
HAL Id: hal-00487102
https://hal.science/hal-00487102

Submitted on 27 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A step toward the Bermond-Thomassen conjecture
about disjoint cycles in digraphs

Nicolas Lichiardopol, Attila Pór, Jean-Sébastien Sereni

To cite this version:
Nicolas Lichiardopol, Attila Pór, Jean-Sébastien Sereni. A step toward the Bermond-Thomassen
conjecture about disjoint cycles in digraphs. SIAM Journal on Discrete Mathematics, 2009, 23 (2),
pp.979–992. �10.1137/080715792�. �hal-00487102�

https://hal.science/hal-00487102
https://hal.archives-ouvertes.fr


A step towards the Bermond-Thomassen

conjecture about disjoint cycles in digraphs

Nicolas Lichiardopol∗ Attila Pór† Jean-Sébastien Sereni‡

Abstract

In 1981, Bermond and Thomassen conjectured that every digraph
with minimum out-degree at least 2k − 1 contains k disjoint cycles.
This conjecture is trivial for k = 1, and was established for k = 2
by Thomassen in 1983. We verify it for the next case, by proving
that every digraph with minimum out-degree at least five contains
three disjoint cycles. To show this, we improve Thomassen’s result
by proving that every digraph whose vertices have out-degree at least
three, except at most two with out-degree two, indeed contains two
disjoint cycles.

1 Introduction

Our notations mainly follow that of Bang-Jensen and Gutin [2]. By cycle

we mean oriented cycle, that is an oriented path starting and ending at the
same vertex. A cycle of length d is a d-cycle. A 1-cycle is a loop and a 3-cycle
is also called a triangle. All digraphs contained in this paper can have loops
and 2-cycles but no parallel arcs. A digraph without cycles of length at most
two is an oriented graph.

Fix a digraph D = (V, A). Its order is the size of the vertex-set V .
Given a subset X of V , the sub-digraph of D induced by X is the digraph
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D[X] := (X, A′) where A′ is the set of all arcs in A that start and end in X.
Two sub-digraphs D1 and D2 of D are disjoint if their vertex-sets are. We
write v → u to mean an arc from the vertex v to the vertex u.

We let D∗ be the digraph obtained from D by reversing the direction of
every arc. For every vertex v ∈ V let N+

D (v) := {x ∈ V : v → x ∈ A} be the
out-neighbourhood of v in D, and let d+

D(v) := |N+

D | be the out-degree of v in

D. The vertices of N+

D (v) are the out-neighbours of v. The in-neighbourhood

of v in D is N−

D (v) := N+

D∗(v), and its in-degree is d−

D(v) := |N−

D (v)|. The
vertices of N−

D (v) are the in-neighbours of v. If the context is clear, we may
omit the subscript and just write N+(v) and N−(v).

Given two disjoint subsets X, X ′ ⊂ V , the set X dominates X ′ if X ′

is contained in the out-neighbourhood of each vertex of X. If the set X is
composed of only one vertex v we simply say that v dominates X ′ . The set
X ′ is dominated if there exists a vertex dominating it. The set X dominates

a sub-digraph D′ of D if it dominates its vertex-set V (D′).
An arc is d-dominated if it is dominated by a vertex of out-degree d.
We are interested in the following conjecture stated by Bermond and

Thomassen in 1981.

Conjecture 1 ([3]). For every positive integer k, every digraph with mini-

mum out-degree at least 2k − 1 contains k disjoint cycles.

It is an obvious observation if k is one, and Thomassen gave a nice and
simple proof of it when k is two in 1983.

Theorem 1 ([6]). Every digraph with minimum out-degree at least three

contains two disjoint cycles.

Thomassen [6] also established the existence of a finite integer f(k) such
that every digraph of minimum out-degree at least f(k) contains k disjoint
cycles. As noted by Bermond and Thomassen [3], such an integer cannot be
less than 2k − 1, so the bound offered by Conjecture 1 is optimal. Alon [1]
proved that for every integer k, the value 64k is suitable for f(k) in 1996.
Recently, Conjecture 1 has been verified for tournaments with minimum in-
degree at least 2k − 1 [4, 5].

Our main result is the following theorem, which proves Conjecture 1 when
k is three.

Theorem 2. Every digraph with minimum out-degree at least five contains

three disjoint cycles.

We note that the method used by Alon [1] yields an upper bound on
the order of a minimum counter-example to Conjecture 1. For instance,
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when k is three the order of a minimum counter example is at most 42.
However, as pointed out by Alon [1], this bound is out of reach for a brute-
force attack. Thus we need to develop new tools to study this conjecture and
prove Theorem 2. One of them is to strengthen Theorem 1.

Theorem 3. Let D be a digraph whose vertices have out-degree at least three,

except at most two which have out-degree two. The digraph D contains two

disjoint cycles.

The paper is organised as follows. In the next section we slightly improve
Thomassen’s result by proving Theorem 3 which is a crucial ingredient in
our proof of Theorem 2. Section 3 is devoted to the proof of a property of a
certain class of digraphs, which may be of independent interest. In Section 4
we establish Theorem 2. The proof proceeds by contradiction: we consider
a minimum counter-example D—with respect to the number of vertices—to
the statement of the theorem, and exhibit some of its structural properties.
Then, the argument is split into two cases: in Sub-section 4.1 we suppose
that D does not contain a triangle while in Sub-section 4.2 we establish the
result if D contains a triangle.

2 Improving Theorem 1

As mentioned earlier, Thomassen proved that Conjecture 1 is true if k is
two, namely every digraph with minimum out-degree three contains two dis-
joint cycles. The goal of this section is to strengthen this result, by proving
Theorem 3.

Proof of Theorem 3. Contrary to the statement, let D = (V, A) be a mini-
mum counter-example with respect to the number of vertices. We also assume
that each vertex has out-degree at most three. First, observe that D cannot
contain a loop. If C is a loop, the digraph obtained from D by removing the
vertex of C has minimum out-degree at least one, thus it contains a cycle C ′.
The cycles C and C ′ of D are disjoint, a contradiction. So the order of D is at
least four. We now establish two properties of D. Recall that a sub-digraph
is 2-dominated if there exists a vertex of out-degree two dominating it.

(A) Every 2-cycle of D is 2-dominated. In particular D contains at most two

2-cycles.
Suppose that C := uv is a 2-cycle. Let D′ be the digraph obtained from

D by removing u and v. Then D′ cannot have minimum out-degree at
least one, otherwise it would contain a cycle which would be disjoint from
C, a contradiction. Therefore there exists a vertex of D of out-degree two
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dominating C, as asserted. From this fact it directly follows that D does
not contain more than two 2-cycles, since each vertex of out-degree two can
dominate at most one 2-cycle and D contains at most two vertices of out-
degree two.

The next property, proved by Thomassen [6], is still valid under our
weaker assumptions.

(B) Every arc of D is dominated.

Suppose that u → v ∈ A is not dominated. By Property (A), we can assume
that v → u is not an arc of D. Let D′ be the digraph obtained from D by
first removing all arcs out-going from u except u → v, and then contracting
the arc u → v into a new vertex w. The out-degree of w in D′ is equal to
the out-degree of v in D. Moreover, the out-degree of each other vertex of
D′ is the same as its out-degree in D. Hence, by the minimality of D, the
digraph D′ contains two disjoint cycles, which yield two disjoint cycles in D,
a contradiction.

Fix a vertex v and let x be an in-neighbour of v. Note that d−

D(v) ≥ 1
by the minimality of D. As the arc x → v is dominated, there exists a
vertex y ∈ V with {x, v} ⊆ N+(y). Consequently the digraph D[N−(v)]
has in-degree at least one and thus contains a cycle. In particular the size
of the in-neighbourhood of each vertex is at least two. Observe now that if
d−

D(v) ≥ 3 for every v ∈ V , then D indeed contains two disjoint cycles: just
apply Theorem 1 to D∗.

Therefore, there exists a vertex of in-degree two in D, and hence a 2-cycle
C1 := uv. By Property (A), let z be a vertex of out-degree two dominating
u and v. The sub-digraph D[N−(z)] contains a cycle, which must intersect
C1. So we can assume that u → z ∈ A, and we let C2 be the cycle zu. Again
by Property (A), there exists a vertex z′ of out-degree two that dominates
C2. Note that z′ 6= v, otherwise D would contain three 2-cycles, thereby
contradicting Property (A). Observe also that neither z nor u can dominate
z′, otherwise D would contain three 2-cycles. Therefore the cycle contained in
D[N−(z′)] is disjoint from the 2-cycle uz, a contradiction. This contradiction
concludes the proof.

We note that this result is optimal, since a symmetrically oriented tri-
angle—i.e. three vertices x1, x2, x3 with an arc from xi to xj whenever i 6=
j—does not have two disjoint cycles. It is also optimal if we restrict ourselves
to oriented graphs, since there exist oriented graphs on seven vertices with
three vertices of out-degree two, four vertices of out-degree three and no two
disjoint cycles. See Figure 1(a) for an example. Moreover, the oriented graph
of Figure 1(b) has no two disjoint cycles, yet every vertex has out-degree three
except one which has out-degree one.
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(a) (b)

Figure 1: (a) An oriented graph with three vertices of out-degree two, four
vertices of out-degree three and no two disjoint cycles, and (b) an oriented
graph whose vertices all have out-degree three, except one which has out-
degree one, and yet without two disjoint cycles. An arc from/to a box goes
from/to every vertex of the box.

3 Arc-dominated oriented graphs

We say that a digraph D = (V, A) is arc-dominated if every arc of A is
dominated. As we will see, a minimum counter-example to Theorem 2—and
more generally, to Conjecture 1—must be arc-dominated, and it must be an
oriented graph—i.e. it contains neither a loop nor a 2-cycle. We put the
following proposition in a dedicated section because we believe that it might
be of independent interest.

Proposition 4. Let D = (V, A) be an arc-dominated oriented graph, and let

X ⊂ V such that D[X] is either acyclic or an induced cycle of D. There

exists a cycle C disjoint from D[X] such that every vertex of C has at least

one out-neighbour in X.

Proof. We set X ′ := V \ X. Let S be the set of vertices of X ′ having at
least one out-neighbour in X. Observe that it is enough to prove that D[S]
contains a cycle. To this end, it suffices to establish that every vertex of S has
at least one in-neighbour in S. Suppose on the contrary that there exists a
vertex v ∈ S with no in-neighbour in S. We set Y :=

(

N−

D (v) ∪ N+

D (v)
)

∩X.
By the definition of S, the vertex v has an out-neighbour x in X, so in
particular Y 6= ∅. Since for every y ∈ Y there is an arc between v and y, and
since D is arc-dominated, there exists a vertex z which dominates {v, y}.
It follows that z ∈ X ∩ N−

D (v) ⊂ Y . In particular this proves that D[Y ]
and hence D[X] contains a cycle. This is not possible if D[X] is acyclic and
concludes the proof in this case. If D[X] is an induced cycle C ′ of D, then
D[X] = D[Y ] = C ′. Consider the out-neighbour y of x in C ′. By what
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precedes, it is dominated by a vertex of N−

D (v) ∩ X, which must be x since
C ′ is induced. This is a contradiction since {v, x} would induce a 2-cycle in
D.

Corollary 5. Let D = (V, A) be an arc-dominated oriented graph. Suppose

that C is a cycle of D, and C ′ an induced cycle disjoint from C. If there is

no arc from a vertex of C to a vertex of C ′ then D contains three disjoint

cycles.

Proof. We apply Proposition 4 with X being V (C ′). We deduce that there
exists a cycle C1 disjoint from C ′ such that every vertex of C1 has an out-
neighbour in C ′. As there is no arc from C to C ′, the cycle C1 is certainly
disjoint from C. Thus, C, C ′ and C1 are three disjoint cycles of D.

4 Proof of Theorem 2

Our goal in this section is to establish Theorem 2. We proceed by contra-
diction: we suppose that the statement of the theorem is false, and consider
a counter-example with the minimum number of vertices. We first establish
some fundamental properties of such a digraph, which will be extensively
used in the sequel. Until the end, we let D = (V, A) be a counter-example
to the statement of Theorem 2 with the smallest number of vertices, and
subject to this with the smallest number of arcs. In particular, every vertex
has out-degree exactly five. We let n be the order of D. Note that n ≥ 5.

Lemma 6. The following hold.

(i) The digraph D is an oriented graph, i.e. it has no loop and no 2-cycle.

(ii) Every arc of D is dominated. In particular, the in-neighbourhood of

every vertex contains a cycle.

(iii) Every triangle of D is dominated by three different vertices.

(iv) If a vertex v dominates a cycle C, there exists a triangle vuw with

u ∈ V (C) and w /∈ V (C).

Proof. (i) Suppose that C is a cycle of D of length at most two. Note that
the induced sub-digraph D′ of D obtained by removing the vertices
of C has minimum degree at least three. Thus, by Theorem 1, D′

contains two disjoint cycles, which are certainly disjoint from the cycle
C. Hence, D contains three disjoint cycles, a contradiction.
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(ii) It is proved exactly as Property (B) in the proof of Theorem 3, so we
do not repeat it here.

(iii) Let C be a triangle of D, and consider the digraph D′ obtained from D
by removing the vertices of C. The digraph D′ has minimum out-degree
at least two. Moreover every vertex of D′ that does not dominate C
in D has out-degree at least three in D′. As D′ cannot contain two
disjoint cycles—otherwise D would contain three disjoint cycles—the
contrapositive of Theorem 3 implies that at least three vertices of D′

have out-degree two, and hence these vertices dominate C in D.

(iv) Let C ′ be an induced cycle contained in N−(v). As v dominates a cycle
C, by (i) the cycles C and C ′ are disjoint. According to Corollary 5,
there exists an arc from C to C ′, which yields the sought triangle.

According to Item (i) of the preceding lemma, D is actually an oriented
graph. So, as every vertex has out-degree five, we deduce that the order n of
D is at least 11. The proof is now split into two parts, regarding whether D
contains a triangle.

4.1 The digraph D does not contain a triangle

In this sub-section, we assume that D does not contain a triangle. In partic-
ular, every 4-cycle of D is induced. We first establish some useful properties
of D.

Lemma 7. For every vertex v of D the sub-digraph induced by the out-

neighbours of v is acyclic.

Proof. Since D has no triangle this follows directly by Lemma 6(iv).

We define a spanning sub-digraph D′ of D as follows. Recall that, by
Lemma 6(ii), the in-neighbourhood of every vertex u of D contains an in-
duced cycle Cu. We let D′ = (V, A′) be the spanning sub-digraph of D where
A′ is comprised of all arcs v → u of D with v ∈ V (Cu). The obtained digraph
D′ has some useful properties, stated in the next lemma.

Lemma 8. The following hold.

(i) If v → u belongs to A′ then N+

D (v) ∩ N−

D′(u) 6= ∅.

(ii) The digraph D′ is 4-regular, i.e. d+

D′(v) = 4 = d−

D′(v) for every vertex

v. In particular, D contains a 4-cycle.
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(iii) If the arc v → u belongs to A \ A′ then N+

D (v) ∩ N−

D (u) = ∅.

Proof. (i) Let v ∈ V (Cu). By the definition of Cu, the out-neighbour of v
in Cu dominates u in D′ and belongs to N+

D (v).

(ii) By Lemma 6(ii), for every vertex v we have d−

D′(v) ≥ 4 since D contains
no triangle. Therefore, to prove the statement we only need to show
that d+

D′(v) ≤ 4 for every vertex v. Suppose on the contrary that v
is a vertex of D with out-degree five in D′. Hence, N+

D (v) = N+

D′(v).
Let u ∈ N+

D′(v). By (i), N+

D′(v) ∩ N−

D′(u) 6= ∅. So the sub-digraph of
D′ induced by the out-neighbours of v has minimum in-degree at least
one, and hence it contains a cycle. This contradicts Lemma 7.

(iii) Suppose that v → u is an arc of D contradicting the statement. Again,
we shall prove that the out-neighbourhood of v in D contains a cycle,
thereby contradicting Lemma 7. Let z ∈ N+

D (v), it suffices to prove
that z is dominated by a vertex of N+

D (v). If z = u this is clear by
the definition of v and u, so suppose that z 6= u. By (ii), the vertex
v has out-degree four in D′, thus v → z ∈ A′ and hence (i) yields the
conclusion.

We prove a last preliminary lemma before turning to the proof of Theo-
rem 2.

Lemma 9. Let C be a 4-cycle of D. The following hold.

(i) There exist at least three vertices with each exactly three out-neighbours

in C;

(ii) at least one of the arcs of C is not in D′.

Proof. (i) By Lemma 7 every vertex of D has at most three out-neighbours
in C. Suppose that at most two vertices of D have three out-neighbours
in C. Then, every vertex of the sub-digraph of D obtained by remov-
ing C has out-degree at least three, except at most two vertices that
have out-degree two. By Theorem 3, it contains two disjoint cycles.
These two cycles together with C yield three disjoint cycles in D, a
contradiction.

(ii) Suppose on the contrary that C := xyzt is a 4-cycle of D′. By the
preceding item, there exist three vertices a, b and c with each three out-
neighbours in C. Note that no vertex of C can dominate a vertex of
{a, b, c}, otherwise D would contain a triangle or a 2-cycle. As there are

8



9 arcs from {a, b, c} to C, at least one vertex of C, say y, is dominated
by {a, b, c}. Furthermore, one of the arcs a → y, b → y, c → y is not
in D′. Otherwise, as x → y ∈ A′ and d−

D′(y) = 4 by Lemma 8(ii),
the cycle Cy would be comprised of the vertices a, b, c and x. This
is not possible since there is no arc from x to {a, b, c}. Without loss
of generality we can assume that a → y /∈ A′. By Lemma 8(iii), we
deduce that the vertex x is not an out-neighbour of a in D. It follows
that a → z and a → t are in A, and hence in A′ by Lemma 8(iii) since
a dominates {y, z}.

We assert that {b, c} dominates {x, t} in D. By symmetry it is enough
to prove that b dominates {x, t}. If it is not the case then b dominates
z in D. As y ∈ N+

D (b)∩N−

D (z), Lemma 8(iii) implies that b → z ∈ A′.
Hence the induced cycle Cz contains the vertices a, y and z, which is a
contradiction since {a, y} dominates z. This proves the assertion.

Now, note that the arcs b → x and c → x must belong to A′ by
Lemma 8(iii). Consequently, the induced cycle Cx contains the vertices
b, c and t, which is a contradiction since {b, c} dominates t in D. This
concludes the proof.

We now switch to the proof of Theorem 2. We shall obtain a contradiction
by proving that D′ contains a 4-cycle. To this end, we first prove Property (C)
below, which states that D contains a 4-cycle with two consecutive arcs in
D′. As we shall see, this implies that D′ contains a 4-cycle.

(C) There exists a 4-cycle of D with two consecutive arcs belonging to A′.

By Lemmas 8(ii) and 9(ii), let C := xyzt be a 4-cycle of D with x /∈ V (Cy).
Consequently, C and Cy are disjoint. Let us write Cy = abcd with a /∈ V (Cb).
So, the cycles Cy and Cb are disjoint. As D does not have three disjoint
cycles, we deduce that Cb must contain a vertex of C. This vertex cannot
be x, since by Lemma 8(iii) x has no out-neighbour in N−

D (y). Moreover, it
can be neither y nor z—otherwise D would contain a 2-cycle or a triangle.
Hence t ∈ V (Cb). The situation is depicted in Figure 2(a). Note that tbyz
is a 4-cycle with two consecutive arcs in D′, namely t → b and b → y. This
establishes Property (C).

We are now in position to conclude the proof, by showing that there exists
a 4-cycle of D included in D′ and thereby contradicting Lemma 8(ii). By
Property (C) let C := xyzt be a 4-cycle of D with two consecutive arcs in
D′. By Lemma 9(ii) at least one of the arcs of C is not in D′. Therefore,
up to renaming the vertices, we can assume that t → x ∈ A, x → y ∈ A and
z → t /∈ A′. Thus C and Ct := abcd are disjoint. By Lemma 9(ii), assume
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Figure 2: The arcs belonging to A′ are drawn in bold, and the arcs not in A′

are dashed. The remaining ones are only known to be in A.

that a /∈ Cb. The cycles Ct and Cb being disjoint, Cb must intersect the cycle
C. As none of x, z and t has an out-neighbour in Cb, we infer that y ∈ V (Cb).
Therefore txyb is a 4-cycle of D which is included in D′, see Figure 2(b). This
contradiction concludes the proof when D does not contain a triangle.

4.2 The digraph D contains a triangle

For every vertex u ∈ V , we let ϕ(u) be the greatest integer r for which there
exist triangles T1, T2, . . . , Tr such that

• the intersection of every two triangles is the vertex u; and

• the in-neighbour of u in Ti dominates Ti−1 for every i ∈ {2, 3, . . . , r}.

Thus, ϕ(u) = 0 if and only if u is not contained in a triangle, and 1 ≤ ϕ(u) ≤
5 otherwise.

Lemma 10. Either D contains two disjoint triangles, or all the triangles of

D share a common vertex x. In the latter case ϕ(x) ≥ 3.

Proof. Let Φ := maxu∈V ϕ(u). As D contains a triangle, we deduce from
Lemma 6(iii) and (iv) that Φ ≥ 2.

We suppose first that Φ = 2. We shall establish that D contains two
disjoint triangles. Suppose on the contrary that it is not the case. Then, the
following holds.

(D) Every vertex x ∈ V such that ϕ(x) = 2 is dominated by a triangle.

By the definition of ϕ, there exist four vertices y1, y2, z1, z2 such that T1 :=
xy1z1 and T2 := xy2z2 are two triangles and z2 dominates T1. According
to Lemma 6(iii), there exists a vertex z3 /∈ {y1, z1} dominating T2. Thus,
Lemma 6(iv) implies that there exists a triangle T3 := z3a1b1, with a1 ∈
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x y1

z1z2

y2

z3 z4

Figure 3: Configuration obtained when ϕ(x) = 2.

V (T2) and b1 /∈ V (T2). There are three distinct vertices that dominate T3.
Among the vertices so far defined, only y1 and z1 may dominate T3. Thus,
there exists z4 /∈ {y1, z1} that dominates T3. Moreover, there exists a triangle
T4 := z4a2b2 with a2 ∈ V (T3) and b2 /∈ V (T3). The situation is depicted in
Figure 3. We set X := {x, y1, z1, y2, z2, z3, z4}.

If z1 → z3 ∈ A, then z3z2z1 is a triangle which dominates x, which would
establish Property (D). We thus assume in the remaining that z1 does not
dominate z3. The vertex b1 dominates z3, thus either b1 = y1 or b1 /∈ X. We
consider these two cases separately.

b1 /∈ X. Then a1 must be x, otherwise z3a1b1 and one of T1, T2 are disjoint.
Now, T1, T2 and z3xb1 show that ϕ(x) ≥ 3, a contradiction.

b1 = y1. Consider T4 = z4a2b2. Note that z4 dominates b1 = y1. Notice
also that the vertex b2 does not lie in {y2, z2}, otherwise z4z3b2 and T1

would be two disjoint triangles. If b2 = x then T1, T2 and z4z3x show
that ϕ(x) ≥ 3, a contradiction. If b2 = z1, then z4y1z1 and T2 are two
disjoint triangles. Thus, as b2 6= b1 = y1 (since b2 /∈ V (T3)), we deduce
that b2 /∈ X. As T4 must intersect T1, T2 and T3, we infer that a2 = x.
Consequently, z3z2y1 and T4 are two disjoint triangles, a contradiction.

This establishes Property (D). Note that we also have showed that z1 must
indeed dominate z3. Hence, ϕ(z2) ≥ 2, by considering the triangles T2 and
z3z2z1.

Now consider a vertex x such that ϕ(x) = 2, and let T1 and T2 be two
triangles as before. In particular, we can assume that the vertex z2 satisfies
ϕ(z2) = 2, thus is dominated by a triangle T . Observe that T1 and T are two
disjoint triangles, a contradiction.

In conclusion, we have proved that D contains two disjoint triangles if Φ
is two.

We assume now that Φ ≥ 3, and we let x be a vertex such that ϕ(x) = Φ.
By contradiction, suppose that D does not contain two disjoint triangles,
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y2

z3

y3
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Figure 4: Configuration obtained when ϕ(x) ≥ 3 and b = y1.

and yet contains a triangle T not containing x. There exist three triangles
Ti := xyizi, i ∈ {1, 2, 3}, such that V (Ti) ∩ V (Tj) = {x} if i 6= j, and zi

dominates Ti−1 if i > 1. As D does not contain two disjoint triangles, we
deduce that T contains a vertex from each set {yi, zi}, for i ∈ {1, 2, 3}.

According to Lemma 6(iii), there exists a vertex z4, distinct from all the
vertices defined so far, that dominates the triangle T3. Thus, there exists
a triangle T4 := z4ab, with a ∈ V (T3) and b /∈ V (T3). Notice that b 6= x.
Hence, if a 6= x, we obtain two disjoint triangles; indeed, the triangle T4

intersects at most two triangles among T1, T2 and T3, because x /∈ V (T4) and
z4 /∈ V (T1)∪V (T2)∪V (T3). Thus, among the triangles Ti, i ∈ {1, 2, 3, 4}, at
least two are disjoint, a contradiction.

Therefore, a = x. Let X := {x, y1, z1, y2, z2, y3, z3, z4}. Note that b
either belongs to {y2, y1} or does not belong to X. The latter case is not
possible, since T4 and T would then be two disjoint triangles—because, as
noted earlier, V (T ) ⊂ {y1, z1, y2, z2, y3, z3}. If b = y2, then T1 and z4z3y2 are
two disjoint triangles. Therefore, we infer that b is y1, so T4 = z4xy1. The
situation is depicted in Figure 4.

As D does not contain two disjoint triangles, V (T ) must intersect the
set {y1, z4}. So, y1 is a vertex of T . Now, observe that the triangles T2, T3

and T4 fulfil the same conditions as do T1, T2 and T3. Consequently, we
deduce as previously that y2 ∈ V (T ). So, the triangle T either is z3y2y1

or is comprised of the vertices y1, y2 and y3. If the former case, let u /∈ X
be a vertex dominating T4. This is possible since at least three vertices
dominate T4. There exists a triangle T5 comprised of u, a vertex u1 ∈ V (T4)
and a vertex u2 /∈ V (T4). If u1 ∈ {y1, z4}, then T5 and either T2 or T3 are
two disjoint triangles, since x /∈ V (T5). So, u1 = x and u2 is either y2, y3

or a new vertex. In all cases, T5 and z3z2y1 are two disjoint triangles, a
contradiction. Consequently, V (T ) = {y1, y2, y3}. Thus, none of the vertices
zi, i ∈ {1, 2, 3, 4}, dominates T . As T is dominated by at least three vertices,
we can choose a vertex u that dominates T and is different from x. Now,
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there exists a triangle T ′ := uu1u2 with u1 ∈ {y1, y2, y3}, and u2 /∈ V (T ).
Note that u2 6= x. Consequently, T ′ and one triangle among T1, T2 and T3

are disjoint, a contradiction. This concludes the proof.

We define now two subsets of V . Let Y be the set of vertices contained in a
triangle, and Z the set of vertices dominating a triangle. We set DY := D[Y ],
and DZ := D[Z]. From Lemma 6(iv) we deduce that DZ is an induced sub-
digraph of DY . The following lemma will prove to be useful.

Lemma 11. The following hold.

(i) Every vertex of Y has at least five in-neighbours in D, with at least

four lying in DY ;

(ii) the minimum in-degree of the digraph DZ is at least three.

Proof. (i) Let T := xyz be a triangle containing x. By Lemma 6(iii), there
exist three vertices u, v and w that dominate T . By the definition of Y ,
the vertices u, v, w and z, which are all in-neighbours of x, belong to Y .
Thus, it only remains to show that there exists a fifth in-neighbour of
x in D. To this end, suppose on the contrary that d−

D(x) = 4. Consider
the cycle Cx. Since z is dominated by {u, v, w}, it cannot belong to
Cx. Thus, Cx is a triangle whose vertices are u, v and w. In particular
T and Cx are two disjoint cycles, and there is no arc from the triangle
T to the cycle Cx, which contradicts Corollary 5.

(ii) Let x be a vertex of DZ . By Lemma 6(iv) there exists a triangle T :=
xyz, along with three vertices u, v, w dominating T . Thus, {u, v, w} ⊆
N−

DZ
(x), which proves the desired statement.

We finish the proof of Theorem 2 right after having established the fol-
lowing bound.

Lemma 12. Suppose that T and T ′ are two disjoint triangles of D. If ℓ is

the number of arcs between T and T ′ then n ≤ 22 − ℓ.

Proof. Let X := V (T )∪V (T ′) and X ′ := V \X. We shall obtain the desired
inequality by counting the number L of arcs from a vertex of X to a vertex
of X ′. Since every vertex has out-degree five, L is 4 × 6 − ℓ = 24 − ℓ. We
now prove that L ≥ n + 2, which will imply that n + 2 ≤ 24 − ℓ, and
hence n ≤ 22 − ℓ. Note that every vertex of X ′ has an in-neighbour in X,
otherwise D would contain three disjoint cycles by Lemma 6(ii). As the
digraph D[X ′] is acyclic (and of order at least n − 6 ≥ 5), there exists a
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vertex v ∈ X ′ having no in-neighbour in X ′, and another vertex w with
at most one in-neighbour in X ′. All together, these two vertices have at
least 3 + 2 = 5 in-neighbours in X. Now, note that T and T ′ are two
disjoint triangles in DY . By Lemma 11(i), DY has minimum in-degree at
least four—and so its order is at least nine. Consequently, there exists three
vertices a, b and c of Y \X having at least four, three and two in-neighbours
in X, respectively—otherwise DY , and hence D, would contain three disjoint
cycles, a contradiction. According to Lemma 11(i), every vertex of Y has
in-degree at least five in D. If {v, w} ⊂ Y , we infer from what precedes that
L ≥ 5 + 4 + 2 + n − 6 − 3 = n + 2. If only one of v, w lies in Y , we deduce
that L ≥ 5 + 3 + 2 + 2 + n− 6− 4 = n + 2, while if none of them is in Y , we
have L ≥ 3 + 2 + 4 + 3 + 2 + n − 6 − 5 = n + 3.

We now obtain a contradiction by proving that D indeed contains three
disjoint cycles. Recall that the order of D is at least 11. According to
Lemma 10, either all the triangles of D share a common vertex, or D contains
two disjoint triangles. We consider the two cases separately.

Case 1: D does not contain two disjoint triangles. In this case, all triangles
of D share a common vertex, say x, and we have ϕ(x) ≥ 3. All the vertices
of DZ are in-neighbours of x, since x is contained in every triangle. By
Lemma 11(ii), the digraph DZ has minimum in-degree at least three. We
assert that DZ has also minimum out-degree at least three. To see this,
suppose the contrary, and let z be a vertex with out-degree at most two in
DZ . Note that x /∈ Z, so z 6= x. We set D1 := DZ − z. Observe that the
digraph D∗

1 fulfils the hypothesis of Theorem 3, since all its vertices have out-
degree at least three (by Lemma 11(ii)) except at most two vertices which
have out-degree two. Thus, the digraph D∗

1 contains two disjoint cycles.
They yield two disjoint cycles of D1, say C1 and C2. As z ∈ DZ , there exists
a triangle T := zuv in D. By the definition of x, we have u = x. As noticed
earlier, Z ⊆ N−

D (x), hence the triangle T is disjoint from both C1 and C2,
a contradiction. Therefore DZ has minimum out-degree at least three. Let
us set m := |Z|. We shall lower bound m as a function of n. As DZ has
minimum out-degree three, every vertex of Z has at least four out-neighbours
in Z ∪ {x}, and thus at most one in Z ′ := V \ (Z ∪ {x}). So the following
holds.

(E) The number of arcs from a vertex of Z to a vertex of Z ′ is at most m.

Furthermore, by Theorem 1, D contains two disjoint cycles C1 and C2 com-
prised of vertices of Z. Observe that every vertex of Z ′ has at least one
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in-neighbour in Z: otherwise, by Lemma 6(ii), D would contain a cycle com-
prised of vertices of Z ′ ∪ {x}, which together with C1 and C2 would yield
three disjoint cycles, a contradiction. As ϕ(x) ≥ 3, there exist three out-
neighbours y1, y2 and y3 of x in Z ′, each having at least three in-neighbours
in Z, by Lemma 6(iii). Consequently, the following is true.

(F ) The number of arcs from a vertex of Z to a vertex of Z ′ is at least

9 + (n − 1 − m − 3) = n − m + 5.

It follows from Properties (E) and (F ) that

2m ≥ n + 5. (1)

We now aim at bounding |A|, the number of arcs of D, in terms of m.
Recall that |A| = 5n, since every vertex of D has out-degree five. We par-
tition V into the sets Z, Z ′ and {x}. Recall that every vertex has in-degree
at least three, by Lemma 6(ii). As Z ⊆ Y , each vertex of Z has at least five
in-neighbours in D by Lemma 11(ii). So

∑

v∈Z

d−

D(v) ≥ 5m. (2)

Recall also that Z ⊆ N−

D (x), thus

|N−

D (x)| ≥ m. (3)

Moreover, according to Lemma 11(i), every vertex of Y has in-degree at least
five in D, and |Y ∩ Z ′| ≥ 3 since ϕ(x) ≥ 3. In particular, x has at most two
out-neighbours not in Z. As x belongs to every triangle of D, every vertex
not in N+

D (x) has in-degree at least four in D, by Lemma 6(ii). Therefore
we obtain

∑

v∈Z′

d−

D(v) ≥ 3 × 5 + 2 × 3 + (n − 1 − m − 5) × 4 = 4n − 4m − 3. (4)

By Equations (2), (3) and (4), we infer that the number of arcs of D is at
least 5m + m + 4n − 4m − 3 = 4n + 2m − 3. As |A| = 5n, we obtain

2m ≤ n + 3. (5)

Equations (1) and (5) are contradictory, which concludes the first case of our
proof.

Case 2: D has two disjoint triangles. Let T := xyz and T ′ := x′y′z′

be two disjoint triangles. Consider the sub-digraph D1 of D obtained by
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Figure 5: The sub-digraph F of D.

removing T and T ′. As D does not contain three disjoint cycles, D1 is
acyclic, thus has a vertex u of out-degree zero. Hence, the vertex u has five
out-neighbours among x, y, z, x′, y′ and z′. Without loss of generality, let
N+

D (u) = V (T ) ∪ {x′, z′}. Necessarily, y′ ∈ N−

D (u), otherwise T, T ′ and Cu

would be three disjoint cycles of D, a contradiction. So T and T1 := ux′y′

are two disjoint triangles of D. By Lemma 6(iii), there exists an arc from a
vertex of T to a vertex of T1. Moreover, there are at least three arcs from a
vertex of T1 to a vertex of T , since the vertex u dominates T . So Lemma 12
implies that n ≤ 22 − 4 = 18. By Lemma 6(iii), there exist three vertices
a1, a2 and a3 that dominate T1. Clearly, none of these vertices belongs to
V (T )∪V (T1). Moreover at least one of them, say a1, has no in-neighbour in
{a1, a2, a3}, since otherwise T, T1 and D[{a1, a2, a3}] would be three disjoint
cycles of D. By Lemma 6(ii), the vertex a1 must have an in-neighbour
in T , otherwise T, T1 and Ca1

would be disjoint, a contradiction. Without
loss of generality, we assume that z ∈ N−

D (a1). The triangle T2 := uza1

is dominated by three vertices a4, a5 and a6. Clearly, none of these vertices
belongs to V (T )∪V (T1)∪{a1, a2, a3}. More precisely, among the vertices not
in T2, only y′, a2 and a3 dominate u, and none of them dominates a1. Thus,
we obtain the sub-digraph F of D, depicted in Figure 5. For convenience,
every vertex of D not in F is called extern.

Note that all the vertices of F belong to Y , and hence have in-degree
at least five in D by Lemma 11(i). As D does not contain three disjoint
cycles, there exists i ∈ {2, 3, . . . , 6} such that the vertex ai does not have an
in-neighbour in {a1, a2, . . . , a6}. Observe that a vertex dominating the arc
ai → u is either y′ or extern, the former begin possible only if i ≥ 4. We now
consider two cases, regarding the value of i.
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i ∈ {2, 3}. Without loss of generality, let i = 2. The vertex a2 has at least
one in-neighbour in T , otherwise T, T1 and Ca2

would be three disjoint
cycles of D. We consider two cases regarding whether z dominates a2.

z dominates a2. In this case, the triangle za2u is dominated by three
vertices, which must be extern. These three vertices belong to Y ,
as do the vertices of F . Thus, by Lemma 11(i), all have in-degree
at least five in D. Furthermore, among them the vertex u has
in-degree at least 10, and z at least 8. We deduce that

|A| = 5n =
∑

v∈V

d−

D(v) ≥ 10 + 8 + 13 × 5 + (n − 15) × 3 ,

which implies that n is at least 19, a contradiction.

z does not dominate a2. So at least one vertex among x, y dominates
a2. By symmetry of the roles played by x and y in what fol-
lows, we assume that x dominates a2. The triangle T3 := xa2u is
dominated by three vertices, which must be extern. These three
vertices belong to Z, and hence to Y . The vertices of F also be-
long to Y , and every vertex of Y has in-degree at least five in D
by Lemma 11(i). Furthermore the in-degree of u is at least 10.
Thus we obtain

|A| = 5n ≥ 10 + 14 × 5 + (n − 15) × 3 ,

which yields n ≥ 35

2
. As n ≤ 18, we have n = 18. Notice that

T is dominated by two vertices distinct from u. So, we infer that
d−

D(x) + d−

D(z) ≥ 5 + 5 + 2 = 12. Hence, we obtain

|A| = 5n ≥ 10 + 12 + 12 × 5 + (n − 15) × 3 ,

from which it follows that n ≥ 37

2
, a contradiction.

i ∈ {4, 5, 6}. Without loss of generality, let i = 4. As D does not have three
disjoint cycles, N−

D (a4)∩ {x, y, x′, y′} 6= ∅. We split this case according
to the corresponding sub-cases.

x dominates a4. We set T3 := a4ux. Among the vertices of F , only y′

may dominate T3. Supposing first that it is not the case, we obtain
a contradiction by counting the number of arcs in D. The triangle
T3 is dominated by three extern vertices. These vertices belong
to Z, and thus to Y . Moreover, recall that all the vertices of F
also belong to Y , and that every vertex of Y has in-degree five, by
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Lemma 11(i). Thus, there are at least 15 vertices of in-degree five
and, among them, u has in-degree at least 10. Also, the vertex z
has in-degree at least 8, because the triangle xa4z is dominated by
three vertices, none of them lying in {y, u, a4, a5, a6}. Therefore
we obtain

|A| = 5n ≥ 10 + 8 + 13 × 5 + (n − 15) × 3 ,

which yields n ≥ 19, a contradiction.

Hence, the vertex y′ dominates the triangle T3. We seek a contra-
diction by counting the number of arcs in D. Note that there are
at least five arcs between T and T1, since u dominates T1, y′ dom-
inates x and there is at least one arc from T to T1 by Corollary 5.
So, by Lemma 12, n is at most 17.

We now bound the number of arcs in D. As a4 has no in-neighbours
among the other vertices ai, there exist two extern vertices domi-
nating the triangle T3. Recalling that all the vertices of F belong
to Y , we obtain |Y | ≥ 14. By Lemma 11(i), each of these vertices
has in-degree at least five in D. Moreover, u has in-degree at least
9, since it has already in-degree at least 7 in F . Also, the in-degree
of z is at least 8, because z is dominated by {u, a4, a5, a6, y}, and
by the three vertices dominating the triangle a4zx, which cannot
be any of the preceding ones. Therefore we infer that

|A| = 5n ≥ 9 + 8 + 12 × 5 + (n − 14) × 3 ,

and hence n ≥ 35

2
, contradicting the conclusion of the preceding

paragraph.

y dominates a4. Let T3 := a4uy. This triangle is dominated by three
vertices. Among the vertices of F , only y′ may dominate it. Sup-
pose first that it is not the case, i.e. T3 is dominated by three
extern vertices, which hence belong to Y . Furthermore, the tri-
angle T is dominated by two vertices different from u. Thus we
deduce that d−

D(y) + d−

D(z) ≥ 5 + 5 + 2 = 12. Note also that u
has in-degree at least 10. So, recalling that all the vertices of F
belong to Y , it follows that

|A| = 5n ≥ 10 + 12 + 12 × 5 + (n − 15) × 3 ,

i.e. n ≥ 37

2
, a contradiction. Consequently, we infer that y′ domi-

nates T3. As in the previous case, we note that there are at least
five arcs between T and T1, and thus the Lemma 12 implies that
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n is at most 17. As T3 is dominated by two extern vertices, notice
that u has in-degree at least 9 (since its in-degree in F is at least
7). Moreover the triangle a4a1y

′ is dominated by three vertices,
and none of them belongs to {x′, a2, a3, a5, a6, z}. Hence, we de-
duce that both a1 and y′ have in-degree at least 7 in D. Therefore,
we obtain

|A| = 5n ≥ 9 + 7 + 7 + 11 × 5 + (n − 14) × 3 ,

so n ≥ 18, a contradiction.

x′ dominates a4. Then the triangle T3 := a4ux′ is dominated by three
extern vertices. So there are at least 15 vertices of in-degree at
least five, and among them u has in-degree at least 10 (since its
in-degree in F is at least 7), and x′ has in-degree at least 7 (since
its in-degree in F is at least 4). Therefore, we deduce that

|A| = 5n ≥ 10 + 7 + 13 × 5 + (n − 15) × 3 ,

which yields n ≥ 37

2
, a contradiction.

None of x, y and x′ dominates a4 in D. In this case the vertex y′ must
dominate a4. We consider three vertices dominating the triangle
T3 := a4a1y

′. Among the vertices of F , only x and y can dominate
T3, but none of them does since none of them is an in-neighbour of
a4. Thus, T3 is dominated by three extern vertices. Consequently,
Y contains at least 15 vertices, and u, a1 and y′ all have in-degree
at least 7. It follows that

|A| = 5n ≥ 3 × 7 + 12 × 5 + (n − 15) × 3 ,

and hence, n ≥ 18. As we know that n ≤ 18, we have n = 18.
In particular, there are exactly 6 extern vertices r, s, t, r′, s′ and t′,
with {r, s, t} dominating the triangle T3.

Now observe that, for every i ∈ {1, 2, 3, 4}, ai /∈ N+

D (x′). More-
over, V (T )∩N+

D (x′) = ∅ otherwise there would be at least five arcs
between T and T ′, which would imply that n ≤ 17 by Lemma 12,
a contradiction. We assert that the in-degree of x′ in D is at least
7. Recalling that u, a1 and y′ also have in-degree at least 7, we
would deduce that

|A| = 5n = 90 ≥ 4 × 7 + 11 × 5 + 3 × 3 = 92 ,

a contradiction. So it only remains to prove the assertion. If
{a5, a6} ∩ N+

D (x′) 6= ∅, we assume without loss of generality that
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x′ dominates a5. Then, the triangle a5a1x
′ is dominated by three

vertices, which cannot be any of u, a1, a2, a3. So x′ has at least 7
in-neighbours in D. If {a5, a6} ∩ N+

D (x′) = ∅, the vertex x′ has at
least four out-neighbours lying in {r, s, t, r′, s′, t′}. So it dominates
at least one of r, s and t, say r. The triangle ra1x

′ is dominated
by three vertices, none of them lying in {u, a1, a2, a3}. Thus, we
again conclude that the vertex x′ has in-degree at least 7, which
proves the assertion.

The proof of Theorem 2 is complete. �
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