixon Theorem and the Butler-McGehee
Lemma. Hence, in this case, for all positive initial conditions, the solutions converge
to the positive equilibrium point which corresponds to the coexistence of the two
bacterial species as observed in real processes. Application to the original model in
[7] is given in Section 5. In this section, numerical simulations are presented in the
case when the growth functions are of the Monod type. Concluding remarks are
given in Section 6. An example of a syntrophic relationship is given in Appendix A
as a candidate for this model. The mathematical proofs of the results are given in
Appendix B.

2. Mathematical model. Let S1, X1, S2 and X2 denote, respectively, the con-
centrations of the substrate, the first bacteria, the intermediate product, and the
second bacteria present in the reactor at time t. We neglect all species-specific death
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rates and take into account the dilution rate only. Hence our model is described by
the following system of ordinary differential equations :



























Ṡ1 = D(Sin
1 − S1)− k3µ1(S1, S2)X1,

Ẋ1 = µ1(S1, S2)X1 −DX1,

Ṡ2 = D(Sin
2 − S2)− k2µ2(S1, S2)X2 + k1µ1(S1, S2)X1,

Ẋ2 = µ2(S1, S2)X2 −DX2,

(1)

where Sin
1 > 0 denotes the input concentration of substrate, Sin

2 > 0 the input
concentration of the intermediate product and D > 0 the dilution rate.

Assume that the functional response of each species µ1, µ2 : R2
+ → R+ satisfies :

A1: µ1, µ2 : R2
+ → R+, of class C

1.
A2: For all (S1, S2) ∈ R

2
+, µ1(0, S2) = 0 and µ2(S1, 0) = 0.

A3: For all (S1, S2) ∈ R
2
+,

∂µ1

∂S1
(S1, S2) > 0 and

∂µ1

∂S2
(S1, S2) < 0.

A4: For all (S1, S2) ∈ R
2
+,

∂µ2

∂S1
(S1, S2) ≤ 0 and

∂µ2

∂S2
(S1, S2) > 0.

Hypothesis A2 signifies that no growth can take place for species X1 without the
substrate S1 and that the intermediate product S2 is necessary for the growth of
species X2. Hypothesis A3 means that the growth of species X1 increases with the
substrate S1 but it is inhibited by the intermediate product S2 that it produces.
Hypothesis A4 means that the growth of species X2 increases with intermediate
product S2 produced by species X1 while it is inhibited by the substrate S1. Note
that there is a syntrophic relationship between the two species.

We first scale system (1) using the following change of variables and notations :

s1 =
k1
k3
S1, x1 = k1X1, s2 = S2, x2 = k2X2, sin1 =

k1
k3
Sin
1 , sin2 = Sin

2 .

Thus, the dimensionless equations obtained are :


























ṡ1 = D(sin1 − s1)− f1(s1, s2)x1,

ẋ1 = f1(s1, s2)x1 −Dx1,

ṡ2 = D(sin2 − s2)− f2(s1, s2)x2 + f1(s1, s2)x1,

ẋ2 = f2(s1, s2)x2 −Dx2.

(2)

Where the functions f1, f2 : R2
+ → R+ are defined by

f1(s1, s2) = µ1(
k3
k1
s1, s2) and f2(s1, s2) = µ2(

k3
k1
s1, s2).

Since the functions µ1 and µ2 satisfy hypostheses A1–A4, it follows that functions
f1 and f2 satisfy

H1: f1, f2 : R2
+ → R+, of class C

1.

H2: For all (s1, s2) ∈ R
2
+, f1(0, s2) = 0 and f2(s1, 0) = 0.

H3: For all (s1, s2) ∈ R
2
+,

∂f1
∂s1

(s1, s2) > 0 and
∂f1
∂s2

(s1, s2) < 0.

H4: For all (s1, s2) ∈ R
2
+,

∂f2
∂s1

(s1, s2) ≤ 0 and
∂f2
∂s2

(s1, s2) > 0.

R
4
+, the closed non-negative cone in R

4, is positively invariant under the solution
map of system (2). More precisely
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Proposition 1. For every initial condition in R
4
+, the solution of system (2) has

positive components and is positively bounded and thus is defined for every positive
t. The set

Ω =
{

(s1, x1, s2, x2) ∈ R
4
+ : s1 + x1 = sin1 , s2 + x2 = x1 + sin2

}

is a positive invariant attractor of all solutions of system (2).

3. Restriction on the plane. The solutions of system (2) are exponentially con-
vergent towards the set Ω and we are interested in the asymptotic behavior of these
solutions. It is enough to restrict the study of the asymptotic behaviour of system
(2) to Ω. In fact, thanks to Thieme’s results [14], the asymptotic behaviour of the
solutions of the restriction of (2) on Ω will be informative for the complete system
(see Section 4). In this section, we study the following reduced system which is
simply the projection on the plane (x1, x2), of the restriction of system (2) on Ω.

{

ẋ1 = [Φ1(x1, x2)−D]x1,

ẋ2 = [Φ2(x1, x2)−D]x2.
(3)

where
Φ1(x1, x2) = f1

(

sin1 − x1, s
in
2 + x1 − x2

)

,

Φ2(x1, x2) = f2
(

sin1 − x1, s
in
2 + x1 − x2

)

.

Thus, for (3) the state-vector (x1, x2) belongs to the following subset of the plane
as illustrated in Fig. 1:

S =
{

(x1, x2) ∈ R+
2 : 0 < x1 ≤ sin1 , 0 < x2 ≤ x1 + sin2

}

.

-

6

x1

x2

sin2

sin1

sin1 + sin2

Figure 1. The set S

The point F 0 = (0, 0) is an equilibrium of (3). Besides this equilibrium point the
system can have the following three types of equilibrium points:

• Boundary equilibria F 1 = (x̄1, 0), where x1 = x̄1 is a solution, if it exists, of
the equation

Φ1(x1, 0) = D. (4)

• Boundary equilibria F 2 = (0, x̃2), where x2 = x̃2 is a solution, if it exists, of
the equation

Φ2(0, x2) = D. (5)
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• Positive equilibria F ∗ = (x∗1, x
∗

2), where x1 = x∗1, x2 = x∗2 is a solution, if it
exists, of the system of equations

{

Φ1(x1, x2) = D,
Φ2(x1, x2) = D.

(6)

We use the following notations

D1 = f1(s
in
1 , s

in
2 ), D2 = f2(s

in
1 , s

in
2 ). (7)

The mapping x1 7→ Φ1(x1, 0) is decreasing, and the mapping x1 7→ Φ2(x1, 0) is
increasing as in Figure 2. If D1 < D2, there is no real number ξ1 satisfying
Φ1(ξ1, 0) = Φ2(ξ1, 0): see Figure 2, left. If D1 > D2, there exists a sole real
number ξ1 satisfying Φ1(ξ1, 0) = Φ2(ξ1, 0), since

Φ1(0, 0) = D1 > D2 = Φ2(0, 0), and Φ1(s
in
1 , 0) = 0 < Φ2(s

in
1 , 0).

We denote by D3 ∈]D2, D1[ the unique real number (see Figure 2, right) such that:

Φ1(ξ1, 0) = Φ2(ξ1, 0) = D3. (8)

y
y = Φ2(x1, 0)

y = Φ1(x1, 0)

0

D2

D1

D

Φ2(x̄1, 0)

x1x̄1 sin1

y

y = Φ2(x1, 0)

y = Φ1(x1, 0)

0

D2

D1

D3

D

Φ2(x̄1, 0)

x1x̄1 sin1ξ1

Figure 2. Existence and uniqueness of x̄1. On the left, the case
D1 < D2: Φ2(x̄1, 0) > D for all D < D1. On the right, the case
D1 > D2: Φ2(x̄1, 0) > D if and only if D < D3.

The mapping x2 7→ Φ1(0, x2) is increasing, and the mapping x2 7→ Φ2(0, x2)
is decreasing: see Figure 3. if D1 > D2, there is no real number ξ2 satisfying
Φ1(0, ξ2) = Φ2(0, ξ2), see Figure 3, left. If D1 < D2, there exists a single real
number ξ2 satisfying Φ1(0, ξ2) = Φ2(0, ξ2), since

Φ2(0, 0) = D2 > D1 = Φ1(0, 0), and Φ2(0, s
in
2 ) = 0 < Φ1(0, s

in
2 ).

We denote by D4 ∈]D1, D2[ the sole real number (see Figure 3, right) such that:

Φ1(0, ξ2) = Φ2(0, ξ2) = D4.

The nature of the trivial equilibrium point F 0 is given in the following lemma.

Lemma 1. If D > max(D1, D2), then F 0 is a stable node. If min(D1, D2) <
D < max(D1, D2), then F 0 is a saddle point. If D < min(D1, D2), then F 0 is an
unstable node.

The conditions of existence of the boundary equilibria F 1 and F 2, and their
nature, are stated in the following lemmas.
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y
y = Φ1(0, x2)

y = Φ2(0, x2)

0

D1

D2

D

Ψ1(0, x̃2)

x2x̃2 sin2

y

y = Φ1(0, x2)

y = Φ2(0, x2)

0

D1

D2

D4

D

Ψ1(0, x̃2)

x2x̃2 sin2ξ2

Figure 3. Existence and uniqueness of x̃2. On the left, the case
D2 < D1: Φ1(0, x̃2) > D for all D < D2. On the right, the case
D2 > D1: Φ1(0, x̃2) > D if and only if D < D4.

Lemma 2. An equilibrium F 1 = (x̄1, 0) exists if and only if D < D1. If it exists,
then it the sole equilibrium on the positive x1 semi-axis. If D1 < D2, then F 1 is
a saddle point for all D < D1. If D2 < D1, then F 1 is a saddle point for all
0 < D < D3 and a stable node for all D3 < D < D1.

Lemma 3. An equilibrium F 2 = (0, x̃2) exists if and only if D < D2. If it exists,
then it the sole equilibrium on the positive x2 semi-axis. If D2 < D1, then F 2 is
a saddle point for all D < D2. If D1 < D2, then F 2 is a saddle point for all
0 < D < D4 and a stable node for all D4 < D < D2.

Let us now discuss the conditions of existence of positive equilibria F ∗ and their
number. An equilibrium F ∗ = (x∗1, x

∗

2) exists if and only if x1 = x∗1, x2 = x∗2 which
is a solution of (6) lying in S. this gives

∂Φ1

∂x2
= −

∂f1
∂s2

(sin1 − x1, s
in
2 + x1 − x2).

Assuming H3 is satisfied, this partial derivative is positive. Hence, equation

Φ1(x1, x2) = D

defines a function x2 = F1(x1) such that F1(x̄1) = 0 when D < D1. Recall that
x1 = x̄1 is the solution of (4) which, according to Lemma 2, exists and is unique, if
and only if D < D1. This gives

F ′

1(x1) = −
∂Φ1

∂x1

(x1, F1(x1))
∂Φ1

∂x2

(x1, F1(x1))
=

−∂f1
∂s1

+ ∂f1
∂s2

∂f1
∂s2

= 1−

∂f1
∂s1
∂f1
∂s2

> 1.

Hence the function F1 is increasing. Since Φ1(s
in
1 , 0) = 0, the graph Γ1 of F1 has

no intersection with the right boundary of the domain S, defined by x1 = sin1 . This
graph separates S in two regions denoted as the left and right sides of Γ1: see Figure
4. This also gives

∂Φ2

∂x2
= −

∂f2
∂s2

(sin1 − x1, s
in
2 + x1 − x2).

By assumingH4, this partial derivative is positive. Hence, equation Φ2(x1, x2) = D
defines a function x2 = F2(x1) such that F2(0) = x̃2 when D < D2. Recall that
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x2 = x̃2 is the solution of (5) which, according to Lemma 3 exists and is unique, if
and only if D < D2. This gives

F ′

2(x1) = −
∂Φ2

∂x1

(x1, F2(x1))
∂Φ2

∂x2

(x1, F2(x1))
=

−∂f2
∂s1

+ ∂f2
∂s2

∂f2
∂s2

= 1−

∂f2
∂s1
∂f2
∂s2

> 1.

Hence the function F2 is increasing. Since Φ2(x1, s
in
2 + x1) = 0, the graph Γ2 of F2

has no intersection with the top boundary of the domain S, defined by x2 = sin2 +x1.
Thus the point at the very right of Γ2 lies necessarily on the right boundary of S,
defined by x1 = sin1 . Hence it lies on the right side of Γ1: see Figure 4.

Left

Right

Γ1

•

•

•

Γ2

Γ1

F ∗

1

F ∗

2

F ∗

3

A

A

Γ2

Γ1

•

•

F ∗

1

F ∗

2

Figure 4. On the left, the left and right sides of Γ1. In the center,
the point A at the very left of Γ2 lies on left side of Γ1: there are
generically an odd number of intersections (3 in this example). On
the right, the point A at the very left of Γ2 lies on right side of Γ1:
there are generically an even number of intersections (2 in this
example).

The graphs Γ1 and Γ2 can intersect or not (see Figures 4, 6 and 7). If they
intersect at some point F ∗ = (x∗1, x

∗

2) then F
∗ is a positive equilibrium. If the point

A at the very left of Γ2 lies on left side of Γ1 then Γ1 and Γ2 intersect in at least one
point F ∗ = (x∗1, x

∗

2). They can have multiple intersections. Generically, they have
an odd number of intersections (see Figure 4, center). If the point A at the very
left of Γ2 lies on right side of Γ1 then Γ1 and Γ2 can intersect or not. Generically,
they have an even number of intersections (see Figure 4, right). The nature of a
positive equilibrium F ∗ is stated in the following lemmas.

Lemma 4. If an equilibrium F ∗ = (x∗1, x
∗

2) exists, then it is a stable node if
F ′

1(x
∗

1) > F ′

2(x
∗

1). It is a saddle point if the opposite inequality is satisfied.

The number of equilibria of (3) and their nature are summarized in the following
theorem.

Theorem 1. 1. If D < min(D1, D2), then (3) admits the trivial equilibrium F 0

which is an unstable node, the boundary equilibria F 1 and F 2 which are saddle
points, and at least one positive equilibrium F ∗. If the positive equilibrium F ∗

is unique, then it is a stable node. Generically, the system has an odd number
of positive equilibria which are alternatively stable nodes and saddle points.
The one at the very left of these positive equilibria is a stable node.

2. If min(D1, D2) < D < max(D1, D2), four subcases must be distinguished:
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(a) If D1 < D2 and D1 < D < D4, then (3) admits the trivial and boundary
equilibria F 0 and F 2, which are saddle points, and at least one positive
equilibrium F ∗. If the positive equilibrium F ∗ is unique, then it is a stable
node. Generically, the system has an odd number of positive equilibria
which are alternatively stable nodes and saddle points. The one at the
very left of these positive equilibria is a stable node.

(b) If D1 < D2 and D4 < D < D2, then (3) admits the trivial equilibrium
F 0, which is a saddle point, and the boundary equilibrium F 2, which is a
stable node. Generically, the system can have an even number of positive
equilibria which are alternatively saddle points and stable nodes. The one
at the very left of these positive equilibria is a saddle point.

(c) If D2 < D1 and D2 < D < D3, then (3) admits the trivial and boundary
equilibria F 0 and F 1, which are saddle points, and at least one positive
equilibrium F ∗. If the positive equilibrium F ∗ is unique, then it is a stable
node. Generically, the system has an odd number of positive equilibria
which are alternatively stable nodes and saddle points. The one at the
very left of these positive equilibria is a stable node.

(d) If D2 < D1 and D3 < D < D1, then (3) admits the trivial equilibrium
F 0, which is a saddle point, and the boundary equilibrium F 1, which is a
stable node. Generically, the system can have an even number of positive
equilibria which are alternatively saddle points and stable nodes. The one
at the very left of these positive equilibria is a saddle point.

3. If D > max(D1, D2), then (3) admits the trivial equilibrium F 0 which is a
stable node. Generically, the system can have an even number of positive
equilibria which are alternatively saddle points and stable nodes. The one at
the very left of these positive equilibria is a saddle point.

4. Global analysis. Let us first establish that (3) admits no periodic orbit nor
polycycle inside S.

Proposition 2. There are no periodic orbits nor polycycles inside S.

Using the Butler MacGehee Theorem and Poincaré-Bendixon theory, we obtain
the asymptotic behaviour of the reduced system (3).

Theorem 2. Assuming that system (3) has at most one positive equilibrium F ∗,
then for every initial condition in S, the trajectories of system (3) converge asymp-
totically to :

• F ∗ if D < min(D1, D2).
• F ∗ if D1 < D2 and D1 < D < D4.
• F 2 if D1 < D2 and D4 < D < D2.
• F ∗ if D2 < D1 and D2 < D < D3.
• F 1 if D2 < D1 and D3 < D < D1.
• F 0 if max(D1, D4) < D.

Using Thieme’s results [14] on asymptotically autonomous systems, we can de-
duce that the asymptotic behaviour of the solution of the complete system (2) is
the same as the asymptotic behaviour described for the reduced system (3).

Theorem 3. Assuming that system (3) has at most one positive equilibrium F ∗,
then for every initial condition in R

4
+, the trajectories of system (2) converge asymp-

totically to:
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• E∗ if D < min(D1, D4).
• E∗ if D1 < D2 and D1 < D < D4.
• E2 if D1 < D2 and D4 < D < D2.
• E∗ if D2 < D1 and D2 < D < D3.
• E1 if D2 < D1 and D3 < D < D1.
• E0 if max(D1, D2) < D.

5. Applications.

5.1. A particular case. In this section we consider the case where sin2 = 0 and f2
depends only on s2. We obtain the model



























ṡ1 = D(sin1 − s1)− f1(s1, s2)x1,

ẋ1 = f1(s1, s2)x1 −Dx1,

ṡ2 = −Ds2 − f2(s2)x2 + f1(s1, s2)x1,

ẋ2 = f2(s2)x2 −Dx2,

(9)

considered in [7]. The assumptions about f1 are the same as our assumptions.
Assumption H4 about f2 becomes

H4: For all s2 ∈ R+, f
′

2(s2) > 0.

The reduced system is
{

ẋ1 =
[

f1
(

sin1 − x1, x1 − x2
)

−D
]

x1,

ẋ2 = [f2 (x1 − x2)−D]x2.
(10)

Thus, for (10) the state-vector (x1, x2) belongs to (see Figure 5)

S =
{

(x1, x2) ∈ R+
2 : 0 < x1 ≤ sin1 , 0 < x2 ≤ x1

}

.

Since sin2 = 0 in (9), (7) becomes

D1 = f1(s
in
1 , 0), D2 = f2(0) = 0.

Since Φ1(x1, 0) = f1(s
in
1 − x1, x1) and Φ2(x1, 0) = f2(x1), (8) gives the sole real

number D3 ∈]0, D1[ such that (see Figure 2, right):

f1(s
in
1 − ξ1, ξ1) = f2(ξ1) = D3. (11)

•

•

•F
1

F ∗

F 0

0 < D < D3

•• F 1F 0

D3 < D < D1

Figure 5. Relative positions of the isocline ẋ1 = 0 (in red) and
ẋ2 = 0 (in green) for the reduced system (10). Multiple positive
equilibria, as depicted on the center or on the right of Figure 4,
cannot occur.
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If D < D1 then equation f1(s
in
1 −x1, x1) = D defines a sole number x̄1. As shown

in Section 3, equation f1(s
in
1 − x1, x1 − x2) = D defines a function x2 = F1(x1)

such that F1(x̄1) = 0 when D < D1. This function is increasing with derivative
F ′

1(x1) > 1. On the other hand, equation f2 (x1 − x2) = D defines the linear
function x2 = x1 − λ2, where λ2 = f−1

2 (D). Hence, the graphs Γ1 and Γ2 can
intersect at most at one point: see Figure 5. The following proposition which gives
the number and nature of equilibria of (10) is a consequence of Theorems 1 and 2.

Proposition 3. 1. If D < D3, then (10) has three equilibria: F 0, which is an
unstable node, F 1, which is a saddle point and F ∗, which is a globally stable
node.

2. If D3 < D < D1, (10) has two equilibria: F 0, which is a saddle point, and
F1, which is a globally stable node.

3. If D1 < D, then (10) has one equilibrium, F 0, which is a globally stable node.

Cases (1) and (2) of this Theorem correspond respectively to Theorems 3 and 4
of [7].

5.2. Growth functions of generalized Monod type. In this section we consider
growth functions f1 and f2 of the following form

f1(s1, s2) =
m1s1

(K1 + s1)(L1 + s2)
, f2(s1, s2) =

m2s1
(K2 + s1)(L2 + s2)

. (12)

Such functions are simply the product of a Monod function in s1 by a decreasing
function of s2. Such functions are currently used in biotechnology when the growth
of a functional species is limited by one substrate while inhibited by another. Such
situations are common in water treatment technology such as the denitrification
(limited by the nitrate and inhibited by the dissolved oxygen) or in anoxic or anaer-
obic hydrolysis (limited by the slowly-biodegradable substrates while inhibited by
an excess of oxygen), processes which can be modeled this way (cf. [15]).

One can easily check that (12) satisfy Assumptions H1 to H4. Straightforward
calculations give

F1(x1) =
−Dx2

1
+m1+D(K1−L1+sin

1
−sin

2 )−m1s
in

1
+D(K1+sin

1 )(L1+sin
2 )

D(K1+sin
1

−x1)
,

F2(x1) =
Dx2

1
+m2+D(L2−K2+sin

2
−sin

1 )+m2s
in

2
−D(K2+sin

1 )(L2+sin
2 )

m2−D(K2+sin
1

−x1)
.

Hence equation F1(x1) = F2(x1), giving the abscissa of positive equilibria, is an
algebraic equation of degree 2. Thus, it cannot have more than two solutions.
Therefore, the situation shown in the center of Figure 4 with three positive equilib-
ria, is excluded. However, the situation depicted on the right in Figure 4, showing
two positive equilibria, can occur. For instance, consider the following values of the
parameters:

m1 = 8, m2 = 4, K1 = L2 = 1, L1 = K2 = 2, sin1 = sin2 = 3. (13)

Then

D1 = 6/5, D3 = 8/9, D2 = 3/5.

There is another bifurcation value, D = 1, which correspond to the case when the
graphs Γ1 and Γ2 are tangent: see Figure 7. For this example, five cases can occur
(see Figure 6):

Proposition 4. Consider system (3) where f1 and f2 are given by (12) with pa-
rameters (13).
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•

•

•

•
F 1

F 2

F ∗

F 0

D < 3/5

•

••
F 1

F ∗

F 0

3/5 < D < 8/9

•

•

•

•
F 1

F ∗

1

F ∗

2

F 0

8/9 < D < 1

••
F 1F 0

1 < D < 6/5

•
F 0

6/5 < D

Figure 6. Relative positions of the isocline ẋ1 = 0 (in red) and
ẋ2 = 0 (in green).

1. If D < 3/5, then the system has four equilibria: F 0 which is an unstable node,
F 1 and F 2, which are saddle points, and F ∗, which is a stable node.

2. If 3/5 < D < 8/9, then the system has three equilibria: F 0 and F 1, which are
saddle points and F ∗, which is a stable node.

3. If 8/9 < D < 1, then the system has four equilibria: F 0 and F ∗

1 , which are
saddle points and F 1 and F ∗

2 , which are stable nodes.
4. If 1 < D < 6/5, then the system has two equilibria: F 0, which is a saddle

point, and F 1 which is a stable node.
5. If D > 6/5, then the system has one equilibrium: F 0, which is a stable node.

•

••
F 1

F ∗

F 0

D = 3/5

•

••
F 1

F ∗

F 0

D = 8/9

•

••
F 1

F ∗

F 0

D = 1

•
F 0

D = 6/5

Figure 7. The non-hyperbolic cases. When D = 6/5, F 0 and F 2

coalesce. When D = 8/9, F ∗

1 and F 1 coalesce (saddle node bifurca-
tion). When D = 1, F ∗

1 and F ∗

2 coalesce (saddle node bifurcation).
When D = 6/5, F 0 and F 2 coalesce.

5.3. Numerical simulations of the bistability case. Consider system (3) where
f1 and f2 are given by (12) with parameters (13). According to Proposition 4, in
the case when 8/9 < D < 1, a bistability phenomenon occurs. According to the
initial condition, both species can coexist at equilibrium F ∗

2 , or species x2 goes
to extinction at equilibrium F 1. This phenomenon is illustrated numerically, with
D = 0.95, in Figure 8.
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0 1 2 3
0

1

2

3

4

5

6

0 1 2 3
0

1

2

3

4

5

6

F 1

F ∗

1

F ∗

2

F 1

F ∗

1

F ∗

2

F 0

Figure 8. Numerical solutions in the bistability case D = 0.95
and parameter values (13). On the left, the separatrix (in green) of
the saddle point F ∗

1 separate the domain S into two regions which
are the basins of attraction of the boundary equilibrium point F 1

and the positive equilibrium point F ∗

2 . In the center, the phase
portrait. On the right, the isoclines.

Consider again system (3) where f1 and f2 are given by (12) with parameters
now given by

m1 = 8, m2 = 7, K1 = K2 = L2 = 1, L1 = 3/2, sin1 = sin2 = 3. (14)

The bifurcation values are D1 = 4/3 and D2 = 21/16. If D > max(D1, D2), for
instance for D = 3/2, one obtains a bistability phenomenon corresponding to case
(3) of Theorem 1, with two positive equilibria. Depending on the initial conditions,
both species can coexist at equilibrium F ∗

2 , or both species go to extinction at
equilibrium F 0. This phenomenon is illustrated numerically in Figure 9.

0 1 2 3
0

1

2

3

4

5

6

0 1 2 3
0

1

2

3

4

5

6

F 0

F ∗

1

F ∗

2

F ∗

1

F ∗

2

F 0

Figure 9. Numerical solutions in the bistability case D = 1.5 and
parameters values (14). On the left, the separatrix (in green) of the
saddle point F ∗

1 separate the domain S in two region which are the
basins of attraction of the boundary equilibrium point F 0 and the
positive equilibrium point F ∗

2 . On the center, the phase portrait.
On the right, the isoclines.

6. Conclusions. We have proposed a mathematical model involving a syntrophic
relationship of two bacteria. More precisely, we have considered a model of an
ecosystem involving two bacteria in a chemostat where there are two resources in
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the input. For one of the populations, one resource is needed for growth and the
other is inhibitory; for the other population, in contrast, the roles of the resources
are reversed. One of the populations produces as a by-product the resource that is
inhibitory to itself but needed for growth by the other population. The analysis of
this model predicts that, under general and natural assumptions of monotonicity
on the functional responses, the stable asymptotic coexistence of the two bacteria
is possible. Extending the model studied in [7] by considering that there may have
some S2 in the influent and using a more general class of kinetics functions, we
show that the qualitative behavior of the system can be significantly modified. In
particular, if Sin

2 > 0, the situation where X1 is washed out but where X2 > 0
is possible. In addition, positing the possible inhibition of the growth of X2 by
S1 yields bistability. This work offers the perspective of providing an “elegant”
formulation for synthesizing all results concerning the analysis of two-steps models
of bioprocesses currently used for monitoring and control purposes.

Appendix A. The anaerobic digestion process : An example of a syn-

throphic relationship.

“Methane fermentation” or “anaerobic digestion” is a process that converts organic
matter into a gaseous mixture composed mainly of methane and carbon dioxide
(CH4 and CO2) through the action of a complex bacterial ecosystem (cf. Fig.10). It
is often used for the treatment of concentrated wastewaters or to convert the excess
sludge produced in wastewater treatment plants into more stable products. There
is also considerable interest in digesters fed with plant biomass, since the methane
produced can be used profitably as a source of energy. It is usually considered that a
number of metabolic groups of bacteria are involved sequentially in the fermentation
process.

One specific characteristic of the anaerobic process is that within the involved
groups of bacteria, there exist populations exhibiting obligatory mutualistic rela-
tionships. Such a syntrophic relationship is necessary for the biological reactions to
be thermodynamically possible. In the first stages of the reactions (which together
are called “acidogenesis”), some hydrogen is produced. However, in El Hajji et
al.[7], this production of hydrogen at this stage was ignored (compare Fig.10 with
Fig.1 of [7]). This hypothesis constitutes the first novelty with respect to [7]. It
is to be noticed that an excess of hydrogen in the medium inhibits the growth of
another bacterial group called “acetogenic bacteria”. Their association with H2-
consuming bacteria is thus necessary for the second stage of the reaction to occur.
Such a syntrophic relationship has been pointed out in a number of experimental
works (cf. for instance the seminal work by [4]). Let us consider the subsystem
of the anaerobic system where the VFA (for Volatile Fatty Acids) are transformed
into H2, CH4 and CO2. The corresponding biological reactions can be formal-
ized as a first bacterial consortium X1 (the acetogens) transforming S1 (the VFA)
into S2 (the hydrogen) and acetate (cf. Fig.10). Then, a second species X2 (the
hydrogenotrophic-methanogenic bacteria) grows on S2. In practice, acetogens are
inhibited by an excess of hydrogen and methanogens by an excess of VFA. Thus,
it is further assumed that X1 is inhibited by S2 and X2 by S1. The last inhibiting
relationship constitutes the second innovation with respect to [7].
This situation is precisely that dealt with by the model (1).
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Figure 10. Anaerobic fermentation process

Appendix B. Proofs.

Proof of Proposition 1. The invariance of R4
+ is guaranteed by the fact that :

i. s1 = 0 ⇒ ṡ1 = D sin1 > 0,
ii. s2 = 0 ⇒ ṡ2 = D sin2 + f1(s1, 0) x1 > 0,
iii. xi = 0 ⇒ ẋi = 0 for i = 1, 2.
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Next, it must be proved that the solution is bounded. Let z1 = s1 + x1, then
ż1 = −D(z1 − sin1 ) from which it follows that :

s1(t) + x1(t) = sin1 + (s1(0) + x1(0)− sin1 )e−Dt . (15)

Thus s1(t) and x1(t) are positively bounded. Let z2 = s2 + x2 − x1, then ż2 =
−D(z2 − sin2 ) from which it can be deduced that:

s2(t) + x2(t)− x1(t) = sin2 + (s2(0) + x2(0)− x1(0)− sin2 )e−Dt . (16)

Thus s2(t) and x2(t) are positively bounded. Hence, the solution is defined for all
positive t. From (15) and (16), it can be deduced that the set Ω is an invariant set
which is an attractor.

Proof of Lemma 1. The Jacobian matrix J of (3), at point (x1, x2), is given by:

J =











−
∂f1
∂s1

x1 +
∂f1
∂s2

x1 + f1 −D −
∂f1
∂s2

x1

−
∂f2
∂s1

x2 +
∂f2
∂s2

x2 −
∂f2
∂s2

x2 + f2 −D











,

where the functions are evaluated at
(

sin1 − x1, s
in
2 + x1 − x2

)

. The Jacobian matrix

at F 0 is given by:

J0 =





f1(s
in
1 , s

in
2 )−D 0

0 f2(s
in
1 , s

in
2 )−D



 .

The eigenvalues are D1 −D and D2 −D. Thus, if D > max(D1, D2), then F
0 is

a stable node. It is an unstable node if D < min(D1, D2). It is a saddle point if
min(D1, D2) < D < max(D1, D2).

Proof of Lemma 2. An equilibrium F 1 = (x̄1, 0) exists if and only if x1 = x̄1 ∈
]0, sin1 [ is a solution of (4). Let ψ1(x1) = Φ1(x1, 0). Then

ψ′

1(x1) = −
∂f1
∂s1

(sin1 − x1, s
in
2 + x1) +

∂f1
∂s2

(sin1 − x1, s
in
2 + x1).

By assuming H3, ψ′

1(x1) < 0. Since ψ1(0) = D1, and ψ1(s
in
1 ) = 0, equation (4)

admits a solution in the interval ]0, sin1 [ if and only if D < D1. If this condition is
satisfied then (4) admits one single solution since the function ψ1(.) is decreasing
(see Figure 2). The Jacobian matrix at F 1 is given by:

J1 =







−
∂f1
∂s1

x̄1 +
∂f1
∂s2

x̄1 −
∂f1
∂s2

x̄1

0 f2 −D






,

where the functions are evaluated at (sin1 − x̄1, s
in
2 + x̄1). The eigenvalues are

f2(s
in
1 − x̄1, s

in
2 + x̄1)−D = Φ2(x̄1, 0)−D, and −

∂f1
∂s1

x̄1 +
∂f1
∂s2

x̄1 < 0.

Thus F 1 is a saddle point if Φ2(x̄1, 0) > D. If D1 < D2, this condition is satisfied
for all D < D1. If D2 < D1, it is satisfied for all 0 < D < D3 (see Figure 2). F 1 is
a stable node if D3 < D < D1 and D2 < D1.
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Proof of Lemma 3. An equilibrium F 2 = (0, x̃2) exists if and only if x2 = x̃2 ∈
]0, sin2 [ is a solution of (5). Let ψ2(x2) = Φ2(0, x2). Then

ψ′

2(x2) = −
∂f1
∂s2

(sin1 , s
in
2 − x̃2).

By assuming H4, ψ′

2(x2) < 0. Since ψ2(0) = D2, and ψ2(s
in
2 ) = 0, equation (5)

admits a solution in the interval ]0, sin2 [ if and only if D < D2. If this condition is
satisfied, then (5) admits one single solution since the function ψ2(.) is decreasing
(see Figure 3). The Jacobian matrix at F 2 is given by:

J2 =







f1 −D 0

−
∂f2
∂s1

x̃2 +
∂f2
∂s2

x̃2 −
∂f2
∂s2

x̃2






,

where the functions are evaluated at (sin1 , s
in
2 − x̃2). The eigenvalues are

f1(s
in
1 , s

in
2 − x̃2)−D = Φ1(0, x̃2)−D, and −

∂f2
∂s2

x̃2 < 0.

Thus F 2 is a saddle point if Φ1(0, x̃2) > D. If D2 < D1, this condition is satisfied
for all D < D2. If D1 < D2, it is satisfied for all 0 < D < D4 (see Figure 3). F 2 is
a stable node if D4 < D < D2 and D1 < D2.

Proof of Lemma 4. The Jacobian matrix at F ∗ is given by:

J∗ =











−
∂f1
∂s1

x∗1 +
∂f1
∂s2

x∗1 −
∂f1
∂s2

x∗1

−
∂f2
∂s1

x∗2 +
∂f2
∂s2

x∗2 −
∂f2
∂s2

x∗2











,

where the derivatives are evaluated at (sin1 − x∗1, s
in
2 + x∗1 − x∗2). Notice that

tr(J∗) = −
∂f1
∂s1

x∗1 +
∂f1
∂s2

x∗1 −
∂f2
∂s2

x∗2 < 0

and

det(J∗) = x∗1x
∗

2

[

∂f1
∂s1

∂f2
∂s2

−
∂f1
∂s2

∂f2
∂s1

]

= x∗1x
∗

2

∂f1
∂s2

∂f2
∂s2

[F ′

2(x
∗

1)− F ′

1(x
∗

1)] .

Given assumptions H3 and H4, the product of the partial derivatives is negative.
Therefore, the determinant is positive if F ′

1(x
∗

1) > F ′

2(x
∗

1) and negative otherwise.
Hence, the equilibrium F ∗ = (x∗1, x

∗

2) is a stable node if F ′

1(x
∗

1) > F ′

2(x
∗

1) and a
saddle point otherwise.

Proof of Theorem 1. We give the details of the proof in the case where

D < min(D1, D2) or D > max(D1, D2).

The other cases can be proved similarly. The washout equilibrium point F0 always
exists. According to Lemma 1, it is an unstable node if D < min(D1, D2) and a
stable node for D > max(D1, D2).

Consider first the case D < min(D1, D2). Lemmas 2 and 3 show that the system
admits two boundary equilibria F1 and F2, which are saddle points. Since Γ2 starts
on the left side of Γ1 and ends on its right, the graphs Γ1 and Γ2 have at least
one intersection. In the generic case, where all intersections are transverse, the
graphs can have an odd number of intersections (see Figure 4, center). According
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to Lemma 4, these intersections are alternatively saddle points and stable nodes.
The one at the very left of these positive equilibria is a stable node since at this
point the condition F ′

1(x
∗

1) > F ′

2(x
∗

1) is satisfied.
Consider now the case D > max(D1, D2). Lemmas 2 and 3 show that the system

admits no boundary equilibria F1 and F2. Since Γ2 starts and ends on the right side
of Γ1, the graphs Γ1 and Γ2 can either intersect or not. In the generic case, where
all intersections are transverse, the graphs can have an even number of intersections
(see Figure 4, right). According to Lemma 4, these intersection are alternatively
saddle points and stable nodes. The one at the very left of these positive equilibria
is a saddle point since at this point the condition F ′

1(x
∗

1) < F ′

2(x
∗

1) is satisfied.

Proof of Proposition 2. Consider a trajectory of (3) belonging to S. Let us trans-
form the system (3) through the change of variables ξ1 = ln(x1), ξ2 = ln(x2). Then
one obtains the following system:







ξ̇1 = h1(ξ1, ξ2) := f1(s
in
1 − eξ1 , sin2 + eξ1 − eξ2)−D,

ξ̇2 = h1(ξ1, ξ2) := f2(s
in
1 − eξ1 , sin2 + eξ1 − eξ2)−D.

(17)

This gives
∂h1
∂ξ1

+
∂h2
∂ξ2

= −eξ1
∂f1
∂s1

+ eξ1
∂f1
∂s2

− eξ2
∂f2
∂s2

< 0.

From the Dulac criterion [13], it can be deduced that the system (17) has no periodic
trajectory. Hence (3) has no periodic orbit in S.

Proof of Theorem 2. We give the details of the proof in the case when

D < min(D1, D2).

The other cases can be proved similarly. Let x1(0) > 0, x2(0) > 0 and ω the ω-limit
set of (x1(0), x2(0)). ω is an invariant compact set and ω ⊂ S̄. Assume that ω
contains a point M on the x1x2 axis :

• M cannot be F 0 because F 0 is an unstable node and cannot be a part of the
ω-limit set of (x1(0), x2(0)),

• If M ∈]x̄1, s
in
1 ] × {0} (respectively M ∈ {0}×]x̄2, s

in
2 ]). As ω is invariant

then γ(M) ⊂ ω, which is impossible because ω is bounded and γ(M) =
]x̄1,+∞[×{0} (respectively γ(M) = {0}×]x̄2,+∞[),

• If M ∈]0, x̄1[×{0} (respectively M ∈ {0} ,×]0, x̄2[). ω contains γ(M) =
]0, x̄1[×{0} (respectively γ(M) = {0}×]0, x̄2[). As ω is a compact, then it
contains the adherence of γ(M), [0, x̄1] × {0} (respectively {0} × [0, x̄2]). In
particular, ω contains F 0 which is impossible,

• IfM = F 1 (respectivelyM = F 2). ω is not reduced to F 1 (respectively to F 2).
By the Butler-McGehee theorem, ω contains a point P of (0,+∞)×{0} other
than F 1 (respectively of {0} × (0,+∞) other than F 2), which is impossible.

Finally, the ω-limit set does not contain any point on the x1x2 axis. System (3)
has no periodic orbit inside S. Using the Poincaré-Bendixon Theorem [13], F ∗ is a
globally asymptotically stable equilibrium point for system (3).

Proof of Theorem 3. Let (s1(t), x1(t), s2(t), x2(t)) be a solution of (2). From (15)
and (16) it can be deduced that

s1(t) = sin1 − x1(t) +K1e
−Dt and s2(t) = sin2 + x1(t)− x2(t) +K2e

−Dt,
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where K1 = s1(0) + x1(0) − sin1 and K2 = s2(0) + x2(0) − x1(0) − sin2 . Hence
(x1(t), x2(t)) is a solution of the nonautonomous system of two differential equations







ẋ1 =
[

f1
(

sin1 − x1 +K1e
−Dt, sin2 + x1 − x2 +K2e

−Dt
)

−D
]

x1,

ẋ2 =
[

f2
(

sin1 − x1 +K1e
−Dt, sin2 + x1 − x2 +K2e

−Dt
)

−D
]

x2.
(18)

This is an asymptotically autonomous differential system which converge towards
the autonomous system (3). The set Ω is an attractor of all trajectories in R

4
+ and

the phase portrait of system reduced to Ω (3) contains only locally-stable nodes,
unstable nodes, saddle points and no trajectory joining two saddle points. Thus
Thiemes’s results [14] can be applied and the conclusion reached that the asymp-
totic behaviour of the solution of the complete system (18) is the same as the
asymptotic behaviour described for the reduced system (3): the main result can
then be deduced.

Proof of Proposition 3. Global attractivity follows from Theorem 2.
1. If D < D3 then case (2.c) of Theorem 1, with one single positive equilibrium,
holds.
2. If D3 < D < D1, then (2.d) of Theorem 1, with two positive equilibria, holds.
3. If D > D1, then case (3) of Theorem 1, with no positive equilibrium, holds.

Proof of Proposition 4. Global attractivity follows from Theorem 2.
1. If D < 3/5 then case (1) of Theorem 1, with one single positive equilibrium,
holds.
2. If 3/5 < D < 8/9, then case (2.c) of Theorem 1, with one single positive
equilibrium, holds.
3. If 8/9 < D < 1, then case (2.d) of Theorem 1, with two positive equilibria,
holds.
4. If 1 < D < 6/5, then case (2.d) of Theorem 1, with no positive equilibrium,
holds.
5. If D > 6/5, then case (3) of Theorem 1, with no positive equilibrium, holds.
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