N
N

N

HAL

open science

Analysis of a mathematical model of syntrophic bacteria
in a chemostat
Miled El Hajji, Tewfik Sari, Jérome Harmand

» To cite this version:

Miled El Hajji, Tewfik Sari, Jérome Harmand. Analysis of a mathematical model of syntrophic bacteria

in a chemostat. 2010. hal-00487189v1

HAL Id: hal-00487189
https://hal.science/hal-00487189v1

Preprint submitted on 28 May 2010 (v1), last revised 7 Mar 2024 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00487189v1
https://hal.archives-ouvertes.fr

Analysis of a mathematical model of syntrophic bacteria in achemostat

Miled EL-HAJJl - Tewfik SARI - Jérdbme HARMAND

Received: 2010 / Accepted: date

Abstract A mathematical model involving a syntrophic relationshgiieeen two populations of bacteria in

a continuous culture is proposed. A detailed qualitativelysis is carried out. The local and global stability
analysis of the equilibria are performed. We demonstratdeugeneral assumptions of monotonicity, relevant
from an applied point of view, the asymptotic stability oétpositive equilibrium point which corresponds to
the coexistence of the two bacteria. A syntrophic relatigm#n the anaerobic digestion process is proposed as
a real candidate for this model.

Keywords Syntrophic relationshipMathematical modelling Coexistence Asymptotic stability: Anaerobic
digestion

1 Introduction

A synthrophic relationship between two organisms refes situation where the species exhibit mutualistism
but where, at the opposite of what happens in a purely syiohietationship, one of the species can grow
without the other. Such a situation can be mathematicalimétized as follows. Assume that a first species
denotedX; grows on a substratg, forming an intermediate produ&. This intermediate product is required
by a second specie$ to grow. The limiting substrate of the second bacteria beéfmegproduct of the first
bioreaction, the second bacteria cannot grow if the firstiom®t present.

Such interactions are quite common in nature: it is why a rematb models have already been proposed
in the literature. In Katsuyamat al, a model involving two mutualistic species is proposed fesatibing
pesticide degradation, cf. [9] while a more general casensiclered in [10]. Since mutualism involves gener-
ally species interacting through intermediate produdisgiostudies consider mutualistic relationships in food
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webs. For instance, Bratbak and Thingstad, or more receftita and Nakajima considered the mutualism
between phytoplankton and bacteria through the carboreggorby the phytoplankton, cf. [2], [1]. A model
studied by Freedmaat al. was proposed to explain the observed coexistence of sudiespélowever, in
the previous studies the models are very specific. In pdaticthe mathematical analyses of the models are
realized for specific growth rates that are explicitely giyan most cases as Monod functions).

To extend the study of mutualism to more general systems,ave hecently considered more general
assumptions notably with respect to the growth rate funsticonsidered in the models in using qualitative
hypotheses, cf. [5] . Furthermore, it was assumed that teeiegpX; may be inhibited by the produ& that
it produces itself while the specieé may be inhibited by an excess of substr&e An example of such
interactions is given by the anaerobic digestion in whichualistic relationships allow certain classes of
bacteria to coexist.

In the actual paper, we revisit the model proposed in [5] insidering two main changes which signifi-
cantly further extend the range of practical situationseted by the model. First, we assume that there is some
S in the influent. In other terms, the limiting substr&eon which the specieX; grows is not only produced
by the specie¥ but is also available even if the speciésis not present. The second modification of the
model is that the second species is supposed to be inhibitad bxcess of, the limiting substrate on which
the first species grows. To illustrate the usefulness of sxébnsions of the original model by El Hajji et al.
[5], the biological interpretation of these hypothesesimithe context of the anaerobic process is given in the
appendix.

The paper is organized as follows. In section 2, we proposedified system of four differential equations
from the original model in [5]. The positive equilibria aretdrmined and their local and global stability prop-
erties are established. The global asymptotic stabilisyilte are demonstrated through the index of Poincaré
proving the uniqueness of the positive equilibrium poihig Dulac’s criterion that rules out the possibility
of the existence of periodic solutions for the reduced playatem, the Poincaré-Bendixon Theorem and the
Butler-McGehee Lemma. In particular, we show that for evaogitive initial conditions, and under general
and natural assumptions on the substrate input concem@{ﬁi, the intermediate product input concentration
SZ” and on the dilution rat®, the solutions converge to the positive equilibrium poittieth corresponds to
the coexistence of the two bacterial species as observediprocesses. Simulations are presented in Section
3, an example of a syntrophic relationship is given in secfi@as a candidate for this model while concluding
remarks are given in Section 5.

2 Mathematical model and results
2.1 Mathematical model

Let S, X1, S andX; denote, respectively, the concentrations of the substradirst bacteria, the intermediate
product, and the second bacteria present in the reactonat.tWe neglect all species-specific death rates and
take into account the dilution rate only. Hence our modelasaibed by the following system of ordinary
differential equations :

S =D(S!—S1) — kapa (S, )%

X1 = pt(S1, )% — DXy ,
) . 1)
S =D(S) - ) —kopt2(S1, )Xo + ki1 (St, ) Xa

Xo = p(S1, )Xo — DXo .

WhereS!" > 0 denotes the input concentration of substr8fe;> 0 denotes the input concentration of the in-
termediate product anid > 0 is the dilution rate.
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The functional response of each speqigsis, : Ri — R, satisfies :
Al g, o R2 — R, of classé™?
A2.111(0,%) =0, IJz(Sl 0)=0, V(S.,S)eR?,

07111

Sl(slsz>>0 Sz(slsg 0, V(S,S)eR?,
0;12 ol 2
43g (%) <0 F(51.%) >0 ¥ (S,%) €RE.

HypothesisA2 expresses that no growth can take place for spejesithout the substrat& and that
the intermediate produ&; is obligate for the growth of specieé. HypothesisA3 means that the growth of
speciesX; increases with the substra® and it is inhibited by the intermediate produgt that it produces.
HypothesisA4 means that the growth of speciésincreases with intermediate produtproduced by species
X1 while itis inhibited by the substra® . Note that there is a syntrophic relationship between tleedmecies.

We first scale system (1) using the following change of vadgisiland notations :

kq

S =—
1 k3

S, x=kXi, =9, X =kX, §{1:E—;SP» =9
The dimensionless equations thus obtained are :

§ =D(s] —s1) — fi(s1, )%

X1 = fi(s1,82)x1 —Dxq ,

2
& = D(s) — ) — fa(s1, )% + fa(st, )%

X2 = f2(s1,%)%2 — Dxo .

Where the functiondy, fo: R2 — R, are defined by

ks
fi(s1,82) = ul( 8132) and fa(s1,%2) = uz( 31,52)

These functions satisfy the following assumptions :
H1. f, f: R2 — R, of classé?
H2. f1(0,s) =0, f2(s1,0) =0, V(s1,%) €R?

af of
H3. 0_1(51 ) >0, as;(sl,sQ)<0, V (s1,%) €R2

dfz 0f2 2
H4. 75, (s1,%) <0, 032(31,32)>0, V(s1,%2) € RY .

It is easy to see thd&i, the closed non-negative conelf, is positively invariant under the solution map
of system (2). More precisely

Proposition 1 For every initial condition inRi, the solution of system (2) has positive components and is
positively bounded and thus is defined for every positiveé.set

Q= {(sl,xl,SZ,Xz) eERY: s 4x =9, 52+Xz:x1+§2”}

is a positive invariant attractor of all solutions of systéa).
Proof: The invariance oRi is guaranteed by the fact that :

. s=0=%=Ds">0,
i. 5=0=%=Ds)+ f1(5,0) x; >0,
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iii. i=0=x=0fori=12.
Next we have to prove that the solution is bounded.zet s; + x1, thenz; = —D(z; — d{‘) from which one
deduces : _

sp(t) +xq(t) = S+ (51(0) +x1(0) — e Pt . ©)
Thuss(t) andx, (t) are positively bounded. Letg =S+ X — X1, thenz, = —D(z, — sﬂ'Z”) from which one
deduces:

Sp(t) + ot =5+ (2(0) +%(0) -)e (4)
Thuss,(t) andx(t) are posmvely bounded. Hence, the solution is deflned ﬂqncailtivet. From (3) and (4)
we deduce that the sé& is an invariant set which is an attractor. |

2.2 Restriction on the plane

The solutions of system (2) are exponentially convergematds the se@ and we are interested in the asymp-
totic behavior of these solutions. It is enough to resttiet $study of the asymptotic behaviour of system (2) to
Q. In fact, thanks to Thieme’s results [12], the asymptotibdweour of the solutions of the restriction of (2) on
Q will be informative for the complete system, see Section 1 3his section we study the following reduced
system which is simply the projection on the plamg, xz), of the restriction of system (2) of2.

X1 = [f1(§ln—X1,§2n+X1—X2) —D} X1,
Xo =

- [fz(ﬁ_xlﬂ‘?";"'xl_xz) —D} X2 .

Thus, for (5) the state-vectoa, x2) belongs to the following subset of the plane, see Fig. 1 :

®)

S ={(x,%) ERZ:0<x <SP0<x<xi+5}.

§'1n+§2n ..............

s

Fig. 1 The set¥

We study the equilibria of system (5) which we label as
=(0,0), Fl=(x,0), F?2=(0,%), and F*=(x,x).

Notice that=®, F1,F2 andF* are the project of the equilibrium poinE® = (s, 0,81, 0),E* = (51,1, S5, 0), E2
s‘,'1 0,%,%2) andE" = (s},X], S5, %;5) of system (2) on the plangq, xz).

LetDy = fy (s, ), Dp = fo(SP — X1, S0 +X1), D3 = f1 (s, S — %) andDy4 = (s, <) . Notice thatD; < D3
andD4 < Do.

The trivial equilibrium pointFC always exists. It nature is given in the following lemma.
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Lemma 1 If D >max(D1,D4) then P is a stable node. inin(D1,D4) < D < max(D1,D4) then F° is a saddle
point. If D < min(Dy,D4) then F¥ is an unstable node.

Proof. The Jacobian matrix], at a point(xq, x2) is given by :

df]_ 0f1 dfl
-1 it f1—D hilt
051Xl+ (7SQXl+ 1 052Xl
J=
dfz 0f2 d 2
_T 2y, 22 — 2 2%+ f,—D
aSlX + 95, ) Xo+ T2

The eigenvalues af@; — D andD4 — D. Thus, ifD > max(Dj,Da) thenFO is a stable node. It is an unstable
node ifD < min(Dj,Dy). It is a saddle point if mifD1,D4) < D < maxD1,Dy). |
The conditions of existence of the boundary equiliitfaandF? are stated in the following lemmas.

Lemma 2 An equilibrium F* exists if and only if D< Dy. If it exists then it the unique equilibrium on the
positive X semi-axis. It is a saddle point if & D,, and a stable node if B> D».

Proof. An equilibrium F* exists if and only if; €]0, ][ is a solution of
fu(s] — %1, + %) = D. ©

Let g (x1) = (8P —x1,80 +x1) — D. Since](x1) <0, Y1(0) = D1 — D, gu(s]") = —D < 0, equation (6)
admits a positive solution if and only B < D1. If this condition is satisfied then (6) admits a unique dolut
since the functionp;(.) is decreasing.
The Jacobian matrix & is given by :

ofi_ 0fi_ ofi_

| e 95

0 f,—D
where the functions are evaluatec{é{f — X1, §2“ +X1). The eigenvalues af@, — D and— %x_l + %x_l < 0.
ThusF! is a saddle point iD > D,. It is a stable node if the inequality is reversed. > > |

Lemma 3 An equilibrium P exists if and only if D< Dy. If it exists then it the unique equilibrium on the
positive % semi-axis. If it exists then it is a saddle point ikDD3, and a stable node if D D3.

Proof. An equilibriumF2 exists if and only if €]0,s| is a solution of

fo(sP', s — %p) = D. @)

Let Yo (x2) = fo(SP, S —x2) — D. Sinceys(%2) < 0, Yr(0) = Da—D, Yp(sh) = —D < 0, equation (7) admits
a positive solution if and only iD < Dg4. If this condition is satisfied then (7) admits a unique dolusince
the functionys(.) is decreasing. The Jacobian matrixatis given by :

f1—D 0

2=
AP PO
07312 0522 0322
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. o . f .
where the functions are evaluatedsif, s} — %>). The eigenvalues af@s — D and—g—;iz <0.ThusF2is a
saddle point iD < Dg. It is a stable node if the inequality is reversed. |

The nature of equilibriunfr* is given in the following lemma
Lemma 4 If an equilibrium F* exists then it is exponentially asymptotically stable.
Proof. The Jacobian matrix &~ is given by :

df1 W 0f1 of1_,

20 X1+ 5— 052 Exl
J =
ofy , dfx ., 0fy ,
—ZEXZ‘F EXZ —Ex
Notice that
N 0f2 of o of1 , afy of; & afy
det(\]) 082 ( dS l+dSQ )— 052)(1( (951 2+052 )>0
and of of of
* 2 x
tr(J” ):—Zd—si 1+0_52X1_EX2<0
thenJ* admits two eigenvalues with negative real part. Then, iXists,F* is exponentially stable. |

Concerning positive equilibria, notice that an equililnié * exists if and only if(x;,x5) € .# is a solution
of

f(S] =X, 5 +34 — %) = fa(S =i, 85 +X — %) =D..
It is not easy to discuss the number of solutions of this setqofations. In the next section we will use the
index theory to obtain the number of positive equilitiia. Notice that ifF* andF! exist then

fu(sP =4, &5 +54) < fu(ST =4, 5+ ) =D = fa(s] — %1, 5] +5a).

Hencey: () < g1 (X1), from where one obtains @ x; < x; < s, If F* andF? exist then
fo(ST, 5 =) < fa(S] — X4, & +%4 —%3) =D = fo(S, 5§ — %a).

Hencey,(x5) < Yr(X2), from where one obtains @ %, < x5 < s 4 s

2.3 Main result

The number of equilibria of (5) and their nature are sumneatiin the next Theorem.

Theorem 1

1. If D < min(D1,D4) then (5) admits four equilibria : B which is an unstable node,*rand F? which are
saddle points and Fwhich is a stable node.
2. Ifmin(D1,D4) < D < max(Dj,Dy), four subcases must be distinguished
— If D1 < D4 and D; < D < min(D3,Dg4) then (5) admits three equilibria : %and F? which are saddle
points and F which is a stable node.
— If Dy < D4 and Dz < D < Dy then (5) admits two equilibria : Ewhich is a saddle point and%which
is a stable node.
— 1f D4 < D; and Dy < D < min(Dy,Dy) then (5) admits three equilibria : Fand F* which are saddle
points and F which is a stable node.
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— If D4 < Dy and D, < D < Dy then (5) admits two equilibria : Bwhich is a saddle point andFwhich
is a stable node.
3. If D > max(D1, D) then (5) admits one equilibrium :%which is a stable node.

Proof. We must show that the positive equilibriuRt is unique when it exists. For this purpose we use the
index theory. Le® be a small enough positive constant. Let

Ts={(x1, %) ER? 1 —5<x <s]' and-d<x <X +S}.

Consider the vector fiel@ on.#5 defined as follows :

(fu(S) — X1, S0+ X1 — %) —D)xg
Glxaxe)=| _
(fa(s]' —x1, 5] +x1 — x2) —D)xz

where f; and f, are two%? functions prolonging respectively functiorfs and f, on.#s. Assume that the
vector fieldG hasn singular pointdF*,i=1---n.

1. Assume thab < min(D1, D4). From the previous lemmas the system has three singulatsgefinF ! and
F2 and possiblyn equilibria F*, i = 1---n. Define the Jordan curvé = 9.7 U%(F°,8) U% (F,6)U
% (F2,5) which surrounds all singular points of the vector fi@dThe winding number o on J equals
the sum of the indexes of these singular points. SF2és an unstable node, of index E! andF2 are
saddle points, of index -1 arkgf', i = 1-- - n, are stable nodes, of index 1. The winding number of the vecto
field G on the closed curvéis equal to 0, see Fig. 3 (a). Thus-2+ n = 0, which givesn= 1, from where
the positive equilibriunt* exists and is unique.

2. Assume that mifD;,D4) < D < max(D1,Dg)

— If D1 < D4 andD; < D < min(D3,D4). From the previous lemmas the system has two singular points
FO andF2 and possiblyn equilibria F*, i = 1---n. Define the Jordan curvé = 9.7 U%(F°,6) U
% (F?,5) which surrounds all singular points of the vector fi@dSinceF° andF? are saddle points,
of index -1 and~*, i = 1---n, are stable nodes, of index 1. The winding number of the vdigl G
on the closed curvé is equal to -1, see Fig. 3 (b). Thu2+n = —1, which givesn = 1, from where
the positive equilibriunt* exists and is unique.

— If D1 < D4 andD3 < D < D4. From the previous lemmas the system has two singular psihend
F2 and possiblyn equilibria F*, i = 1---n. Define the Jordan cuné= 9.7 U%(F°,8) U%(F2,0)
which surrounds all singular points of the vector fi€dSinceF? is a saddle point, of index -E? is
a stable node, of index 1 arif, i = 1---n, are stable nodes, of index 1. The winding number of the
vector fieldG on the closed curvé is equal to 0, see Fig. 3 (¢). Thus-1L+n = 0, which givesn =0,
from where there is no positive equilibrium poirfs.

— If D4 < D; andD4 < D < min(D3,D>). From the previous lemmas the system has two singular points
FO andF?! and possiblyn equilibria F*, i = 1---n. Define the Jordan curvé = 0YU<€(F°,6) U
%”(Fl, &) which surrounds all singular points of the vector fi@dSinceF° andF? are saddle points,
of index -1 and~*, i = 1---n, are stable nodes, of index 1. The winding number of the vdigl G
on the closed curvd is equal to -1, see Fig. 3 (d). Thu2+n = —1, which givesn = 1, from where
the positive equilibriunt* exists and is unique.

— If D4 < D1 andD, < D < D;. From the previous lemmas the system has two singular pbihend
F1 and possiblyn equilibria F*, i = 1---n. Define the Jordan cuné= 9.7 U%(F°,8) U%(FL,0)
which surrounds all singular points of the vector fi&d SinceF? is a saddle point, of index -E1
is stable node, of index 1 arfe, i = 1---n, are stable nodes, of index 1. The winding number of the
vector fieldG on the closed curvé is equal to 0, see Fig. 3 (e). Thus-1L+n = 0, which givesn =0,
from where there is no positive equilibrium poirfs.
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@ (b) ©

FO Fl | FO Fl | FO |
— ¢ ° ° ~
ey |G

(d) (e) ()

Fig. 2 The winding number o6 onJ

3. Assume thab > max(D1, D4). From the previous lemmas the system has a singular B8iand possibly
nequilibriaF*, i = 1---n. Define the Jordan cund= 9.7 U% (F°, &) which surrounds all singular points
of the vector fieldG. SinceF? is a stable node, of index 1 aifg, i = 1.--n, are stable nodes, of index 1.
The winding number of the vector fiefd on the closed curvédis equal to 1, see Fig. 3 (f). Thusfin=1,
which givesn = 0, from where there is no positive equilibrium poirfts. |

As itis shown in [7], wherD < min(D1, Da), the theorem can be proved through an approach using the well
known Poincaré-Hopf index Theorem recalled hereafter.

Theorem 2 Let M be a compact orientable differentiable manifold. Léeva vector field on M with isolated
zeroes. If M has boundary, then v must be pointing in the idwarmal direction along the boundary. Then
we have the formula

i(index(p) ) = x(M)
where the sum of the indices is over all the isolated zerogsaofl x (M) is the Euler characteristic of M.

We identify the segmer{O,§1“] of the x-axis with the segmer{f),sﬁz”} of they-axis such the saddle poiRt =
(x1,0) corresponds to the saddle poft = (0,%>) using the following piecewise affine function :

=x1 if  x1€(0,X),

Xo = _
(%) +% if € (¥,9N).

X1
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Fig. 3 The cone#

The geometry is changed and one obtains a c#has image of” (see Fig. 3) with a vector field having one

source (the origirp; = Fy), one saddle pointh = F; the result of the identifying of the two saddle poifts

andF?) andn sinks (oi,i = 3,n+2). The Euler-Poincaré characteristic.&f is equal to 1. Using the Poincaré-

Hopf index Theorem one hast+ 1+ (—1) = 1, thenn = 1 from where the positive equilibrium poift* exists

and is unique.

The same proof will work in the case whéh> min(D1,Dy). In this case we simply identify the segment
n

[0, §1”] of thex-axis with the segmeri0, §2”] of they-axis using the affine functiox, = —<x;. We obtain a cone

A as image of¥ with a vector field having one sink (the orighy) andn sinks. Using the Poincaré-Hopf
index Theorem one has+ 1 = 1, thenn = 0 from where the positive equilibrium poift" does not exist.

2.4 Global analysis of the 2D system

Let us establish first that (5) admits no periodic orbit ndypgcle inside.”
Theorem 3 There are no periodic orbits nor polycycles insidé

Proof. Consider a trajectory of (5) belonging t&'. Let us transform the system (5) through the change of
variablesé; =In(x1), £&2 = In(xz). Then one obtains the following system :

& = hi(&,&) = fu(s) — €81, + 61 — e2) - D, .
{ & =hy(&1,8) = fo(s]! —efr, s + et — ef2) —D. ©
We have
Z—E+Z—Z = 513—; +eflg—;—e523—; <.
From Dulac criterion [11], we deduce that the system (8) fmapariodic trajectory. Hence (5) has no periodic
orbit in.7. |

Theorem 4 For every initial condition in?, the trajectories of system (5) converge asymptoticalty to

— F*if D <min(Dy,Dy).

F*if D1 < Dgand Dy < D < min(D3,Dy).
F*if D4 < D1 and Dy < D < min(Dy1,D3).
F2ifD; < D4 and Dy < D < Dy.
FlifD4<D1andD2<D<D1.

FOif max(Dl, D4) <D.
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Proof : We restrict the proof to the situation wheBe< min(D1,D4). The other cases can be done similarly.
Let x1(0) > 0,%2(0) > 0 andw the w-limit set of (x1(0),x2(0)). w is an invariant compact set andC ..
Assume thatv contains a poinM on thexi X, axis :

— M can't beF? becausdC is an unstable node and can't be a part ofdrtimit set of (x1(0),x2(0)),

— If M €]xq, 8] x {0} (respectivelyM € {0} x]%, S')). As w s invariant thery(M) C w which is impossible
becausev is bounded angi(M) =]xy, +[x{0} (respectivelyy(M) = {0} x]xz, +o0]),

— If M €]0,x1[x {0} (respectivelyM € {0} , x]0,X2[). w containsy(M) =]0,x1[x {0} (respectivelyy(M) =
{0} x]0,%2[). As w is a compact, then it contains the adherencg(d), [0,X;] x {0} (respectively{0} x
[0,%2]). In particular,w containsF° which is impossible,

— If M =F1 (respectivelyM = F2). wis not reduced t&?! (respectively td=2). By Butler-McGehee theorem,
w contains a poinP of (0, +o) x {0} other that-* (respectively of{ 0} x (0, +o0) other that-2) which is
impossible.

Finally, the w-limit set don’t contain any point on thex, axis. System (5) has no periodic orbit insidé.
Using the Poincaré-Bendixon Theorem [1R},is a globally asymptotically stable equilibrium point fgisséem
(5). [

Remark 1 One can also used the fact that the system (5) has no peridaitdnside.s . Sight nature of B, F1
and F2, the system (5) can’t have a cyclique chaind#. Using the Poincaré-Bendixon Theorem [11]; B
a globally asymptotically stable equilibrium point for sg (5).

2.5 Global analysis of the 4D system

Theorem 5 For every initial condition inR%, the trajectories of system (2) converge asymptotically to

- E*ifD < min(Dl,D4).

E*ifDi<Dgand D, <D< min(Dg,D4).
E* if D4 < D1 and Dy < D < min(Dy,D>).
E2if Dy < Dsand D3 < D < Da.

ElifD4 <Dy and D, < D < Dy.

EC if max(D1,D4) < D.

Proof : Let (si(t),x1(t),s(t),x2(t)) be a solution of (2). From (3) and (4) we deduce that

sit) = s —x(t) +Kie™ and sp(t) = $f +xa(t) —xe(t) + Ko ™,
whereK; = 1(0) +x1(0) — s' andKz = $(0) + %2(0) — x¢(0) — S'. Hence(x(t), %x(t)) is a solution of the
nonautonomous system of two differential equations :

{ % = [f1 (§1n —X1+Kle_Dt,§zn+X1—X2+Kze_Dt) —D]xq,
)

%o = [f2 (S —x1+Kie ™™, +x1 —xo + Koe ™) D] xo.

This is an asymptotically autonomous differential systehicl converge to the autonomous system (5). The
setQ is attractor of all trajectories iﬂRi and the phase portrait of system reduced2d5) contains only
locally stable nodes, unstable nodes, saddle points anthjeetbry joining two saddle points. Thus we can
apply Thiemes'’s results [12] and conclude that the asyngatehaviour of the solution of the complete system
(9) is the same that the asymptotic behaviour describechtordduced system (5) and the main result is then
deduced. |
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3 Numerical simulations

We performed numerical simulations using classical Monaatfions to express growth rates as it is often
the case in more specific biological models, taking into antohe substrate inhibition on the growth of the
organisms :

f1(s1,%) = ( %1 fa(s1,82) = %% (10)

1+s1)(2+%)’ (2+)(1+s1)

For él" =2 andsfz” =1, one can readily check that the functional responses @ty Assumptiond1 to
H4 with D4 =1 < D1 = 2. As it is shown in Fig. 4, ilD = 0.8 which satisfieD < Dy, the trajectories are

D4 Dl

0.8 12 18

Fig. 4 x1 — X2 behaviour

converging to the positive equilibriufi* = (1.75,2.5) and if D = 1.2 which satisfie®s < D < D1 < Dy ~
2.56, the trajectories are converging to the positive equilibh F* = (1.5,2) and if D = 1.8 which satisfies
D, ~ 1.692< D < Dy, the trajectories are converging to the equilibriéth~ (0.2087,0) and finally if D = 3
which satisfie® > D1, we have extinction of the two species.

4 The anaerobic digestion process : An example of a synthropdrelationship

"Methane fermentation" or "anaerobic digestion" is a psscthat converts organic matter into a gaseous mix-
ture mainly composed of methane and carbon dioxides(@ttl CQ) through the action of a complex bacterial
ecosystem (cf. Fig.5). It is often used for the treatmentarfoentrated wastewaters or to stabilize the excess
sludge produced in wastewater treatment plants into matg@desproducts. There is also considerable interest
in plant-biomass-fed digesters, since the produced metban be valorized as a source of energy. It is usually
considered that a number of metabolic groups of bacterianaotved sequencially.

One specific characteristic of the anaerobic process isviftain such groups, there exists populations
exhibiting obligatory mutualistic relationships. Suchyatsophic relationship is necessary for the biological
reactions to be thermodynamically possible. In the firspstef the reactions (called "acidogenesis"), some
hydrogen is produced. In El Hajji et al.[5], this productiofhydrogen at this reaction step was neglected
(compare Fig.5 with Fid. of [5]). This hypothesis constitue the first novelty with pest to [5]. It is to be
noticed that an excess of hydrogen in the medium inhibitgtbeth of another bacterial group called "ace-
togenic bacteria". Their association with ldonsuming bacteria is thus necessary for the second stéye of t
reaction to be fulfilled. Such a syntrophic relationship basn pointed out in a number of experimental works
(cf. for instance the seminal work by [3]). Let us considex #ubsystem of the anaerobic system where the
VFA (for Volatile Fatty Acids) are transformed intd,, CH; andCO2. We can formalize the corresponding
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Fig. 5 Anaerobic fermentation process

biological reactions as a first bacterial consortidmn(the acetogens) transformiry (the VFA) into S, (the
hydrogen) and acetate (cf. Fig.5). Then, a second spegiéthe hydrogenotrophic-methanogenic bacteria)
grows onS,. In practice, acetogens are inhibited by an excess of hgdregd methanogens by an excess of
VFA. Thus, it is further assumed th& is inhibitied by S, andX; by S;. The last inhibition relationship con-



stiute the second novelty with respect to [5]. This situatsprecisely the one considered within the model (1).
5 Conclusion

We have proposed a mathematical model involving a syntoopgtationship of two bacteria. The analysis of
the model is mainly based :

— on Dulac’s criterion that rules out the possibility of petio solutions for the reduced planar system,

— on the Poincaré-Hopf index Theorem to prove the existendeuamqueness of the positive equilibrium
point,

— on the application of the Poincaré-Bendixon Theorem,

— on Thieme’s results to prove that the stability propertiethe reduced planar system are linked with the
stability properties of the overall system.

It results from this analysis that, under general and nh@saumptions of monotonicity on the functional
responses, the stable asymptotic coexistence of the tweriemis possible.
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