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Characterisation results for Steiner triple

systems and their application to

edge-colourings of cubic graphs

Daniel Král’∗ Edita Máčajová† Attila Pór‡

Jean-Sébastien Sereni§

Abstract

It is known that a Steiner triple system is projective if and only
if it does not contain the four-triple configuration C14. We find three
configurations such that a Steiner triple system is affine if and only if it
does not contain one of these configurations. Similarly, we characterise
Hall triple systems using two forbidden configurations.

Our characterisations have several interesting corollaries in the
area of edge-colourings of graphs. A cubic graph G is S-edge-colourable
for a Steiner triple system S if its edges can be coloured with points of
S in such a way that the points assigned to three edges sharing a vertex
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form a triple in S. Among others, we show that all cubic graphs are
S-edge-colourable for every non-projective non-affine point-transitive
Steiner triple system S.

MSC: 05B07, 05C15.

1 Introduction

Steiner triple systems form a classical notion in combinatorial design theory.
Recall that a Steiner triple system S is formed by n points and several triples
such that every two distinct points are contained in exactly one common
triple. Steiner triple systems are simply-defined though complex and diverse
combinatorial designs. One of the most classical results asserts the existence
of a Steiner triple system with n points whenever n = 1, 3(mod 6), n ≥ 3.
The amount of results on Steiner triple systems is enormous and a separate
monograph [2] on the topic has recently appeared.

There are several prominent classes of Steiner triple systems. Among
the most important ones are projective and affine Steiner triple systems. A
projective Steiner triple system PG(d, 2) is the Steiner triple system with
2d+1 − 1 points corresponding to non-zero (d + 1)-dimensional vectors over
Z2 for d ≥ 1. Three such vectors form a triple of PG(d, 2) if they sum to
the zero vector. The smallest Steiner triple system is the projective system
PG(1, 2), comprised of three points forming a single triple. It is is referred
to as the trivial Steiner triple system, while larger Steiner triple systems are
called non-trivial. The smallest non-trivial projective Steiner triple system
is PG(2, 2), the Fano plane, which is denoted by S7. An affine Steiner triple
system AG(d, 3) is the Steiner triple system with 3d points corresponding
to d-dimensional vectors over Z3 for d ≥ 1. Three such vectors form a
triple of AG(d, 3) if they sum to the zero vector. The smallest affine Steiner
triple system, AG(1, 3), is isomorphic to the trivial Steiner triple system.
The smallest non-trivial affine Steiner triple system, AG(2, 3), is the unique
Steiner triple system with nine points and is denoted by S9.

It is natural to ask whether these two classes of Steiner triple systems
can be characterised in terms of well-described forbidden substructures (as
for instance, it is known that a graph is planar if and only if it does not
contain a subdivision of one of the graphs K3,3 or K5). To be more precise, a
configuration C is formed by points and triples such that each pair of points
is in at most one of the triples, and a Steiner triple system S contains C if
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ξ

α1 β1γ1

α2 β2γ2

(a) (b)

Figure 1: (a) The configuration C14 and (b) the Pasch configuration C16.

there is an injective mapping of the points of C to the points of S such that
triples of points of C are mapped to triples of points of S.

The solution to the just stated problem is easy to find for the class of pro-
jective Steiner triple systems. Two four-triple configurations play important
roles in this characterisation: the first one is the configuration C14 formed by
seven distinct points ξ, α1, α2, β1, β2, γ1 and γ2 together with four triples
{ξ, α1, α2}, {ξ, β1, β2}, {α1, β1, γ1} and {α2, β2, γ2}; see Figure 1(a). The sec-
ond one is the configuration C16, known as the Pasch configuration, which is
formed by six points and four triples; see Figure 1(b).

Clearly, the configuration C14 cannot be contained in a projective Steiner
triple system. The converse is also true: Stinson and Wei [12] established
that a Steiner triple system S with n points is projective if and only if it
contains 1

24
n(n − 1)(n − 3) distinct copies of the Pasch configuration. By a

counting argument given in [5], if S contains less than 1
24

n(n−1)(n−3) copies
of the Pasch configuration, then it must contain a configuration isomorphic
to C14. We state this observation as a separate theorem.

Theorem 1 (Grannell et al. [5] and Stinson et al. [12]). A Steiner triple
system S is projective if and only if it contains no configuration C14.

However, we were not able to find such a simple argument characterising
affine Steiner triple systems in the literature. In Section 5, we show that a
Steiner triple system is affine unless it contains one of the three configurations
depicted in Figure 2, namely the Pasch configuration C16, the configuration
C1

S and the configuration C2
S (the last two configurations are obtained from

the squashed square configuration CS introduced in Section 2).
Still a finer distinction between affine and non-affine Steiner triple systems

can be achieved. A prominent class of Steiner triple systems are Hall triple
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Figure 2: The three forbidden configurations for affine Steiner triple systems:
the configurations C16, C1

S and C2
S (from left to right).

ξ

α1 β1 γ1

α2 β2 γ2

(a) (b)

Figure 3: (a) The mitre configuration and (b) the anti-mitre configuration
CA.

systems: a Steiner triple system S is a Hall triple system if for every point x
of S, there exists an automorphism of S that is involution and its only fixed
point is x. Hall [7] showed that a Steiner triple system is a Hall triple system
if and only if every Steiner triple system induced by the points of two non-
disjoint triples of S is isomorphic to S9. Recall that the Steiner triple system
induced by a set X of the points of S is the smallest Steiner triple system S ′

such that S ′ contains all the points of X and all triples of S ′ are also triples
of S. Hence, Hall triple systems look “locally” as affine Steiner triple systems
and it can seem hard to distinguish these two classes in terms of forbidden
substructures. Also note that there are examples of Hall triple systems that
are not affine Steiner triple systems for every n = 3d, d ≥ 4, unlike in the
case of projective Steiner triple systems: if every two non-disjoint triples of S
induce a Steiner triple system isomorphic to S7, then S must be projective.

It is known that an n-point Steiner triple system is a Hall triple system
if and only if it contains n(n−1)(n−3)

12
configurations isomorphic to the mitre

configuration [2] which is depicted in Figure 3(a) (the points are labelled
for future references). Since no Steiner triple system can contain more than
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n(n−1)(n−3)
12

copies of the mitre configuration, Hall triple systems are those
which contains the largest number of configurations isomorphic to the mitre
configuration.

Let us turn back to our results. As we mentioned, a Steiner triple system
S is affine if and only if it contains neither of the configurations C16, C1

S and
C2

S. None of Hall triple systems can contain the configuration C16 or the
anti-mitre configuration CA (see Figure 3(b)) as neither of them is contained
in the Steiner triple system S9. The converse is also true as we show in
Section 5: a Steiner triple system is a Hall triple system if and only if it does
not contain the configuration C16 or CA, and a Hall triple system is affine
if and only if it contains none of the configuration C1

S and C2
S. With the

additional assumption that a Steiner triple system S is not projective, we
can remove the configuration C16 from the list of forbidden configurations
both for affine Steiner triple systems and Hall triple systems. We also note
that every Steiner triple system containing the configuration CA also contains
one of the configurations C1

S and C2
S (this seems to be a non-trivial fact which

we state as Lemma 6).

1.1 Edge-colourings of cubic graphs

Edge-colourings of cubic (bridgeless) graphs form a prominent topic in graph
theory because of its close relation to deep and important problems such
as Four Colour Theorem, Cycle Double Cover Conjecture and many others.
By Vizing’s theorem [14], the edges of every cubic graph can be coloured
with three or four colours in such a way that the edges meeting at the same
vertex receive distinct colours. Non-trivially connected cubic graphs (usually
the cyclic 4-edge-connectivity is required) such that their edges cannot be
coloured with three colours are called snarks.

Archdeacon [1] proposed to study edge-colourings of cubic graphs by the
points of Steiner triple systems. Steiner triple systems seem to be general
enough to “edge-colour” most of cubic graphs and still well-structured enough
to provide us with new results on cubic graphs. In particular, this notion
extends the notion of the ordinary edge-colourings among the lines of well-
studied locally injective homomorphisms.

The points of a Steiner triple system S are assigned to the edges of a
cubic graph G in such a way that the edges incident with the same vertex
are assigned three distinct points that form a triple of S. Edge-colourings
with this property are called S-edge-colourings and G is said to be S-edge-

5



colourable. A natural question is for which cubic graphs G and which Steiner
triple systems S, there exists an S-edge-colouring of G. In particular, whether
there exists a Steiner triple system S such that every simple cubic graph
(bridgeless or not) is S-edge-colourable; such a system S is called universal.

Grannell et al. [4] established the existence of a universal Steiner triple
system with 381 points. Later, Pál and Škoviera [11] showed that there exists
a universal Steiner triple system with 21 points (the system they considered
is the direct product of the Fano plane and the trivial Steiner triple system).
One of the corollaries of our results is the existence of a universal Steiner
triple system with 13 points. Let us note that no Steiner triple system with
less than 13 points can be universal [8].

We now survey further results on edge-colourings of cubic graphs with
points of Steiner triple systems. Let us emphasise that all cubic graphs that
we consider in this paper are connected and they can contain bridges unless
stated otherwise. On the other hand, they never contain loops or parallel
edges. This assumption does not decrease generality of our results: a cubic
graph with a loop does not have an S-edge-colouring for any Steiner triple
system S since the points assigned to the edges incident with the vertex
with the loop cannot form a triple in S. If a cubic graph G contains a
pair of parallel edges e1 and e2 between two vertices v1 and v2, let G′ be
the graph obtained from G by removing e1 and e2 and identifying the other
edges incident with v1 and v2. It is straightforward to verify that G is S-edge-
colourable if and only if G′ is. Hence, we can subsequently eliminate the pairs
of all parallel edges in a cubic graph. Note that loops can appear during this
elimination process yielding that the original graph is not S-edge-colourable
for any Steiner triple system S.

Fu [3] showed that every bridgeless cubic graph of order at most 189 and
of genus at most 24 are S7-edge-colourable. A stronger result was obtained
by Holroyd and Škoviera [8] who showed that a cubic graph G is S-edge-
colourable for a non-trivial projective Steiner triple system S if and only if it
is bridgeless. In particular, all bridgeless cubic graphs are S7-edge-colourable.
The condition on G being bridgeless can be easily seen to be necessary since
an edge-colouring of G with the points of a projective Steiner triple system
PG(d, 2) can be viewed as a nowhere-zero flow over Z

d+1
2 . It is well-known

that a graph has a nowhere-zero flow if and only if it is bridgeless.
A characterisation of cubic graphs that are S-edge-colourable for a non-

projective Steiner triple system S has been offered as a conjecture (see Con-
jecture 1). One of the obstacles for the existence of an S-edge-colouring is
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the notion of a bipartite end which we now introduce. If a cubic graph G
has bridges it can be split along its bridges into 2-connected blocks, each
incident with one or more bridges. Each bridge is split into two half-edges,
each half-edge incident with one of the blocks. Note that some blocks can
be formed by a single vertex incident with three half-edges; such blocks are
called trivial. A block incident with a single half-edge is called end. Let H be
an end of a cubic graph and H ′ the graph obtained from H by suppressing
the vertex incident with the half-edge. Hence, H ′ is a bridgeless cubic graph
which can contain a single pair of parallel edges (one of those is the con-
tracted edge). We say that H is a bipartite end if the graph H ′ is bipartite,
H is a 3-edge-colourable end if H ′ is 3-edge-colourable (in the usual sense),
and H is hamiltonian if H ′ has a Hamilton cycle avoiding the edge obtained
by suppressing the vertex incident with the half-edge.

We can now state the conjectured characterisation of cubic graphs that
are S-edge-colourable with a Steiner triple system S.

Conjecture 1 (Holroyd and Škoviera [8], Conjecture 1.4). Let S be a non-
projective Steiner triple system. A cubic graph G is S-edge-colourable unless
G has a bipartite end and S is affine.

If a cubic graph G has a bipartite end H and a Steiner triple system S is
affine, an easy linear algebra argument yields that the two edges of H incident
with the bridge must be coloured with the same point of S [8]. Hence, G
cannot be S-edge-coloured. The conjecture of Holroyd and Škoviera asserts
this to be the only obstacle for the existence of an S-edge-colouring unless
S is projective. A counter-example to Conjecture 1 based on altering a
projective Steiner triple system has been found very recently by Griggs and
Máčajová [6]. Its structure suggests that Conjecture 1 is maybe not far
from the truth, since the constructed counter-example is obtained through
a simple modification of a projective Steiner triple system (an exceptional
system in the conjecture).

As a corollary of our characterisation results on Steiner triple systems,
we can show that Conjecture 1 is true when restricted to point-transitive
Steiner triple systems. A Steiner triple system is point-transitive if for every
two points x and y of S, there exists an automorphism of S that maps x to
y. In fact, for non-trivial point-transitive Steiner triple systems S, we can
characterise cubic graphs G that are S-edge-colourable: if S is projective,
G is S-edge-colourable if and only if G is bridgeless (this follows from the
results of [8]). If S is affine, G is S-edge-colourable if and only if G has
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no bipartite end (this solves an open problem from [8, 11] whether every
cubic graph with no bipartite end is AG(2, 3)-edge-colourable). Finally, if S
a non-trivial point-transitive Steiner triple system that is neither projective
nor affine, then G is always S-edge-colourable.

Since there exists a point-transitive Steiner triple system with 13 vertices
that is neither projective nor affine, we can infer from our results the exis-
tence of a universal 13-point Steiner triple system. Since the only smaller
Steiner triple systems are the trivial Steiner triple system, the projective
Steiner triple system S7 = PG(2, 2) and the affine Steiner triple system
S9 = AG(2, 3), the point-transitive Steiner triple system with 13 points is
the universal Steiner triple system with the smallest number of points (this
solves an open problem from [4] to determine the number of points of the
smallest universal Steiner triple system).

2 Notation

In this section, we introduce some additional notation related to Steiner triple
systems. If S is a Steiner triple system, we find convenient to have a special
notation for the point z forming a triple with two given distinct points x
and y: such point z is denoted by x⊕ y throughout the paper. For instance,
in C14 depicted in Figure 1(a), ξ = β1 ⊕ β2. Note that the operation ⊕ is
commutative and need not be associative, i.e., the points x1 ⊕ (x2 ⊕ x3) and
(x1 ⊕ x2) ⊕ x3 could be distinct.

The set X of points of a Steiner triple system S is said to be independent
if for every x ∈ X, the Steiner triple system S ′ induced by X \ {x} in S
does not contain x. For instance, a set X of points of an affine Steiner triple
system is independent if and only if X is affinely independent over Z3.

We now introduce another notion of containment of configurations in
Steiner triple systems and relate it to the standard notion. Let C be a
configuration, as defined earlier, with a distinguished pair (a, b) of its points.
As an example, consider the squashed square configuration CS depicted in
Figure 4 with a = xαβ and b = xγδ. We say that a Steiner triple system S
homomorphically contains the configuration C if there exists a mapping ϕ
of points of C to the points of S such that every triple of C is injectively
mapped onto a triple of S and ϕ(a) 6= ϕ(b). Note that we do not require
the mapping ϕ to be injective but we require that no two points of the same
triple of C are mapped to the same point of S and that the points a and b
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γ2 α1 x0

γ1

xγδ

xαβ

δ1

ξ β1 β2

Figure 4: The squashed square configuration CS. Note that it is required
that ϕ(xαβ) 6= ϕ(xγδ) but the other pairs of points can coincide in a Steiner
triple system.

are mapped to distinct points of S.
In Sections 3 and 4, when proving our characterisation theorems, it will be

more convenient to show that a given Steiner triple system homomorphically
contains CS, rather than it contains one of the configurations C1

S and C2
S.

Let us realise that the two statements are equivalent.

Lemma 2. A Steiner triple system S homomorphically contains the squashed
square configuration CS if and only if S contains the configuration C1

S or the
configuration C2

S.

Proof. If S contains the configuration C1
S or the configuration C2

S, then S
homomorphically contains CS. In the rest, we focus on proving the converse
implication. Let X be the set of points of the squashed square configuration
CS; the points of CS are denoted as in Figure 4. Assume that S homo-
morphically contains the squashed square configuration CS and let ϕ be the
mapping from X to the points of CS as in the definition of homomorphical
containment.

We first show that ϕ(ξ) is distinct from ϕ(x) for every x ∈ X \ {ξ}. By
symmetry, it is enough to consider that ϕ(ξ) would be equal to ϕ(α1), ϕ(x0)
or ϕ(xαβ) and obtain a contradiction. If ϕ(ξ) = ϕ(α1), then ϕ(x0) = ϕ(γ1)
since γ2 = ξ⊕γ1 = α1⊕x0 (in more detail, since ϕ(ξ) = ϕ(α1) and S contains
the triples {ϕ(γ2), ϕ(ξ), ϕ(α1)} and {ϕ(γ2), ϕ(α1), ϕ(x0)}, it must also hold
that ϕ(α1) = ϕ(x0)). Similarly, the equality β1 = ξ ⊕ β2 = α1 ⊕ xαβ implies
that ϕ(β2) = ϕ(xαβ), and δ1 = x0⊕β2 = γ1⊕xγδ yields that ϕ(β2) = ϕ(xγδ).
We infer that ϕ(xαβ) = ϕ(xγδ) = ϕ(β2) which is impossible.

If it held ϕ(ξ) = ϕ(x0), then it would also hold that ϕ(α1) = ϕ(γ1) and
ϕ(β1) = ϕ(δ1). Consequently, ϕ(xαβ) = ϕ(xγδ) contrary to the definition of
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homomorphical containment.
Finally, if ϕ(ξ) = ϕ(xαβ), we obtain ϕ(α1) = ϕ(β2). From this it follows

that ϕ(xαβ) = ϕ(xγδ) similarly to the case where ϕ(ξ) = ϕ(α1) with β2

playing the role of ξ.
If ϕ maps X to ten distinct points of S, i.e., ϕ is injective, then S contains

the configuration C1
S. Otherwise, two of the points of X are mapped to the

same point of S. As the points ξ, x0, β2 and γ2 are mapped to distinct
points of S, ϕ(α1) 6= ϕ(δ1) (otherwise, x0 = α1 ⊕ γ2 = δ1 ⊕ β2 implies that
ϕ(β2) = ϕ(γ2)). By the symmetry, we can assume that ϕ(α1) = ϕ(xγδ).
It is now straightforward to check that no other two points of X can be
mapped by ϕ to the same point of S and thus S contains the configuration
C2

S. We conclude that if S homomorphically contains the squashed-square
configuration CS, then S contains one of the configurations C1

S and C2
S.

3 Forbidden configurations in Hall triple sys-

tems

We split the proof of our characterisation results into two parts. In this
section, we deal with Hall triple systems and in the next section, we focus
on non-Hall triple systems.

Lemma 3. Every Hall triple system S that is not affine homomorphically
contains the squashed-square configuration CS.

Proof. Let us first introduce some additional notation that we use throughout
the proof. Fix an arbitrary point of S; we refer to this point as to the zero
and it is denoted by 0. The other points of S are said to be non-zero.

For a set M of non-zero points of S, L(M) is the Steiner triple system
induced by M ∪ {0}. If M contains a single point, then L(M) is isomorphic
to the trivial Steiner triple system. Observe that if a set M of non-zero points
of S is such that a 6∈ L(M \ {a}) for every a ∈ M , then it is independent,
as defined in Section 2. Since S is Hall, L(M) is isomorphic to S9 for every
two-point set M such that M ∪{0} is independent. On the other hand, since
S is not affine there exists an independent set M such that L(M) is not
an affine Steiner triple system. Let M = {e1, . . . , ed} be an inclusion-wise
minimal independent set for which L(M) is not affine. Note that d ≥ 3.

Let V = Z
d
3 and let V 0 be the set of the vectors of V with at least one

coordinate equal to zero. Define a mapping φ : V 0 → L(M) as follows: the
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φ(~w) φ(~c) φ(~z)

φ(−~x − ~w)
φ(~b)

φ(−~y − ~z)

φ(~x) φ(~a) φ(~y)

(a)

φ(~y) φ(~b′′) φ(~w)

φ(~a′) φ(~a′′)

φ(~x) φ(~b′) φ(~z)

(b)

Figure 5: Two squashed-square configurations constructed in the proof of
Lemma 3.

zero-vector is mapped to 0 and the unit vectors are mapped to the points
of M . The mapping φ is then extended to the remaining vectors of V 0 in
such a way that whenever the vectors ~a, ~b and ~c have at least one common
coordinate equal to zero and sum to zero, then φ(~a), φ(~b) and φ(~c) form a
triple in L(M). Since each of the systems L(M \ {ei}), i = 1, . . . , d, is affine,
such an extension of φ to V 0 is well-defined and unique.

Since L(M) is not affine, the mapping cannot be extended to the whole
set V in such a way that each triple of vectors summing to zero is mapped to
a triple of L(M). There could be several obstacles for the existence of such

an extension. The simplest one is that there exist three vectors ~a, ~b and ~c of
V 0 such that ~a +~b + ~c = ~0 but the points φ(~a), φ(~b) and φ(~c) do not form a

triple in L(M). By the definition of φ, the vectors ~a, ~b and ~c cannot have a
common coordinate equal to zero. Hence, there exist three distinct indices i,
j and k such that ~ai = ~bj = ~ck = 0 but the coordinates ~aj, ~ak, ~bi, ~bk, ~ci and
~cj are non-zero.

We now define four vectors ~w, ~x, ~y and ~z based on the vectors ~a, ~b, ~c.
The i-th coordinates of the vectors are ~xi = ~yi = ~zi = 0 and ~wi = −~ci; the
j-th coordinates are ~xj = ~wj = 0, ~yj = −~aj and ~zj = −~cj; and the k-th
coordinates are ~xk = ~yk = ~ak and ~wk = ~zk = 0. The remaining coordinates
are set as ~xt = −~at, ~yt = 0, and ~wt = ~zt = ~ct for t /∈ {i, j, k}. Note that
~a + ~x + ~y = ~0 and ~c + ~w + ~z = ~0. In addition, the vectors ~x and ~w have a
common coordinate equal to zero, and similarly the pairs of vectors ~x and ~y,
~y and ~z, and ~w and ~z. Observe also that the j-th coordinate of~b and −(~x+ ~w)

is zero, and ~b + (−~x − ~w) + (−~y − ~z) = ~0. Since φ(~b) 6= φ(~a) ⊕ φ(~c) by our
assumption, the configuration looks as depicted in Figure 5(a). Hence, we
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have exhibited the squashed-square configuration in S.
Assume now that for every triple ~a,~b and ~c of vectors of V 0 with ~a+~b+~c =

~0, the points φ(~a), φ(~b) and φ(~c) form a triple in L(M). Our next aim is to
try to extend φ to V by defining φ(~a) = φ(~a′)⊕ φ(~a′′) for vectors ~a ∈ V \ V 0

and ~a′,~a′′ ∈ V 0 such that ~a + ~a′ + ~a′′ = ~0. This extension would be possible
unless there existed four vectors ~a′,~a′′,~b′,~b′′ ∈ V 0 such that ~a′ + ~a′′ = ~b′ +~b′′

and φ(~a′) ⊕ φ(~a′′) 6= φ(~b′) ⊕ φ(~b′′). Assume the existence of such vectors

~a′,~a′′,~b′ and ~b′′.
We next find four vectors ~w, ~x, ~y and ~z in V 0 such that ~a′ + ~x + ~y = ~0,

~b′ + ~x + ~z = ~0, ~a′′ + ~w + ~z = ~0 and ~b′′ + ~y + ~w = ~0; see Figure 5(b). Thus S

contains the squashed-square configuration. Note that ~a′ +~a′′ = ~b′ + b′′ /∈ V 0

by our assumptions. In particular, the vectors ~a′ and ~a′′ do not have the
same coordinate equal to zero and the same also holds for ~b′ and ~b′′. If we fix
arbitrarily one of the coordinates of ~w, say ~wi, then the i-th coordinates of the
vectors ~x, ~y and ~z are uniquely determined: ~yi = −(~b′′i + ~wi), ~zi = −(~a′′

i + ~wi)

and ~xi = −(~a′

i + ~yi) = −(~b′i + ~zi) (the last two expressions are the same since

~a′

i + ~a′′

i = ~b′i +~b′′i ). Similarly, fixing the i-th coordinate of ~x determines the
i-th coordinate of the vectors ~y, ~z and ~w.

First we assume that the vectors ~a′ and ~b′ have the same coordinate equal
to zero, say ~a′

i = ~b′i = 0. We set ~xi = 0. This determines the i-th coordinates

of the vectors ~w, ~y and ~z. In particular, ~yi = 0 and ~zi = 0. Since ~a′′,~b′′ ∈ V 0,
there exist i′ and i′′ such that ~a′′

i′ = 0 and ~b′′i′′ = 0 (the indices i′ and i′′

need not be distinct). Since the vectors ~a′ and ~a′′ do not have a common
coordinate equal to zero, i 6= i′. Analogously, i 6= i′′. Set ~wi′ = 0 and
~wi′′ = 0. The remaining coordinates of the vector ~w are chosen arbitrarily.
This completely determines all the vectors ~w, ~x, ~y and ~z. All the vectors ~w,
~x, ~y and ~z are in V 0 and they satisfy the above constraints. Analogously,
we can handle the cases where the vectors ~a′ and ~b′′, ~a′′ and ~b′, or ~a′′ and ~b′′

have the same coordinate equal to zero.
We now assume that no pair of the vectors ~a′, ~a′′, ~b′ and ~b′′ have the same

coordinate equal to zero. Let i′, i′′, j′ and j′′ be the indices such that ~a′

i′ = 0,

~a′′

i′′ = 0, ~b′j′ = 0 and ~b′′j′′ = 0. Choose ~xi′ = ~xj′ = 0 and ~wi′′ = ~wj′′ = 0. This
determines the i′-th, i′′-th, j′-th and j′′-th coordinate of all the vectors ~w,
~x, ~y and ~z. The remaining coordinates of the vector ~x are chosen arbitrarily
and the remaining coordinates of the other vectors are determined by this
choice. Again, we have obtained the configuration depicted in Figure 5(b).

Hence, we have excluded the existence of the vectors ~a′,~a′′,~b′ and ~b′′.
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Therefore, we conclude that the mapping φ can be extended to V \ V 0 in
such a way that φ(~x) = φ(~x′) ⊕ φ(~x′′) for all vectors ~x ∈ V and ~x′, ~x′′ ∈ V 0

with ~x+~x′ +~x′′ = ~0. Since L(M) is not affine, there must exist three vectors

~a, ~b and ~c in V such that ~a + ~b + ~c = ~0 and φ(~c) 6= φ(~a) ⊕ φ(~b) for this
(uniquely defined) mapping φ.

If ~a = ~0, choose arbitrary two vectors~b′ and~b′′ in V 0 such that~b+~b′+~b′′ =
~0. Hence, ~c + (~a +~b′) + (~a +~b′′) = ~0 and both ~a +~b′ and ~a +~b′′ are contained
in V 0. Since S is Hall and φ(~x) = φ(~x′) ⊕ φ(~x′′) for all vectors ~x ∈ V and

~x′, ~x′′ ∈ V 0 with ~x + ~x′ + ~x′′ = ~0, it follows that φ(~c) = φ(~a) ⊕ φ(~b), a
contradiction. Hence, ~a 6= ~0.

Since the vectors ~a, ~b and ~c are distinct, there exists i such that ~ai, ~bi

and ~ci are distinct. By symmetry, we can assume that ~ai = 0. We aim to
define four vectors ~w, ~x, ~y and ~z that would form the configuration depicted
in Figure 5(a). Set ~xi = ~yi = ~zi = 0 and ~wi = −~ci. Let j be the index
such that ~aj 6= 0 and set ~xj = ~wj = 0, ~yj = −~aj and ~zj = −~cj. The
remaining coordinates of the vectors ~w, ~x, ~y and ~z are chosen in such a way
that ~a+~x+~y = ~0 and ~c+ ~w+~z = ~0. Observe that ~x+ ~w ∈ V 0 and ~y+~z ∈ V 0.
Hence, φ(~b) = φ(−~x − ~w) ⊕ φ(−~y − ~z) since ~b + (−~x − ~w) + (−~y − ~z) = ~0.
We conclude that the constructed configuration matches that depicted in
Figure 5(a). This finishes the proof that if the mapping φ cannot be extended
to the whole set V , then S homomorphically contains the squashed-square
configuration. Hence, the proof of the lemma is complete.

4 Forbidden configurations in other Steiner

triple systems

In the previous section, we have dealt with Hall triple systems, and in this
section we consider non-Hall triple systems. In the next section, the results
of the previous and this section are combined to obtain characterisations of
affine Steiner triple systems and Hall triple systems in terms of forbidden
subconfigurations.

Our aim is to show that every non-projective Steiner triple system that is
not Hall contains the anti-mitre configuration CA, depicted in Figure 3(b). As
the first step, we establish that if a Steiner triple system S does not contain
CA, then every three independent points of S induce a system isomorphic to
S7 or S9.
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Figure 6: The configurations considered in the proof of Lemma 4.

Lemma 4. If a Steiner triple system S does not contain the anti-mitre con-
figuration, then every three independent points of S induce a Steiner triple
system isomorphic to S7 or S9.

Proof. Let A, B and C be three independent points of S and let a = B ⊕C,
b = A ⊕ C and c = A ⊕ B; see Figure 6(a). Note that all the points A, B,
C, a, b and c are mutually distinct. We next consider two cases.

• The points a, b and c form a triple of S.

Let m = A ⊕ a. If m ⊕ c is neither b nor C, we obtain a configuration
isomorphic to the anti-mitre configuration. Since the points a, b and c
form a triple in S, m⊕ c cannot be b. Hence, m⊕ c = C. A symmetric
argument yields that m ⊕ b = B. So the points A, B and C induce a
Steiner triple system isomorphic to S7.

• The points a, b and c are independent.

Let A′ = b ⊕ c, B′ = a ⊕ c and C ′ = a ⊕ b. Since a, b and c are
independent, all the points A, B, C, a, b, c, A′, B′ and C ′ are mutually
distinct. Since S contains no anti-mitre configuration, the point A′ is
either a or A ⊕ a. We have just excluded the former case. Hence,
A′ = A ⊕ a. By the symmetry, we deduce that B′ = B ⊕ b and
C ′ = C ⊕ c.

Therefore we obtain the configurations depicted in Figures 6(b) and
(c). Again, since S does not contain the anti-mitre configuration, the
point B′ is equal to either C ′ or A⊕C ′. Since the points B′ and C ′ are
distinct, it holds that B′ = A⊕C ′. By the symmetry, B = A′⊕C ′ and
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Figure 7: Notation used in the proof of Lemma 5.

C = A′⊕B′. We conclude that the points A, B, C, a, b, c, A′, B′ and C ′

induce a Steiner triple system isomorphic to S9.

Using Lemma 4,we can now show that every non-projective Steiner triple
that is not Hall contains the anti-mitre configuration.

Lemma 5. Every Steiner triple system S that is not projective and that is
not a Hall triple system contains the anti-mitre configuration CA.

Proof. Assume for the sake of contradiction that S is neither a projective
Steiner triple system nor a Hall triple system and yet does not contain the
configuration CA. By Lemma 4, every three independent points induce a
Steiner triple system isomorphic to S7 or S9. If all such induced systems are
isomorphic to S7, then S is projective. On the other hand, since S is not
a Hall triple system, all of them cannot be isomorphic to S9 either. Hence,
there exist four independent points A, B, C and D such that the points A,
B and C induce a Steiner triple system S ′ isomorphic to S7, and there exist
two independent points t and t′ of S ′ such that the points D, t and t′ induce
a Steiner triple system isomorphic to S9.

The Steiner triple system induced by A, B and C is isomorphic to S7. We
set a = B ⊕ C, b = A ⊕ C, c = A ⊕ B and m = A ⊕ a = B ⊕ b = C ⊕ c;
see Figure 7. Let DA = A ⊕ D, DB = B ⊕ D, DC = C ⊕ D, Da = a ⊕ D,
Db = b ⊕ D, Dc = c ⊕ D and Dm = m ⊕ D. Note that all the seven points
DA, . . . , Dm are distinct and neither of them is contained in S ′.

We now colour the triples of S ′ with red and blue based on the following
rule: if {t, t′, t′′} is a triple of S ′ and the points t, t′ and D induce a Steiner
triple system isomorphic to S7, colour the triple {t, t′, t′′} red; otherwise, the
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Figure 8: Configurations contained in S in the case where all the sets
{A, a,D}, {B, b, D} and {C, c, D} induce Steiner triple systems isomorphic
to S7.

points induce a Steiner triple system isomorphic to S9 and the triple {t, t′, t′′}
is coloured blue. This colouring is well-defined and by our assumptions, at
least one of the seven triples of S ′ is blue. Observe now that S ′ contains
a point such that all the three triples containing this point have the same
colour. By symmetry, we can assume that m is such a point and consider
only the following two cases.

• The sets {A, a,D}, {B, b, D} and {C, c, D} induce Steiner triple

systems isomorphic to S7.

Observe that DA = m ⊕ Da = Dm ⊕ a, DB = m ⊕ Db = Dm ⊕ b and
DC = m⊕Dc = Dm⊕c; see Figure 8(a), (b) and (c) respectively. Since
there exist two points of S ′ that with D induce a Steiner triple system
isomorphic to S9, we can assume by symmetry that the points {a, b,D}
induce a system isomorphic to S9.

Note that the points DA, DB and DC cannot form a triple: otherwise,
the point C would be contained in the Steiner triple system induced
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by A, B and D contradicting our choice of A, B, C and D as four in-
dependent points; see Figure 8(d). Therefore, the Steiner triple system
induced by Dm, a and b is not affine and thus it is isomorphic to S7;
see Figure 8(e). Similarly, the Steiner triple system induced by m, Da

and Db is isomorphic to S7 (Figure 8(f)). This readily implies that
the points b and Db must be the same since they both are the point
DA ⊕ DC . However, the points b and Db must be distinct since they
are contained in a common triple in S.

• The sets {A, a,D}, {B, b, D} and {C, c, D} induce Steiner triple

systems isomorphic to S9.

Assume first that D and every two points of S ′ induce a Steiner triple
system isomorphic to S9. In particular, the points A, B and D induce
such a Steiner triple system and thus (A ⊕ D) ⊕ (B ⊕ D) = DA ⊕ DB

is equal to c ⊕ D = Dc; see Figure 9(a). Let x = m ⊕ DA = Dm ⊕ a,
y = m⊕DB = Dm⊕b, z = m⊕DC = Dm⊕c and z′ = m⊕Dc = Dm⊕C
(the points x, y, z and z′ exist since the configurations are isomorphic
to S9). See Figure 9(b), (c) and (d).

Consider the Steiner triple system induced by the points Dm, a and
b. If this Steiner triple system is isomorphic to S7, then x ⊕ y is the
point c; otherwise, it is isomorphic to S9 and x ⊕ y = z. Consider
now the Steiner triple system induced by the points m, DA and DB.
If it is isomorphic to S7, then x ⊕ y = DA ⊕ DB = Dc; otherwise, it is
isomorphic to S9 and x ⊕ y is the point z′ = m ⊕ Dc = Dm ⊕ C. We
conclude that x⊕ y is the same point as two of the points c, z, Dc and
z′. However, this is impossible since these points are mutually distinct
as they form a Steiner triple system isomorphic to S9. We conclude
that S ′ contains two points that induce with D a Steiner triple system
isomorphic to S7.

By symmetry, we can now assume that the points a, b and D induce
a Steiner triple system isomorphic to S7, see Figure 10. In particular,
b = Da ⊕Dc. Consider the Steiner triple system induced by the points
Dm, Da and Dc. Since Dm ⊕ Da = DA and Dm ⊕ Dc = DC , the point
DA ⊕ DC is either the point b (if the considered Steiner triple system
is isomorphic to S7) or the point Dm ⊕ b (if it is isomorphic to S9).
By considering the Steiner triple system induced by the points D, A
and C, we derive that the point DA ⊕ DC is either b or D ⊕ b. The
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Figure 9: Configurations contained in S in the case where D and every two
points of S ′ induce a Steiner triple systems isomorphic to S9.
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Figure 10: Configurations contained in S in case where all the triples
{A, a,D}, {B, b, D} and {C, c, D} induce Steiner triple systems isomorphic
to S9, but a, b and D induce a Steiner triple system isomorphic to S7.
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former holds if the induced Steiner triple system is isomorphic to S7,
the latter if it is isomorphic to S9. Since the points b, Dm⊕b and D⊕b
are distinct, the Steiner triple system induced by D, A and C must be
isomorphic to S7. By symmetry, the Steiner triple systems induced by
D, A and B, and D, B and C are also isomorphic to S7.

Let x = a⊕Dm = m⊕DA and y = B ⊕Dm = m⊕Db. Consider now
the Steiner triple system induced by the points m, DA and Db. Since
DA ⊕ Db = C (recall that the Steiner triple system induced by A, C
and D is isomorphic to S7), the point x⊕ y is either C (if the induced
system is isomorphic to S7) or m ⊕ C = c (if the induced system is
isomorphic to S9). Similarly, by considering the Steiner triple system
induced by Dm, a and B, we derive that x ⊕ y is either C or Dm ⊕ C.
Since the points C, m ⊕ C and Dm ⊕ C are distinct, both the Steiner
triple system induced by m, DA and Db and one induced by Dm, a and
B are isomorphic to S7 and x ⊕ y = C. Hence, DB = DA ⊕ c = y but
the points y and DB must be distinct since they are contained in the
copy of S9 induced by the points m, B and D.

We have shown that a non-projective Steiner triple system that is not a Hall
triple system and such that every three independent points induce a Steiner
triple system isomorphic to S7 or S9 cannot exist. The statement of the
lemma now follows.

5 Characterisations of affine Steiner triple sys-

tems and Hall triple systems

Before we can state our characterisation results, we have to show that every
Steiner triple system containing CA also contains one of the configurations
C1

S and C2
S. We prove instead that it homomorphically contains CS which is

equivalent by Lemma 2.

Lemma 6. Every Steiner triple system S containing the anti-mitre configu-
ration CA also homomorphically contains the squashed-square configuration
CS.

Proof. Choose the points ξ, β1, β2, γ1 and γ2 to be the points of the anti-
mitre configuration as depicted in Figure 11. Note that the five points are
distinct and ξ = β1 ⊕ β2 = γ1 ⊕ γ2.

20



β2

f(β2)
γ1 ⊕ β2

β1

γ2 γ1 ξ

Figure 11: The notation used in the proof of Lemma 6.

For a point z of a Steiner triple system S, let f(z) = (z ⊕ γ2) ⊕ β1 and
h(z) = (z ⊕ β2)⊕ γ1. Note that the functions f and h are not defined for all
the points of S. More precisely, the function f(z) is a bijection between its
domain D(f) = S \ {γ2, γ2 ⊕ β1} and its image set R(f) = S \ {β1, γ2 ⊕ β1}.
Similarly, h(z) is a bijection between D(h) = S \ {β2, β2 ⊕ γ1} and R(h) =
S \ {γ1, γ1 ⊕ β2}.

Observe that if there exists a point z of S such that both f(z) and h(z)
are defined and f(z) 6= h(z), we are able to construct the squashed-square
configuration in S. Indeed, we set x0 = z, α1 = z ⊕ γ2, δ1 = z ⊕ β2,
xαβ = f(z) = α1⊕β1 = (z⊕γ2)⊕β1, and xγδ = h(z) = δ1⊕γ1 = (z⊕β2)⊕γ1;
see Figure 4. Hence, in order to establish the statement of the lemma, it is
enough to show that there exists a point z of S such that f(z) 6= h(z).

Recall that f and h are defined on all the points of S except β2, γ2, β1⊕γ2

and β2 ⊕ γ1. The points β2 and γ2 are distinct from the remaining excep-
tional points, however, the points β1 ⊕ γ2 and β2 ⊕ γ1 might be the same.
Analogously, the set of possible common values of f and h are the points of
S except for β1, γ1, β1 ⊕ γ2 and β2 ⊕ γ1. Again, these points are distinct with
a possible exception of the pair of β1 ⊕ γ2 and β2 ⊕ γ1. Since the pairs of
points that could be the same point are the same pairs both for the domains
and image sets of f and h, it holds that |D(f) ∩ D(h)| = |R(f) ∩ R(h)|.

Assume to the contrary that there is no point z such that z ∈ D(f)∩D(h)
and f(z) 6= h(z). In particular, f and h restricted to D(f)∩D(h) are the same
bijective mapping onto R(f) ∩ R(h). Therefore, the points of D(f) \ D(h)
are mapped by f to R(f)\R(h). We conclude that f(β2) is one of the points
γ1 and γ1 ⊕ β2. However, f(β2) cannot be either of these two points; see
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Figure 11.

We can now state the theorem characterising affine and Hall Steiner triple
systems.

Theorem 7. A Steiner triple system S is affine if and only if it contains
neither of the configurations C16, C1

S or C2
S. Moreover, if S is known to

be non-projective, then S is affine if and only if it contains neither of the
configurations C1

S and C2
S.

Similarly, S is a Hall triple system if and only if it contains neither of
the configurations C16 and CA, and if S is known to be non-projective, then
S is Hall if and only if it does not contain the configuration CA.

Proof. It is easy to see that an affine Steiner triple system S cannot contain
either of the configurations C16, C1

S and C2
S. Suppose now that S is not

affine. If S is projective, then it contains C16. If S is a Hall triple system,
then it contains C1

S or C2
S by Lemmas 2 and 3. Finally, if S is not projective

and not a Hall triple system, then it contains CA by Lemma 5, and hence it
contains one of the configurations C1

S or C2
S by Lemmas 2 and 6.

Similarly, a Hall triple system S contains neither C16 nor CA as neither
of these two configurations is contained in S9. Analogously to the above
argument, a projective Steiner triple system S contains the configuration C16,
and a non-projective Steiner triple system that is not a Hall triple system
contains the configuration CA by Lemma 5.

6 Preliminary results on colourings with points

of Steiner triple systems

We now turn our attention to applying our characterisation results to edge-
colourings of cubic graphs. We start with recalling several results on colour-
ings of cubic graphs with Steiner triple systems. As the first, a theorem on
edge-colourings of bridgeless cubic graphs with the points of Steiner triple
systems from [8] is stated and proved. We provide its proof though the main
idea follows that of [8] because of several reasons, the most important be-
ing that the proof is later altered to obtain edge-colourings in more special
scenarios and we want to avoid extensive referring to a different paper. An-
other reason is that we want to give the proof using our notation. Given a
subgraph C of a graph G, let G/C be the graph obtained by contracting the
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Figure 12: The colouring constructed in the proof of Theorem 8. The edges
of M \ (T1 ∪ T2) are drawn as dashed and coloured with the point ξ.

components of C to single vertices, and removing the loops that may arise
(but not the parallel edges).

Theorem 8 (Holroyd and Škoviera [8]). Let S be a non-trivial Steiner triple
system. Every bridgeless cubic graph is S-edge-colourable. Moreover, for
every edge e of G and every point ξ of S, there exists an S-edge-colouring
that assigns ξ to e.

Proof. It can be shown using standard graph theory arguments that G con-
tains a perfect matching M with the following properties (see [9, 10] for
instance): M contains the edge e and the graph H = G/C, where C is the
complement of M in G, contains two edge-disjoint spanning forests T1 and
T2, e 6∈ T1∪T2, such that the degree of a vertex v is odd in Ti, i = 1, 2, if and
only if the degree of v in H is odd. Such spanning forests are called parity
forests.

Choose an arbitrary point α1 of S distinct from ξ and set α2 = ξ ⊕ α1.
Let β1 be a point of S distinct from ξ, α1 and α2 and let β2 = ξ⊕β1. Further,
let γi = αi ⊕ βi for i = 1, 2. Finally, let δ12 = α2 ⊕ β1 and δ21 = α1 ⊕ β2; see
Figure 13.
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Figure 13: The notation used in the proof of Theorem 8.

If all the cycles of C were even, we would colour the edges of M with ξ
and the edges of the cycles with α1 and α2 alternately. This would give us
the desired colouring of the edges of G. However, some cycles of C could be
odd. We cope with this in the rest of the proof.

The edges of cycles will be coloured with α’s and β’s in such a way that
the indices of the colours alternate precisely at vertices not incident with the
edges of T1. Once we choose which edges of a cycle C1 of C are coloured
with α1 or β1 and which with α2 or β2, the points assigned to the edges
of T1 incident with C1 are determined to be either γ1 or γ2 depending on
the colours of the two edges incident with that edge of T1. The choice of
a colouring of a single cycle corresponding to a vertex of a component of
T1 determines the colourings of the edges of all cycles corresponding to the
vertices of the same component of T1. Since T1 is acyclic and each cycle is
incident with the number of edges of T1 matching its parity, the edges of T1

can be coloured with γ1 and γ2 in such a way that the colouring of T1 can be
extended to all cycles.

Similarly, we can partition the edges of C into two classes such that the
edges of one of the classes will be coloured with α1 or β2, and the edges of
the other class with α2 or β1. The classes alternate at vertices not incident
with an edge of T2 and the edges of T2 get the colours δ12 and δ21.

In the just described way, we have defined colourings of the edges of T1

and T2. The edges of M not contained in T1 or T2 are coloured by ξ. As
discussed above, the colouring of the edges of M extends to the edges of
C. Indeed, the colours of the edges of T1 determine the indices and those
of T2 then completely fix the colours assigned to the edges of C. Since
e ∈ M \ (T1 ∪ T2), the colour of e is ξ as desired. The proof of the lemma is
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now completed.

Note that in addition to prescribing the colour of e to be ξ, we can
also assume in the proof of Theorem 8 that the colours of the edges of the
even cycles corresponding to vertices that are isolated both in T1 and T2 are
coloured with α1 and α2 alternately, and fix a colouring of one odd cycle.

We now sketch an alternative proof of the following result of Pál and
Škoviera [11]—we focus on the aspects that are different and used in our
further arguments. The proof was obtained during discussions of Zdeněk
Dvořák and the first author.

Theorem 9 (Pál and Škoviera [11]). Every cubic graph with no bipartite end
is AG(d, 3)-edge-colourable for all d ≥ 3.

The graph is first split into blocks with half-edges corresponding to bridges
incident with the blocks. We next construct an edge-colouring of each block.
It is required that the points assigned to each triple of edges sharing the
same vertex form a triple in the system. In particular, the points assigned
to a half-edge and the two edges incident with it form a triple. As stated in
the next lemma, it is enough to be able to construct edge-colourings of non-
bipartite ends and bridgeless cubic graphs since the half-edges of non-trivial
blocks incident with more bridges can be merged to obtain graphs only of
these two kinds.

Lemma 10. Let H be a non-trivial block of a cubic graph incident with at
least two half-edges. If H is incident with an odd number of half-edges and
H is not a triangle with three half-edges, then the half-edges can be identified
in such a way that the resulting graph is a non-bipartite end. On the other
hand, if H is incident with an even number of half-edges, then the half-edges
of H can be identified in such a way that the resulting graph (after a possible
successive removal of pairs of parallel edges) is either a simple bridgeless
cubic graph or a graph formed by a triple of parallel edges.

Proof. If H is incident with four or more half-edges, than H contains two half-
edges f1 and f2 which are not incident with adjacent vertices. We identify
the half-edges f1 and f2 and obtain a block with less half-edges and without
parallel edges that also satisfies the assumption of the lemma. Hence, we
assume in the rest that the block is incident with two or three half-edges.

If H is incident with two half-edges, we identify the two half-edges and
obtain a bridgeless cubic graph H ′ which need not be simple. We next

25



remove pairs of parallel edges as we describe in Introduction: remove the
pair of parallel edges and identify the two edges incident with the pair of
parallel edges that remain in the graph. Note that the graph is kept being
bridgeless and cubic in this way and thus we cannot obtain a loop. Hence, we
either end with a simple bridgeless cubic graph or a triple of parallel edges
as claimed in the statement of the lemma.

The case where H is incident with three half-edges is more involved.
We distinguish two cases based on whether or not the vertices of H can be
coloured with two colours. If the vertices can be coloured with two colours,
then identify two half-edges incident with vertices of the same colour. This
does not create a pair of parallel edges. In addition, the resulting graph is
not a bipartite end since we have just created an odd cycle.

If the vertices of H cannot be 2-coloured, then identifying any pair of half-
edges does not create a bipartite end. Hence, we have only to avoid creating
a pair of parallel edges, i.e., we have to identify half-edges incident with non-
adjacent vertices. This is possible unless H is a triangle with incident three
half-edges.

Every bridgeless cubic graph as well as a trivial block or a block formed
by a triangle with three incident half-edges is AG(d, 3)-edge-colourable [8].
Therefore, we only have to establish that each non-bipartite end is AG(d, 3)-
edge-colourable for all d ≥ 3 to finish the proof of Theorem 9. We next show
that if the non-bipartite end is 3-edge-colourable, then it is indeed AG(d, 3)-
edge-colourable for every d ≥ 2.

Lemma 11. Let S be a non-trivial affine Steiner triple system. Every 3-
edge-colourable non-bipartite end G0 is S-edge-colourable.

Proof. Let S be an affine Steiner triple system AG(d, 3), d ≥ 2. The points
of S are d-dimensional vectors (x1, . . . , xd) with xi ∈ {0, 1, 2}. Let G be the
graph obtained from G0 by suppressing the vertex incident with the half-
edge and let e be the new edge of G. For the rest of the proof, we fix a
3-edge-colouring of G.

We claim that G contains an odd cycle C0 passing through the edge e.
Since G is not bipartite, it contains an odd cycle C. If e ∈ C0, the claim
holds. Assume that e 6∈ C0. Since G is bridgeless, there exist two edge-
disjoint paths in G from the end-vertices of e to C. The two paths combine
with one of the two parts of C delimited by the final vertices of the paths to
an odd cycle C0 containing the edge e.
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We are now ready to define the S-edge-colouring of G0. The first coordi-
nate x1 is equal to 0, 1 or 2 depending on the colour of the edge of G in the
fixed colouring. Note that the first coordinate of every two incident edges
except for the two edges incident with the half-edge are distinct. The second
coordinate x2 is equal to 0 for all the edges not contained in C0. For the
other edges which form an even cycle in G0, the second coordinate alternates
between 1 and 2. The remaining coordinates xi, i > 2, are equal to 0. It is
easy to verify that the defined colouring is an S-edge-colouring of G0.

The proof that each non-3-edge-colourable (and thus non-bipartite) end
is AG(d, 3)-edge-colourable if d ≥ 3, is obtained by combining arguments
used in the proofs of Theorem 8 and Lemma 11. The first two coordinates
are used to mimic the edge-colouring from the proof of Theorem 8 and the
third coordinate to distinguish the colours assigned to the edges incident
with the half-edge (in the same way as the second coordinate in the proof
of Lemma 11). Since we do not use Theorem 9 in our further considerations
and only use Lemmas 10 and 11, we leave the details missing to complete
the proof of Theorem 9 to the reader.

7 Non-3-edge-colourable ends

By Lemma 10, the problem of an edge-colouring of a cubic graph can be
decomposed into several problems dealing with edge-colourings of ends. In
this section, we consider ends that are not 3-edge-colourable.

Lemma 12. Let S be a Steiner triple system containing the configuration
C14. Every non-3-edge-colourable end G0 is S-edge-colourable.

Proof. We alter the proof of Theorem 8. The points of C14 are ξ, αi, βi and
γi as in Figure 1(a). Note that this is consistent with the notation used in
the proof of Theorem 8.

Let e1 and e2 be the two edges incident with the half-edge and G be the
bridgeless cubic graph obtained by suppressing the vertex incident with the
half-edge. Let e be the resulting edge of G. As in Theorem 8, we consider
a perfect matching M , e ∈ M , and two disjoint parity forests T1 and T2 of
G/C where C is the complement of M and e 6∈ T1 ∪ T2. Let v0 be the vertex
of G/C corresponding to a cycle incident with e1.

Since the end is not 3-edge-colourable, G/C contains a vertex of odd
degree. Hence, both T1 and T2 contain some edges. Let v0 · · · vk be a shortest
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Figure 14: The modification of the colouring performed in the proof of
Lemma 12—the original colouring is in the top and the modified in the
bottom of the figure. The edges of the path P are drawn solid bold.

path in G/C from the vertex v0 to a vertex vk that is not isolated in T1 or
T2. Note that k may be 0. Further, let Ci be the cycle of C corresponding
to the vertex vi, i = 0, . . . , k, and let P be the path in G0 comprised of the
edge e1, the edges corresponding to the path v0 · · · vk and parts of the cycles
C0, . . . , Ck. By symmetry, we can assume that e2 does not belong to P , see
Figure 14. The last vertex of P is the only vertex of P incident with an edge
contained in T1 ∪ T2.

Next, we modify the colouring obtained in the proof of Theorem 8. As
mentioned after its proof, we can assume that the edges of P ∩C are coloured
with α1 and α2 only. In addition, we can assume that the colours of edges
of P ∩C incident with the same edge of P ∩M are the same, i.e., they both
are either α1 or α2, the last edge of P is coloured with α1 and the edge eM

of M incident with the last vertex of P is contained in T1 (see the figure).
In particular, the colour of eM is γ1. Note that all the edges of P ∩ M are
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coloured with ξ.
Let x1 be the point β1 ⊕ γ2. Note that x1 is distinct from the points ξ,

α1 and α2. Further, let x2 = ξ⊕x1. Analogously, x2 is different from α1 and
α2. Note that α2 + xi 6= ξ for each i ∈ {1, 2}.

We now alter the constructed colouring. Recolour the edge eM to γ2 and
swap the indices of the colours of the edges of the subtree of T1 separated by
eM from vk, i.e., the edges of the subtree coloured with γ1 are now coloured
with γ2 and vice versa. This results in a change of the colouring of the edges
of C contained in the cycles incident with edges of swapped colours. By the
choice of the path v0 · · · vk, the colours of all the edges of P as well as edges
incident with them except for the edge eM have been preserved.

We now modify the colouring of the edges of P in such a way that the
obtained colouring is an S-edge-colouring of G0. The colours of the edges of
P ∩ C that are originally coloured with αi are changed to xi both for i = 1
and i = 2. Consider now an edge f ∈ P ∩ M . Note that both the ends of f
are either incident with edges coloured α1 and x2, or with edges coloured α2

and x1. Hence, we can extend the colouring to the edges of P ∩M . Since the
colour of e1 is not equal to ξ, and the colour of e2 is ξ, the colouring can also
be extended to the half-edge of G0 which is incident with e1 and e2. This
finishes the proof of the lemma.

8 3-edge-colourable ends

In Section 7, we constructed colourings of non-3-edge-colourable ends. It
remains to consider 3-edge-colourable ends. It seems that the core of the
problem lies in hamiltonian ends. More precisely, we first construct the
desired colourings for hamiltonian ends and we later show how to reduce
the problem of colouring general 3-edge-colourable ends to hamiltonian ones.
The first case we consider are hamiltonian non-bipartite ends.

Lemma 13. Let S be a Steiner triple system containing the configuration
C14. Every hamiltonian non-bipartite end G0 is S-edge-colourable. Moreover,
there exists an S-edge-colouring such that the edges not contained in the
Hamilton cycle receive at most three distinct colours.

Proof. Let G be the graph obtained from G0 by suppressing the vertex in-
cident with the half-edge, e the resulting edge of G, and e1 and e2 the two
edges of G0 incident with the half-edge. Further, let CH be the Hamilton
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Figure 15: The colouring of G0 constructed in the proof of Lemma 13 in the
case where the cycle Ce is odd in G. The dashed chords are labelled with ξ.

cycle with e 6∈ CH and for every chord f of CH , let Cf be one of the cycles
formed by f and a part of the cycle CH . Since the cycles CH and Cf form
a base of the cycle space of G and G is not bipartite, one of these cycles is
odd. Since G is cubic, the length of CH is even and thus one of the cycles
Cf is odd.

We first consider the case that the cycle Ce is odd (in the graph G). The
edges e1 and e2 are coloured with γ1 and γ2, the other chords of CH are
coloured with ξ. The edges of one of the parts of CH delimited by e are
coloured with α1 and α2 and the edges of the other part with β1 and β2 (see
Figure 15). Let us remind that the points of C14 are ξ, αi, βi and γi as in
Figure 1(a).

In the rest of the proof, we assume that the cycle Ce is even and consider
a cycle Cf , f 6= e, that is odd. Before we proceed further, let us introduce
some additional notation: α′

1 is the point α2 ⊕ γ1, α′

2 is ξ ⊕ α′

1, and ξ′ is
α′

2 ⊕ β2. Since α′

1 6= ξ, the point α′

2 is well-defined. Moreover α′

2 6= β2, i.e.,
the point ξ′ is also well-defined.

We now distinguish two cases based on whether the chords e and f cross.
If the chords e and f cross (see Figure 16(a)), colour f with γ1 and one of
the parts of CH delimited by f , say one incident with e1, with α1 and α2

alternately. The other part of CH is split by e2 into two parts: the edges of
one of the parts are coloured with β1 and β2 alternately and the edges of the
other with α′

1 and α′

2 alternately. Finally, the edges e1 and e2 are coloured
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Figure 16: The colourings of G0 constructed in the proof of Lemma 13 in
the case where the cycle Ce is even and (a) the chords e and f cross, (b) the
chords e and f do not cross. The dashed chords are labelled with ξ.

with ξ and ξ′, and the remaining chords of CH are coloured with ξ. It is
straightforward to verify that the colouring is an S-edge-colouring. Since
ξ 6= ξ′, the colouring can be extended to the half-edge.

The final case to consider is that the chords e and f do not cross. By the
symmetry, we can assume that the part of CH delimited by e1 and f is odd
and the part delimited by e2 and f is even; see Figure 16(b). The edges of
the part of CH between f and e1, and e1 and e2, are coloured with β1 and
β2 alternately. The edge f is assigned γ1 and the edges of the part of CH

delimited by f are assigned α1 and α2 alternately. The remaining edges of
CH are then coloured with α′

1 and α′

2. Finally, the edge e2 is coloured with
ξ′ and the remaining chords of CH with ξ. Since ξ 6= ξ′, this colouring can
also be extended to the half-edge.

Note that, regardless whether the cycle Ce is odd or even, there are three
distinct points assigned to the edges not contained in the Hamilton cycle,
namely, the points γ1, ξ and ξ′.

It remains to consider hamiltonian bipartite ends. This is the point where
we will utilise our characterisation results since such ends cannot be edge-
coloured by affine Steiner triple systems.
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Figure 17: The squashed-square configuration CS enhanced by two new
points α2 = ξ ⊕ α1 and δ2 = ξ ⊕ δ1. Note that it is required that xαβ 6= xγδ

but the other pairs of points can coincide.

Lemma 14. Let S be a Steiner triple system homomorphically containing
the squashed-square configuration CS. Every hamiltonian bipartite end G0

is S-edge-colourable. Moreover, there exists an S-edge-colouring such that
the edges not contained in the Hamilton cycle receive at most five distinct
colours.

Proof. Let us enhance the squashed-square configuration CS by introducing
two new points α2 = ξ⊕α1 and δ2 = ξ⊕δ1; see Figure 17. Let G be the graph
obtained from G0 by suppressing the vertex incident with the half-edge, e
the resulting edge of G, and e1 and e2 the two edges of G0 incident with the
half-edge. Further, let CH be the Hamilton cycle of G with e 6∈ CH .

Assume first that G contains a chord f that crosses e as depicted in
Figure 18. The edge e1 is coloured with xαβ, e2 with xγδ, and f with x0.
The other chords of CH are coloured with ξ. The edges of the parts of CH

delimited by e and f are coloured with α1 and α2, β1 and β2, γ1 and γ2, and
δ1 and δ2, each part with one of the pairs of the colours alternately. Since
xαβ 6= xγδ, the colouring can be extended to the half-edge. Note that only
the points ξ, x0, xαβ and xγδ are assigned to the edges not contained in the
Hamilton cycle.

A more involved case is when no chord of CH crosses e. Since G has no
parallel edges (with a possible exception of e), it contains a pair of crossing
chords. Each pair of crossing chords split CH into four parts, out of which
one is incident with both the end-vertices of e. Choose among all pairs of
chords f1 and f2 the one with distance between the end-vertices of f1 and f2

delimiting the part opposite to the part incident with e the smallest possible.
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Figure 18: The colouring of G0 constructed in the proof of Lemma 14 in the
case where there is a chord crossing e. The dashed chords are labelled with
ξ.
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Figure 19: The colourings of G0 constructed in the proof of Lemma 14 in the
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ξ.
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It is not hard to show that this distance must be equal to one, otherwise,
there would exist a pair of crossing chords with closer end-vertices. Let v1

and v2 be the end-vertices of f1 and f2 that are adjacent and v′

1 and v′

2 the
other end-vertices of f1 and f2.

Before we proceed further, we show that it can be assumed that xαβ 6= γ1

or xγδ 6= β1 (note that the two inequalities are symmetric). If xαβ = γ1 and
xγδ = β1, then α1 = δ1; see Figure 17. Consequently, β2 = γ2 and β1 = γ1.
However, this implies xαβ = xγδ which is inconsistent with the definition of
the configuration CS. Hence, we can assume that xαβ 6= γ1 in the rest of the
proof. Since xαβ 6= γ1, there exists a point z1 that forms a triple with xαβ

and γ1. Observe that z1 6= ξ (otherwise, xαβ would be equal to γ2, x0 would
be β1 and ξ would be δ1 which is impossible). Consequently, there exists a
point z2 = ξ ⊕ z1.

We are now ready to colour the edges of G. The edge v1v2 is coloured
with α1, the edge f1 with x0 and the edge f2 with xαβ. The chords of CH

distinct from e1, e2, f1 and f2 are coloured with ξ. The edges of the part
of CH delimited by v1 and v′

2 are coloured with γ1 and γ2 alternately and
the edges of the part delimited by v2 and v′

1 are coloured with β1 and β2 as
in Figure 19. This colouring switches at the vertex incident with f1 to an
alternating colouring with δ1 and δ2 until it hits the end-vertex of the edge
e1. The edges of CH between the end-vertices of e2 and f2 are coloured with
z1 and z2 alternately; see Figure 19.

It remains to colour the edges of the part of CH delimited by e and the
edges e1 and e2 themselves. The coloured edge incident with e1 is coloured
with δk and the coloured edge incident with e2 is coloured with zk (note that
the indices of the two colours are the same by the parity constraints). We
assert that δk 6= zk: if z1 = δ1, then xαβ = xγδ which is impossible. If z2 = δ2,
then z1 = δ1 which we have just excluded.

Choose arbitrary a point y1 of S that is distinct from ξ, δk and zk, and
let y2 = ξ ⊕ y1. The remaining edges of HC are coloured with y1 and y2

alternately in such a way that the edges e1 and e2 are incident with edges
coloured with y1. Since y1 6∈ {zk, δk}, the colouring can be extended to e1

and e2. Moreover, since zk 6= δk, the colours of e1 and e2 are distinct. Hence,
the colouring can also be extended to the half-edge.

It remains to verify that there are at most five points used to colour the
edges not contained in the Hamilton cycle: indeed, only the points ξ, x0, xαβ

and the points assigned to e1 and e2 are such points. The proof of the lemma
is now finished.

34



We have constructed colourings of hamiltonian ends. A 3-edge-colourable
end does not need to be hamiltonian in general but we can reduce the problem
to hamiltonian ends as described in the next lemma.

Lemma 15. Let S be a Steiner triple system containing the configuration
C14 and homomorphically containing the squashed-square configuration CS.
Every 3-edge-colourable end G0 is S-edge-colourable.

Proof. Let G be the graph obtained by suppressing the vertex u incident
with the half-edge and e = v0v1 the resulting edge. Fix a colouring of the
edges of G with three colours, say red, green and blue, such that the edge e
is red and the cycle formed by green and blue edges that contains v0 is the
longest possible.

Let w1, . . . , wk be the vertices of the cycle formed by green and blue
edges that contains the vertex v0 and assume that w1 = v0. We construct an
auxiliary end H0 with the vertices w0, . . . , wk where w0 is a new vertex which
will be incident with the half-edge of H0. The cycle w1 · · ·wk is contained
in H0. In addition, the vertices wi and wj are joined in H0 by an edge eij

if G contains a path Pij formed by red and blue edges such that wi and wj

are the only vertices of Pij contained in the cycle w1 · · ·wk. Note that for
each vertex wi, there exists a unique vertex wj with this property. The chord
incident with w1 is replaced by a path containing the vertex w0. Observe
that the resulting graph H0 is a hamiltonian end. In addition, H0 has no
parallel edges: if two vertices wi and wj adjacent in the cycle were joined by
a chord, then we could assume by the symmetry that the edge wiwj of the
cycle is blue and switch the red and blue colours on the cycle Pij ∪ {wiwj}
thereby obtaining a longer green-blue cycle with v0. This would contradict
our choice of the 3-edge-colouring.

By Lemma 13 or 14 (depending on whether H0 is bipartite), H0 has an S-
edge-colouring such that at most five distinct points of S are used to colour
the chords of the Hamilton cycle of H0. Choose a point ξ0 of S distinct
from the five points used on edges not contained in the Hamilton cycle. In
addition, choose another point α0 distinct from ξ0. We now construct an
S-edge-colouring of the edges of G0. The edges of the cycle w1 · · ·wk keep
their colours. The red edges of the path Pij get the colour of the edge eij;
the edge w1u gets the colour of w0w1, and the red edges on the path from
w1 as well as the edge uv1 get the colour of the other edge incident with w0.
The remaining red edges of G0 are coloured with α0. The green edges of G0

not contained in the cycle w1 · · ·wk are coloured with ξ0.
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The only edges that are not yet coloured are blue edges not contained in
the cycle w1 · · ·wk. Now observe that each end-vertex of every uncoloured
blue edge is incident with two edges coloured with the same pair of points of
S (one of these two colours being ξ0). Hence, the colouring can be extended
to all the edges of G0. This finishes the proof of the lemma.

9 Characterisation of edge-colourability of cu-

bic graphs

In Sections 7 and 8, we constructed S-edge-colourings of ends of cubic graphs.
It remains to combine these colourings to a colouring of the whole cubic
graph.

Theorem 16. Let G be a cubic graph and S a non-trivial point-transitive
Steiner triple system.

• If S is projective, then G is S-edge-colourable if and only if G is bridge-
less.

• If S is affine, then G is S-edge-colourable if and only if G has no
bipartite end.

• If S is neither projective nor affine, then G is always S-edge-colourable.

Proof. Fix a cubic graph G and a non-trivial point-transitive Steiner triple
system S. If S is projective, then G is S-edge-colourable if and only if G is
bridgeless [8].

Next, we assume S is affine. If G has a bipartite end, then G is not S-edge-
colourable [8]. Hence, assume G has no bipartite ends. If G is bridgeless, G
is S-edge-colourable since all bridgeless cubic graphs are edge-colourable by
all non-trivial Steiner triple systems; see Theorem 8. Hence, we also assume
G has one or more bridges.

Split now the graph G along its bridges into several blocks. We now
colour each block with its incident half-edges. Since S is affine, it contains
the configuration C14. Hence, all the ends can be S-edge-coloured either by
Lemma 11 or by Lemma 12. Let us now consider a block incident with two or
more half-edges. The trivial blocks and the blocks formed by a triangle with
three half-edges are clearly S-edge-colourable. By Lemma 10, the half-edges
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of the remaining blocks of G can be identified in such a way that the resulting
graph (after a possible removal of parallel edges) is a bridgeless cubic graph,
a triple edge or a non-bipartite end. All such graphs are S-edge-colourable
as argued before. Since the obtained S-edge-colouring can be extended to
the removed parallel edges, the original block of G is also S-edge-colourable.

It remains to combine the colourings of the blocks. After contracting the
blocks of G into single vertices, the graph G becomes a tree. We further
refer to the vertices as nodes in order to distinguish them from the vertices
of G. Root this tree at any of its nodes. We fix the S-edge-colourings of
the blocks from the root of the tree to its leaves. The block corresponding
to the root keeps its original colouring. Since S is point-transitive, we can
permute the colourings of the blocks corresponding to the nodes adjacent
to the root (its children) in such a way that they match on the half-edges.
Next, we permute the edge-colourings of the blocks corresponding to the
grand-children in such a way that they match the colours of edges leading
from the blocks corresponding to the children. We proceed in this way until
we obtain an S-edge-colouring of the entire graph G.

It remains to consider the case where S is neither projective nor affine. By
Theorems 1 and 7, and Lemma 2, we deduce that S contains the configuration
C14 as well as it homomorphically contains the squashed-square configuration
CS. If G is bridgeless, G is S-edge-colourable by Theorem 8. Otherwise, we
also split G along its bridges to blocks. The ends can be S-edge-coloured by
Lemmas 12 and 15. The trivial blocks and the blocks formed by triangles with
three half-edges are S-edge-colourable from trivial reasons. The half-edges
of the remaining blocks can be identified to get bridgeless graphs and (non-
bipartite) ends. Hence, such blocks are also S-edge-colourable. The obtained
colourings of the blocks of G can be combined to an S-edge-colouring of
the whole graph G in the same way as in the case of affine Steiner triple
systems.

As a corollary of Theorem 16, we derive the conjecture of Holroyd and
Škoviera (Conjecture 1) for point-transitive Steiner triple systems.

Corollary 17. Let G be a cubic graph and S a non-projective (and thus
non-trivial) point-transitive Steiner triple system. If G has no bipartite end
or S is not affine, then G is S-edge-colourable.

37



10 Concluding remarks

In the first part of the paper, we have characterised several important classes
of Steiner triple systems in terms of forbidden subconfigurations: we have
shown that a Steiner triple system is affine if and only if it contains neither
of the configurations C16, C1

S or C2
S, and S is a Hall triple system if and only

if it contains neither the configuration C16 nor CA. It seems to be interesting
to provide such characterisations of other important classes of Steiner triple
systems.

Let us now turn our attention to edge-colourings of cubic graphs with ele-
ments of Steiner triple systems. Conjecture 1 is now proven for affine Steiner
triple systems since all affine Steiner triple systems are point-transitive.
Hence, it is only open whether every non-projective non-affine Steiner triple
system that is not point-transitive is universal. The smallest such Steiner
triple system has 13-vertices; let S ′

13 be this Steiner triple system. Note
that there are only two Steiner triple systems with 13 vertices, namely the
point-transitive system S13 mentioned in Section 1, and the system S ′

13.
Along the lines of the proof of Theorem 16, we tried to establish that

S ′

13 is also universal. First we identified several configurations such that if
all of them are present in S ′

13, all the ends can be coloured. As in the proof
of the lemmas in Sections 7 and 8, several cases based on whether the end
is 3-colourable, bipartite, etc., need to be considered. Next, we prepared a
computer program to check the presence of these configurations in S ′

13 with
the additional requirement that one of their points, the one to be assigned
to the half-edge, is a prescribed point of S ′

13. In this way, the presence of
all the needed configurations in S ′

13 with the special point being any of the
points of S ′

13 was established.
Based on this, we concluded that each block of every cubic graph can

be S ′

13-edge-coloured if one of the half-edges incident with it is precoloured
with a point of S ′

13. Hence, the system S ′

13 is universal. We believe that
an analogous argument can be used to establish that other small non-point-
transitive Steiner triple systems are universal but we did not yet manage to
develop any theoretical background that would give us any hope of extending
our results to Steiner triple systems that need not be point-transitive.
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