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Abstract

In this work, we are interested to develop new directions of the famous T'(1)-theorem.
More precisely, we develop a general framework where we look for replacing the John-
Nirenberg space BMO (in the classical result) by a new BM Oy, associated to a semigroup
of operators (e~*£);~¢. These new spaces BM Oy, (including BMO) have recently appeared
in numerous works in order to extend the theory of Hardy and BMO space to more general
situations. Then we give applications by describing boundedness for a new kind of para-
products, built on the considered semigroup. In addition we obtain a version of the classical
T(1) theorem for doubling Riemannian manifolds.
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1 Introduction

The T'(1) Theorem of G. David and J. L. Journé provides a very powerful tool for analyzing the
L?-boundedness of a Calderén-Zygmund. It claims that for such a linear operator 7T if it satisfies
a weak boundedness property then 7 is bounded on L? if and only if 7'(1) and 7%(1) belong to
the John-Nirenberg space BMO (introduced in [38]). This result proved in the Euclidean space
framework in [19], is based on an appropriate reproducing Calderén formula and the notion of
Carleson measure (closely related to the space BMO). It permits for example to obtain a new
proof of the L?-boundedness of the first Calderén commutator and to obtain a characterization
of the L2-bounded pseudo-differential operators (belonging to some exotic class like 5(1)71, see
[14]).

Then this result was extended by F. Nazarov, S. Treil and A. Volberg for a non-doubling measure
in [46] and by X. Tolsa in proper subset of the Euclidean space (not satisfying the doubling
property, see [51]). Then many works deal with the following problem: change the function 1
by an accretive function b getting the so-called “T'(b) Theorem” (see the work of A. McIntosh
and Y. Meyer [42] and of G. David, J.LL Journé ans S. Semmes [20]) or by a system of accretive
functions, obtaining the so-called “local T(b) Theorem” (see the work of M. Christ [13] and
other works [47], ...). We refer the reader to a survey of S. Hofmann [34] about such questions
and related applications to PDEs. Numerous works deal with some adaptations, for example to
quadratic T(1) type theorem (see [2]), to off-diagonal T(1) theorem (see [33]), to Triebel-Lizorkin
spaces (see [53] and [52]) or to vector-valued opertors (see [36, 37]).

All these results concerns Calderén-Zygmund operators and involve the John-Nirenberg space

BMO. This space naturally arises as the class of functions whose deviation from their means
over cubes is bounded. This space is strictly including the L™ space and is a good extension
of the Lebesgue spaces scale (L”)1<p<oo for p — oo from a point of view of Harmonic Analysis.
For example, it plays an important role in boundedness of Calderén-Zygmund operators, real
interpolation, Carleson measure, study of paraproducts, ...
Unfortunately, there are situations where the John-Nirenberg space BM O is not the right substi-
tute to L°° and there have been recently numerous works whose the goal is to define an adapted
BMO space according to the context (see [23, 22, 35] ...). For example the classical space BMO
is not well adapted to operators such as the Riesz transform on Riemannian manifolds. That is
why in [35], S. Hofmann and S. Mayboroda develop theory of Hardy and BMO spaces associ-
ated to a second order divergence form elliptic operators, which also including the corresponding
John-Nirenberg inequality. In the recent works [23] and [22], X. T. Duong and L. Yan studied
some new BMO type spaces and proved an associated version of John-Nirenberg inequality on
these spaces (with duality results). In [8, 11], J. Zhao and the author have developed an abstract
framework for BMO spaces (and proved some results about John-Nirenberg inequalities). This
framework permits to cover the classical space BM O and those defined in [23] and [35].

The aim of this article is to continue the study of T(1) theorems using these new spaces BMO,
defined by a semigroup of operators.

Let us just describe some motivation to such results. Associated to the BMO space, which
is a good extension of the Lebesgue spaces scale (L”)1<p<oo for p — oo, there is the “Hardy
spaces” H'! for p — 1. On the Euclidean space, R. Coifman and G. Weiss have introduced the
first Hardy space via atomic decomposition in [16]. Then several characterizations was obtained
in [50], via maximal function or Riesz transform. The equivalence between all these definitions
due to R. Coifman in [28] can be understood from the celebrated theorem of C. Fefferman which
says

(HYY* = BMO.



As BMO for L*, the space H! is a good substitute of L!(X) for many reasons. For instance,
Calderén-Zygmund operators map H' to L'. In addition, H! (and its dual) interpolates with
Lebesgue spaces LP, 1 < p < co. However, there are situations where the space H' is not the
right substitute to L' and there has been recently a number of works with goal to define an
adapted Hardy space [3, 4, 7, 8,9, 23, 22, 24, 25, 26, 27, 35]. In [8, 9], the authors have described a
very abstract theory for Hardy spaces (built via atomic decomposition) and interpolation results
with Lebesgue spaces. This part seems to be well understand. Specially concerning Hardy spaces
associated to semigroup, we have several characterizations via atomic decomposition, area square
function and maximal function.

In order to pursue this theory, it is now important to get criterions for an operator to be bounded
in L?. Then using this theory of Hardy space, we know how to obtain LP-boundedness from
the initial L2-boundedness. Aiming that, we are motivated to obtain a general T(1) theorem
(associated to this framework of semigroup).

So consider an operator L of order m acting on a doubling Riemannian manifold (M, d, ), such
that it admits an holomorphic calculus. In this case, we can consider the semigroup (e=*)~.
We define the space BM Oy, as the set of functions f such that

1
sup sup —/ ‘f—e_th‘d,u<oo.
t>0  Qrall wQ) Q

TQ =
We refer the reader to Section 2 for precise assumptions on the manifold and on the semigroup

and preliminaries on this new BMO space. Then our main theorem is the following one (see
Theorem 3.3) :

Theorem 1.1 Let T be a linear operator, weakly continuous on L*>(M) and admitting off-
diagonal decays relatively to cancellation built with the semigroup (see Assumptions (9), (10)
and (11)). Then if T(1) € BM Oy, and T*(1) € BM Oy~ then T admits a bounded exstension in
L?(M).

Moreover we will describe a reverse property: if T admits a L?-bounded extension then 7'(1)
and T7(1) belong to some BMO spaces (closely related to BM Oy, and BMOp-).

So we obtain as for the original theorem of G. David and J.L. Journé, a criterion for the L>-
boundedness via these new spaces BMOy,. We emphasize that Assumptions (9), (10) and (11)
can be just considered as generalizations of usual Calderén-Zygmund properties since if we
consider L = —A on R? then every Calderén-Zygmund operators satisfy to (9), (10) and (11).
So we recover the original T(1) theorem (since BMOr, = BMO in this case).

Then in Section 4, we apply this new T(1) theorem to a new kind of paraproducts. In the usual
framework, paraproducts were introduced by J. M. Bony [12] and then studied by Y. Meyer
in [44, 45]. These operators are considered as the prototype of the so called “Coifman-Meyer
bilinear operators”, which are particular bilinear Calderén-Zygmund. A main result says that
they are bounded from LP x LY into L™ as soon as 1 < p,q < 0o and

1 1 1

p oq

These operators appear in the study of the pointwise product between two functions and their
study require to understand the frequency analysis of the product. Here, we introduce new
bilinear operators, built with semigroups, which correspond to paraproducts with a frequency
analysis adapted to the spectral properties of our semigroups e~ *F. In this case, it is not clear
how et acts on a product of two functions and that is why boundedness of such operators are
not clear (see Remark 4.4). We refer the reader to Section 4 for precise statement of the results.
We prove the following one:



Theorem 1.2 (Theorem 4.10) Let ¢ and ¢ be defined as in Theorems 4.5 and 4.6. Let
p,q € (1,00) and r' € (1/2,00) be exponents satisfying
1 1 1
+ /
p q r
The paraproducts

()= [ D) f omn 5

and
()= [ D D) o)
0
are bounded from LP(M) x Li(M) to L (M).

Moreover we obtain weighted estimates.

We finish this work by describing in Subsection 4.3, a version of the classical T(1) theorem for
Calderén-Zygmund operators in general doubling Riemannian manifold. All the previous cited
works only deal with the Euclidean space and are based on some specific differential properties
of R™. That is why, it seems important to us to prove such result, and we obtain it as an
application of our main result.

2 Preliminaries

For a ball @ in a metric space, AQ denotes the ball co-centered with @) and with radius A times
that of Q. Finally, C will be a constant that may change from an inequality to another and we
will use v < v to say that there exists a constant C' such that v < Cv and v ~ v to say that
u<Svand v S u.

In all this paper, M denotes a complete Riemannian manifold. We write u for the Riemannian
measure on M, V for the Riemannian gradient, |-| for the length on the tangent space (forgetting
the subscript = for simplicity) and || - ||z» for the norm on LP := LP(M,u), 1 < p < 4o00. We
denote by Q(x,r) the open ball of center z € M and radius r > 0. We deal with the Sobolev
spaces of order 1, WP := W1P(M), where the norm is defined by:

I lwre ey = [1fllp + 1V f] | ze-

We write S(M) for the Schwartz space on the manifold M and S'(M) for its dual, corresponding
to the set of distributions. Moreover in all this work, 1 = 1,; will be used for the constant
function, equals to one on the whole manifold.

2.1 The doubling property

Definition 2.1 (Doubling property) Let M be a Riemannian manifold. One says that M
satisfies the doubling property (D) if there exists a constant Cy > 0, such that for allz € M, r >0
we have

u(B(z,2r)) < Cop(B(,7)). (D)

Lemma 2.2 Let M be a Riemannian manifold satisfying (D) and let d := logaCy. Then for all
r,yeE M and 0 > 1

w(B(z,0R)) < CO'u(B(z, R)) (1)
There also exists ¢ and N > 0, so that for all x,y € M and r > 0
d(z,y)\ "
wBly,r)) <c(1+—=") uBar)). (2)



For example, if M is the Euclidean space M = R% then N =0 and ¢ = 1.
Observe that if M satisfies (D) then

diam(M) < oo & p(M) < oo (see [1]).
Therefore if M is a complete Riemannian manifold satisfying (D) then pu(M) = oco.

Theorem 2.3 (Maximal theorem) (/15/) Let M be a Riemannian manifold satisfying (D).
Denote by M the uncentered Hardy-Littlewood mazimal function over open balls of M defined

by
Mf(a) = s —= [ 1l

B ball
zeB

Then for every p € (1,00], M is LP-bounded and moreover of weak type (1,1).
Consequently for s € (0,00), the operator My defined by

M, f(z) = [M(|f]*)(@)]"/*

is of weak type (s,s) and LP bounded for all p € (s, 00].

2.2 Poincaré inequality

Definition 2.4 (Poincaré inequality on M) We say that a complete Riemannian manifold
M admits a Poincaré inequality (P,) for some g € [1,00) if there exists a constant C > 0 such
that, for every function f € Wlf)cq(M) (the set of compactly supported Lipschitz functions on M)
and every ball B of M of radius r > 0, we have

<][B f —][deu qdu>1/q <Cr <][B ywyw) Uq. (P,)

Remark 2.5 By density of C3°(M) in WE(M), we can replace I/Vli)’cq(M) by C°(M).

loc

Let us recall some known facts about Poincaré inequalities with varying q.

It is known that (F,) implies (P,) when p > ¢ (see [32]). Thus, if the set of ¢ such that (F,)
holds is not empty, then it is an interval unbounded on the right. A recent result of S. Keith
and X. Zhong (see [39]) asserts that this interval is open in [1, +o0] :

Theorem 2.6 Let (M,d,p) be a doubling and complete Riemannian manifold, admitting a
Poincaré inequality (Py), for some 1 < q < oo. Then there exists € > 0 such that (M,d, )
admits (Py) for every p > q —e.

We refer the reader to Theorem 5.3.3 of [48] or Proposition 1.6 of [10] for the proof of the
following consequence.

Proposition 2.7 Assume that M satisfies (D) and admits a Poincaré inequality (P;) for some
q € [1,00). Then there is a constant ¢ = ¢(q) and € > 0 such that for all function f € I/Vli’cq

[f (@) = f(y)] < cd(z,y) [Mg—c([VI) (@) + Mg (IV ) ()] - (3)

' An operator T is of weak type (p, p) if there is C > 0 such that for any a > 0, p({z; |Tf(z)| > o}) < S|/ f|5.




2.3 Framework for semigroup of operators

Let us recall the framework of [22, 23].
Let w € [0,7/2). We define the closed sector in the complex plane C by

Sw:={z €C, |arg(z)| <w}U{0}

and denote the interior of S, by S%. We set Ho(S2) for the set of bounded holomorphic
functions b on SY, equipped with the norm

101l e 50 = 110l oo (50)-

Then consider a linear operator L. It is said of type w if its spectrum o(L) C S, and for each
v > w, there exists a constant ¢, such that

< cl,])\]_l

2 =N oy e <

for all X ¢ S,.

We refer the reader to [22] and [41] for more details concerning holomorphic calculus of such
operators. In particular, it is well-known that L generates a holomorphic semigroup (A, :=
e*ZL) 2€8, /20 Let us detail now some assumptions, we make on the semigroup.

Assume the following conditions: there exist a positive real m > 0 and § > 1 with 2

zL

e For every z € Sy/p_,, the linear operator A, := e™*" is given by a kernel a, satisfying

s 1 d(l’, y) —d—2N—-§
a0l S B ) <1 * \zrl/m> @

where d is the homogeneous dimension of the space (see (1)) and N is the other dimension
parameter (see (2)); N > 0 could be equal to 0.

e The operator L has a bounded Hao-calculus on L?. That is, there exists ¢, such that for
b € Hyo(SY), we can define b(L) as a L?-bounded linear operator and

16(L) 212 < cv1blloo- (5)

Remark 2.8 The assumed bounded Ho-calculus on L? allows us to deduce some extra proper-

ties (see [23] and [41]) :

e Due to the Cauchy formula for complex differentiation, poinwise estimate (4) still holds
for the kernel of (tL)* et with t > 0 and k € N.

| s

e For any holomorphic function ¢ € H(SY) such that for some s > 0, |(z)] < L the

T[]
oo o dt\?
o ([T wense )

*Usually (see ([22, 23]), we just require that § > 0. In our work, we will use Poincaré inequality and so we
need to compensate for a power 1 of the distance. That is why, we require § > 1.

quadratic functional

is L%-bounded.




Moreover we need another assumption on the semigroup, which concerns a square estimate on
the gradient of the semigroup. We assume that for every integer k£ > 0 the square functional

f— </OOO ‘t”?ﬂV(tL)ke_tL(f)‘2 %)1/2 (6)

is bounded on L2.
It is interesting to remark that excepted (6), we do not require regularity assumptions on the
heat kernel.

Remark 2.9 We claim that Assumption (6) is satisfied under the L?-boundedness of the Riesz
transform R := VL~1/™,
Indeed if R is L?-bounded, then it admits [*-valued estimates, which yields

( | [reewyme @)/ < IRl geyro ( | Jeyrmenf @)/
This gives the desired result

< /O v anyte | @)/ S I fllze,
thanks to Remark 2.8.

Remark 2.10 Using Stein’s complex interpolation theorem, it is known that a boundedness of

()

on LP for every p belonging to a neighborhood of 2 € (1,00) implies the L?-boundedness of (6)
for k € N. We refer the reader to Step 7 of the proof of Theorem 6.1 in [4] for a detailed proof
of such result.

9 1/2
Sl/mve—sL(f) %)

2.4 BMO space
According to [23], it is well-known that BMO spaces related to semigroups are well-defined as a
subspace of
M:= (] |J Mg (7)
zo€M [B€(0,9)

with M, 4 the set of functions f € L . such that

- (@)
1ot = | T A BT T T

where N is given by (2) and ¢ by (4).

du(z) < oo,

Definition 2.11 (Definition 2.4 [23]) A function f € M belongs to BMOy, if and only if

1 —tL

BMO, :=Sup sup ——— —e dp < oo.

HfH L =0 %””t M(B)/BU f| H
rg=

We refer to [23] and [22] for study of precise examples concerning this kind of BMO spaces. We
underline that BM Oy, satisfies to some John-Nirenberg properties and we now state some useful
properties:



Proposition 2.12 (Theorem 2.14 [23]) For any f € BMOy, the measure

dv(,t) == [tmLe=t" L (1 — " L)) M

is a Carleson measure. Moreover for all integer k > 1 the measure

2 dp(x)dt

dvg(z,t) :== ‘(tmL)keftmL (1 — eftmL)‘ r

18 a Carleson measure too.

Proof : In [23], the proof is only explained for the Laplacian operator L = —A in the Euclidean
space with & = 1. However, the authors used technical properties on BMO spaces, which
are detailed and proved in the general framework (for example John-Nirenberg inequality). In
addition the proof relies on the L?-boundedness of the square function

(/ooo @yt (et g %) vz

which is a consequence of Assumption (5), see Remark 2.8. The allowing integer k£ > 1 is already
appeared in Theorem 9.1 of [35] in a particular context. H

Remark 2.13 In our main result Theorem 3.3, we require the extra assumption
L(1)=L*(1) =0.

Under this assumption, it is known that the classical space BMO (of John-Nirenberg) is included
into the new one :

BMO < BMOy,

see Proposition 6.7 [22] and Remark 7.6 of [8] for a more general study of this question. In
addition, this inclusion may be strict, we refer the reader to Proposition 6.8 [22] for an example.

2.5 Examples of such semigroups

In this subsection, we would like to give two examples of situations where all these assumptions
are satisfied.

2.5.1 Second-order elliptic operator

Let M = R? and A be an d x d matrix-valued function satisfying the ellipticity condition : there
exist two constants A > \ > 0 such that

¥E,CECh, Mg < Re(A6-€) and  [AE-C] < AIC].
We define the second order divergence form operator
L(f) := —div(AV ).

This particular framework was studied for example by P. Auscher in [4], by S. Hofmann and S.
Mayboroda [35], ... We define the second order divergence form operator L(f) = —div(AV f),
which can be interpreted in the weak sense via sesquilinear form. Since L is maximal accretive,
it admits a bounded H..-calculus on L?(R%). Moreover when A has real entries or when the
dimension d € {1,2}, then the operator L generates an analytic semigroup on L? with a heat
kernel satisfying Gaussian upper-bounds. In this case all our assumptions are verified with
m = 2 (see [4] for estimates on the gradient of the semigroup).



2.5.2 Laplacian operators on a manifold

Let M be a doubling connected non-compact Riemannian manifold and consider L = —A the
positive Laplace-Beltrami operator. Let p; the heat kernel of e **. It is well-known that on-
diagonal upper bound
sup |pi(ar, )] < 12 (5)
xeM
self-improves into a Gaussian off-diagonal bound (which implies (4) with m = 2). This can be
seen in several ways, by using a perturbation method of Davies, or the integrated maximum
principle, or the finite propagation speed of solutions to the wave equation (see [17, 31, 48, 49])
. Moreover, we know that (8) implies the LP-boundedness of the Riesz transform for every
p € (1,2] (see Theorem 1.1 [18]).
In addition, by integration by parts we easily obtain the L?-boundedness of the Riesz transform
and so (6) is verified, thanks to Remark 2.9. We refer the reader to [5] for more details concerning
these kind of assumptions and how they are related between them.
Concerning the extension to a complex semigroup, we refer the reader to [21] (Lemma 2). Since
L is a non-negative self-adjoint operator, the semigroup e~** is holomorphic in Srse and L
admits a H,,-bounded holomorphic calculus.

Consequently, for example if the manifold M has nonnegative Ricci curvature all our assumptions
are satisfied.

3 A T(1) theorem for semigroup

3.1 Assumptions and statement

Before stating our 7'(1) theorem, we have to assume some properties on a generic operator T'
(in order to replace the usual Calderén-Zygmund properties on the kernel in the classical T(1)
theorem). Let T be a continuous operator acting from S(M) into S'(M). We assume that T
and T* satisfies some L? — L? off diagonal decay as follows : there exists an integer x > 1 such
that for every s > 0, every ball Q1, Qs of radius r := s'/™ and function f € L*(Qy)

e if d(Q1,Q2) > 2r, then we have

K _—8 d(Ql’ Q?) SdENe
e R 12200 (9
and the dual estimates
oL d(Q1,Q2)\ "N
*\K sL * <
[srre b ), ,, < (1+ 222 V@) (10)

e if d(Q1,Q2) < 2r, then we have

H (sL)“efSLT(estf) H

(SL*)nest*T(est*f)‘

<
L2Qy) T L2(Q) ¥ 1 fllz201)- (11)

We call this property the weak boundedness of T

Remark 3.1 We claim that (11) self-improves in the following one : for all integer k > 0 (with
d(Q1,Q2) <2r)

H (sL)“e_SLT((sL)ke_SLf)‘

Herretrnte ), o S 1leen.

L2(Qo L2(Q2

9



Let us explain how can we obtain this improvement for T. We chose a bounded covering
(Ry); of the manifold by balls of radius r := (s/2)"™. Applying (11) and (9) to the function
(sL)kesLI2(f), we get

H (sL) e LT ((sL)*e L f) ‘

r

A(Qg, By)\ 42N B
R N e R (T

Then, due to the off-diagonal decay of the derivative of the semigroup, it comes

(sL)"e T ((sL) e =L )|

L%(Q2)
d R —d—2N—6 d R —d—2N—6
§Z<1+ (Qj: l)> <1+ (Q: l)> HfHLQ(Qﬂ
l
S 2@y

Remark 3.2 The weak boundedness property of the operator T is obviously a necessary condi-
tion for the L?-boundedness.

Theorem 3.3 Assume that the Riemannian manifold M satisfies Poincaré inequality (Py) and
has a infinite measure pu(M) = oo. Suppose the existence of an operator L such that L(1) =0 =
L*(1) and such that the corresponding semigroup verifies the assumptions of Subsection 2.5. Let
T be a continuous operator weakly continuous from L? into L? satisfying (9), (10) and (11).

e IfT(1) € BMOy, and T*(1) € BMOp+ then T admits a L*>-bounded extension. Moreover
||| 12— 12 is only controlled by the implicit constants and || T(1)| rvo, + ||T7(1)] BMmoO, -
(and not by the weak continuity from L? to L?).

o Let assume k = 1 in (9), (10) and (11). If T admits a continuous extension on L? then
T(1) belong to BMOy, and T*(1) to BMOp~.

Remark 3.4 In the previous statement, we implicitly assume that T'(1) and T*(1) are well-
defined and belong to M. We do not deal with this specific problem as in our applications, we
can work with some kind of “truncations” T, of T where Tc(1) and T(1) will be well-defined.

Remark 3.5 For the second part of the theorem, for another integer k > 1, if T admits a
continuous extension on L? then T(1) and T*(1) belong to another kind of BM Oy, space (which
requires more cancellation) and satisfies

1
sup sup —— 1—e ™ T(1) du < 0o
t>18 %}?Zt M(Q)/QK A )‘ 12

o=

and

1 ‘ —tL*\Kkr* ‘
sup sup —— 1—e T (1)| dp < 0.
t>g %"}lz M(Q)/Q ( ) ()] di
TQ:

We let to the reader to check this claim by adapting the proof made for the second part of
Theorem 3.2.

Corollary 3.6 Under the assumptions of Theorem 3.3, for all exponent p € (1,00) there is a
constant ¢, such that
vies, IIT()le < cpllfllze-

10



Proof : From Theorem 3.3, we know that the operator 7" admits a continuous extension in L?.
To deduce an LP-boundedness from an L?-boundedness, we use the theory of Hardy spaces.
More precisely, we refer to [8] for an abstract theory of Hardy spaces, which we are going to
apply. We have to build an adapted Hardy space Hi (step 1), then to prove that our operator
T is bounded from H} to L' (step 2) and then to interpolate the Hardy space with L? (step 3).
Step 1: Construction of an adapted Hardy space.

For Q a ball of radius = s'/™, we define the operator

Agi=1—(1—e )~

These operators are uniformly bounded on L? (since it corresponds to a finite sum of semigroups).
We refer the reader to [8] for an abstract construction of Hardy space H}, based on a collection
of operators (Ag)g, indexed by the balls. We refer to [22] for more specific results concerning
the particular case where Ag is defined by a semigroup. Indeed, the Hardy space is defined by
atomic decomposition. By definition for a ball @), an atom (relatively to the ball @) is a function
m = f — Ag(f) where f € L*(Q) is L'-normalized in L.

Step 2: Boundedness of T" from Hi to L.

To check that 7" is bounded on the implicit Hardy space H i, it just suffices to prove some L? — L?
off-diagonal decay (see Theorem 4.2 of [8]) : for every ball Q or radius r = s*/™ and integer
1> 1

1 ) 1/2
<N(2iQ) /2iQ\2i—lQ ‘T (1 - eiSL) (f)‘ d’“) S Y@ lz2@ (12)

with fast decreasing coefficients (7) such that

Z 2 (i) < o0

and
1 / ol \?
[ |ra—es f‘du> < Ifll 2o 13
(M(QQ) 2Q‘ ( )" (f) 1fllr2@) (13)
These off-diagonal estimates are a consequence of (10). Indeed off-diagonal decay (10) can
be improved as follows: for every s > 0, every ball Q1, Qs of radius r := s'/™ and function

f € L?(Q1) then we have

—d—2N—-§
< (1 n M) 112200 (14)

L2(Q2) r

(SL*)ne—sL*T*(f)‘

Actually if d(Q1, Qo) > 2r, this is (10) and if d(Q1,Q2) < 2r then we use L2-boundedness of T™*
and (sL*)fe 5L,
From (14), we deduce by duality that

d —d—2N—§
L ) 1722 (15)

r

To deduce (12) when d(Q1,Q2) > 2r, we differentiate the semigroup as follows

<M(222) /2

T (1 B e_sL)n (f)‘2 dﬂ) 1/2

: (mém /,

9 1/2
d,u) .

// TL“e*(”ﬁ“'*“”)L(f)dul---du,i
0 0

11



For each u; € (0, s], we have to consider (By)x and (B;); a bounded covering of Q2 and @ by
balls of radius 7, = (uy + - - - + u, )™ and then to apply (15):

2
[ |zt < 2 /
2 By,

gg <¥ (1 Bk7Bl > —d—2N~— 5< l;))>1/2 </Bl |f|2dlu>1/2>
—d—N-6 1/2\ 2

5%(2 (1 B’“’Bl) ( 1 du) />

< </Ql U,Qdu) ;( d(Bk;Bl)> Qd—ZN—257

where we have used the doubling property and (2). Then we note that d(By, B;) > d(Q1,Q2)
and due to the doubling property,

iz (0) 2 () s (5) A

k

)L(f)‘gdu

So it follows with a similar reasoning for the sum over [ that

—2d—2N—-26 2d
[ ez s ([ 1rPa) (14 490220 (5) -
2 Q1

U 7’.u
We conclude that

<u<222> / |

9 1/2
T“TL“e*(U1+---+un)L(f)‘ d,u)

(1)) () Gran )
Hence, for d(Q1,Q2) > 2r
(M(éh) | Jra-emnp d”) N (17)
< (58) G ) ™[ (o) " )
< (98)"" (1 420) " (s | )

< (152 (g, ) . "

We have used at the first line that

‘{(Ul,"- 7“%)7 U,1++u,@:’d}’ gunil

12



If d(Q1,Q2) < 2r, (18) still holds, indeed we have not to differentiate and just invoke the L2-
boundedness of the different appearing operators.

So we have proved that for every balls @1, Q2 of radius r, (18) holds. Now we deduce (12) as
follows: we consider () a ball of radius r and (Qk)k a bounded covering of 2/Q \ 2:~1Q by balls
of radius r and then apply (18):

1/2
# _ est 2
(M(2iQ) /2iQ\2i—1Ql ‘T (1 ) (f){ d#)
1/2
# _ est 2
(i@ = [, o)

~ —2d—26 ~
d(Qr, Q) (@) 2
Z(“FT) m/@!f’du

k

1/2
< 9—(d+)i 1 24 > )
<9 <M(Q) /Q fPdp

We have also obtained (12) with coefficients ~(j) satisfying

1/2

N

Then Theorem 4.2 of [8] yields that 7" is bounded from the finite atomic Hardy space Hi

Step 3: Interpolation between Hi and L2.
To obtain interpolation results, we apply Theorem 5.3 of [8]. Aiming that, off-diagonal estimates
of the heat kernel (4) imply that

Moo (f)(z) == sup, 1AG (lL=(q)

1 —d—2N -6
Sigg/m <1+ . > |f(W)|du(y)

] 1 d(x,y) —d=N-=o
Sepamt  (5") o
S M(f)(@),

where we have used (2) and the fact that Aa can be expanded as a finite sum of semigroups
(with a scale equivalent to r the radius of the ball Q).

Consequently, we know from Theorem 5.3 [8] that we can interpolate the Hardy space Hi associ-
ated to the operators Ag with L? and regain the intermediate Lebesgue spaces, as intermediate
spaces (see [9] for more details concerning a real interpolation result). This concludes the proof
of the theorem for p € (1,2]. We get the result for p € (2,00) by duality, since T and T* satisfy
the same assumptions. O

In addition, we can obtain weighted estimates. Let us recall the definition of Muckenhoupt’s
weights and Reverse Holder classes :

Definition 3.7 A nonnegative function w on M belongs to the class A, for p € (1,00) if

1 1 p—1
o (2 [ wan) (2 [ -ve-ny > ,
s (o [, vom) G [V an) <o

13



A nonnegative function w on M belongs to the class RHy for q € [1,00), if there is a constant
C such that for every ball Q C X

(i fye) ™ < (i )

Remark that RHy is the class of all the weights.
For w a weight and p € [1,00] an exponent, we write LP(w) for the weighted Lebesgue space
(associated to the measure wdp).

Following previous Corollary 3.6 and Theorem 6.4 of [8], we get the next result.

Corollary 3.8 Under the assumptions of Theorem 3.3, for all exponent p € (1,2), let w be a
weight so that w € Ay N RH(g)/. There is a constant c, such that
P

viesSM), T (e + 1Tl < cpllfllre):-

For all exponent p € (2,00), let w be a weight so that w € Ap/a. There is a constant ¢, such that

VfeS(M), 1T () e @) + 1T () r@w) < el fllor)-

Concerning the condition w € A, = A}, sNRH, we recall (Lemma 4.4 of [6]) that for p € (2, 00)
w € App NRHy <= '™ € Ay NRH, 2, (19)
p/

and the duality for the weighted Lebesgue spaces goes as follows: for T" an operator, we recall
the fact that 7™ is the adjoint of T related to the measure p ; so for p € (1,00)

T is LP(w)-bounded <= T* is L* (w'™?)-bounded.

3.2 proof of Theorem 3.3

We devote this subsection to the proof of our main result, Theorem 3.3. Aiming that, let us
define a function : let ¢ be the following function defined on R by:

o(x) == — /OO the (1 — e7t)2etdt.

Then ¢ is a finite sum of polynomial term, multiplied by decreasing exponentials. So it can be
extended in C and becomes a bounded and holomorphic function in any sector S,, with w < 7/2
and we have

¢ (z) = z"e (1 — e %)% 7, (20)
Lemma 3.9 For f € L*(X), we have the following strong convergence in L? :

o e h(f) Y f

e for an integer k > 1, (tL)Fe 5 (f) o 0
o

o for an integer k, (tL)Fe M (f) P 0.
— 00

14



Proof : The two first points are due to the L?-continuity of the semigroup. For the third point
with k& = 0, we remark that the pointwise bound (4) yields

sup |e ™" (f)] S M(f) € L*.
t>1

As for every x € M and t > 1

—n—2N—-0
N < s [ (14952 7 (w)ldu(y)

- 1
™ (B, M)

At the second inequality, we have used the homogeneous type of the manifold M and then at
the last inequality the infinite measure of M. As a consequence, we get that e~**(f) strongly
converges to 0 in L? when t — oo. Then for k > 1, the limit follows from the uniform L?
boundedness of (tL)Fe . 0

7 [FalyE =Y

Proposition 3.10 We have a Sobolev inequality, relatively to L : for a large enough integer
M, for allt > 0 and ball Q of radius r = t}/™

1Fll=(@) S inf Ma |(14tL)Y 7]

More precisely, for some § > 1 (indeed § is the one introduced in (4))

£l (@ <Z “5( 2ZQ/ ‘(1+tL)Mf‘2du>l/2.

Proof : It suffices to prove that
|+t flle@) S if Ma(f)

(and similarly for the second estimate), which will be provided as soons as we will prove the

pointwise inequality
—d—2N—-§

1 [z — vl
e < ey (155 =

where 74 is the kernel of the resolvant (14 tL)™™ and N, d are introduced in (1) and (2).
Aiming that, we decompose the resolvant with the semigroup as follows (up to a numerical
constant)

(14+10)™M = /OO sMe—s(l—i—tL)%_
0

Using the estimates of the heat kernel (4), we obtain

o0 _ 1 d(l‘,y) —d—QN—(S dS
|7 (x,y)lg/ sMe=s <1+ ) —.
! 0 p(B(

x,rst/m)) rsl/m s

The integral for s € (0,1] is bounded by

1 —d—2N—6
[ — 4 ds
0 p(B(x,rst/m)) rsl/m s
—d—2N—§
< [l (1 ey
xrsl/m)) T s

< 1+—d(m’y) o 6/15M‘1—1 ds
~ r 0 p(B(x,rst/m))
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Using the doubling property of the measure, it follows that
u(B(w,7)) S p(B(w, rs/™))s=4/m,

So for M large enough, it comes

/1SM6_S ! Ly e\ TN s ()TN
0 wu(B(x,rst/m)) rst/m s~ T w(B(z, 1))’

which yields the desired inequality for this first term.
Concerning the second part, with M > (d + 2N + §)/m, we have

o —~d-2N-§

/ sMefs 1 1+ d(l"y) @

1 w(B(z,rst/m)) rst/m s
</oo S—M 1 1+d(.%',y) —d—2N—6§
~ ) w(B(z,rst/m)) rst/m s
- 1 /'OOS_M 1+d(1’,y) —d—2N—6§
~ u(B(x,r) Ji rst/m 5

1 d(x,y) —d—2N—-§
S u(Ble ) (” " > ’

since for every v > 0

oo —d—2N—§ (]
/ M <1 n v > as (a +v)—d—2N75,
1

sl/m S

by dividing the integral for s < v™ and s > v™. This concludes the proof of (21). Then we have

| (14 tL)™ fll gy < sup / ire( )| 1 ()] dily)
zeQ

1 |CC—y| —d—2N—§
<o () e
R d(y, Q) 2N
< sup (Q)/<1+ ) [f ()l duly)

ze@Q M r

1 . .
< § 27(d+2N+5)l 9t 1/2 .

i>0
<N " 27% (inf M > ,
SR (TIAE
>0
where we have used the doubling property (1). This completes the proof of the proposition. U
Proof of the first part of Theorem 3.3.
The proof is quite long, so we divide it in two steps. First as we use duality, we precise that

Assumptions of Subsection 2.3 assumed for L still hold for the adjoint L* (as they are invariant
by duality).

First step: Reduction to well-localized operators.
Let f € L? compactly supported, then in weak L?-sense we have

$(0)*T(f) = lim ¢(sL)T$(sL)(f)

s—0
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and
0= lim o(sL)To(sL)(f)

thanks to Lemma 3.9. We can also write

T(f) = lim [p(sL)YTS(sL)(f)]E

which gives
. R d d ds
1(5) =ty [ ([sgpeen]| Teenn + ot |spoen)| 1) 5

Since the definition of ¢, it comes

d
sd—¢(sL) = (sL)fe L (1 — e75L)2sLe st
s
in order that
R
T(f) = lim [(sL)*e (1 — e *L)?sLe **Tp(sL)(f)
R—oo V€

OSLIT(L e (1 — s b ] .

The second term can be seen as the adjoint of the first term by changing L with L* (and T with
T*). As our assumptions are invariant by duality, it is also sufficient to prove a uniform bound
with respect to € and R of [|Uc r(f)||z2 with

R s
Uer(f) = / (1- e_SL)sLe_SLTS¢(sL)(f)d—,

S

where we set T}, := (sL) e (1 — e=*I)T.
According to the assumptions, it is easy to check that T satisfies the two following properties:

e The map (s,x) — Tsm(1)(x) defines a Carleson measure.
This comes from T(1) = (sL)*e *F(1 — e=*F)T'(1) and Proposition 2.12.

e For all s, the operator T}, has off-diagonal decays at the scale s : for every L? function f, g

supported on ball Q1, Q2 of radius r := s*/™, we have :
. d(Q1,@2)\ T
et 5 (14 A2 Ifl2@olgllzgn (22

This comes from the observation: (Ts(¢(sL)f),g) = ((sL)*(1 — e *)e LT (¢(sL) f), g)
and Assumption (9) together with arguments of Remark 3.1 (if d(Q1,Q2) > 2r) and
Assumption (11) (if d(Q1, Q2) < 2r).

Second step : Study of U, g.
We decompose Ue i as follows

_ r —sL —sL
Uen(f) = / (1 — =4 Le~** [Ty (L)(sL)(f)] ds

R
+ / (1—e ") Le™" [Ti¢(sL) — Ts(1)¢(sL)] (f)ds
:= Main(f) + Error(f). (23)

17



The main term is controled by duality: in pairing with any L>-function g

R ds
/ (1 - e=*b)sLeE [T, (1)d(sL) (), g))

S

[(Main(f), g)| =

R » « . ds
/ (LD, (1 — e )sLresE ) &

S

S ITOIY Pl aqeenan || (1 = s

L2(R+x M)’

where R™ x M is equipped with the tensorial-product measure % ® dp(z). The second quantity
is bounded by ||g||.2 since the L2-boundedness of the Littlewood-Paley function (see Remark 2.8
applied to L*). Since Tgm(1) is a Carleson measure, it is well-known that we get the following
inequality, making appear a non-tangential maximal function

IMain(f)ll2 S || sup  [o(s™L)f(y)l|| - (24)

(s,y)ERT x M
lz—y|<s L2

This quantity can be estimated by || f||72 since the maximal function is pointwisely bounded by
M(f) thanks to the pointwise estimates on the heat kernel (4) and Remark 2.8.
It remains also to study the “Error term” in (23). For this term, we use duality again as follows :

d

R S
|[(Error(f), g)| < / sLe™*t(1 —e™*")(g)(x) [Ts(sL) — Ts(1)(sL)] (f) (= )~ dx|

Cauchy-Schwarz inequality yields

[(Error(f), g)]

S (/ER/ [sLe*H(1 — =) (g) ()| du(t)dt>1/2

(/ /eR (T.o(s1) - T o1 (1)) S ) -

S

R sdu(z)\
< Jglle (/ / r[m(sL)—Ts<1>¢<sL>1<f><m>FM) ,

S

where we have used the L?-boundedness of the square function (see Remark 2.8). Let fix
€ (e, R) and consider

- / Tub(sL) — To(1)é(sL)] (/) (@) dule / ITu [6(sL)f — S(L) f ()] ()2 da(a).

We choose (Q;); a bounded covering of the whole manifold M with balls of radius r := st/m in
order that

L2 3 [ 0] - o0 @) 0P duta)
<Y | s L. [6(L)f = S(6L) ) (0) du(o).

yeQ;
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The supremum over y € (); can be estimated with the Sobolev inequality, Proposition 3.10. Let
us fix the index i. For a large enough integer M, Proposition 3.10 implies

sup [Ty [p(sL) f — ¢(sL) f(y)] (z)]?

yeQ;

(2 Qi)
with an other exponent §, which is still strictly bigger than 1.
By expanding (1 + sL)™ and using L(1) = 0, it comes
(1 + sL)M [Ty [o(sL) f — d(sL) ()] (@)] () =T [$(sL)f — ¢(sL)f (y)] ()
= T(1)() [(1+ sL)™ = 1] ¢(sL)f (v)-

<Y / |+ DM T4 [@(sL) £ — S(sL)F()] ()] )] daly)
j§>0 21Q;

Consequently,
| Ts [¢(sL)f — d(sL) f <Z 277

QJQ ) /QJQZ. ITs [6(sL).f = d(sL) f ()] ()] dpaly)

WP L7 s [ 0+ sb = 2] (en) S duty

Finally, we get

I, < Z Z 2—253

i §>0
+;j§2—25ﬂ’m ( o ]Tsl\Qd,u> sz@- [[(1+sL)M —1] ¢(3L)f\2du> :

Let us denote by I} and I? the two previous terms.
Concerning I}, we use Fubini’s Theorem and off-diagonal estimates (22) and deduce

By Yo | ] D oD W) ) dnw)dntr)

//QJQ S(sL)f — d(sL)f(y)] (2)]” du(y)du(x)

i 320
—207
s T
Qry CQJQl
@1, Q) ) > antw) \ )
N [, s —eensor gEas) | e

To be precised, from (22) we have off-diagonal decays for Ts(e~*"-) at the scale s. We can also
obtain off-diagonal decays for Ts(e_SL/ 2.) at the same scale s. So at the last line of the previous
inequality, it should appear esX/ 2¢(sL) (and not just ¢(sL)). For an easy readibility, we prefer
to keep the notation ¢(sL) : indeed ¢(sL) is equal to a polynomial term multiplied by e~*" ;
s0 ¢(sL) and e*L/2¢(sL) satisfy the same off-diagonal estimates at the scale s.

Since § > 1, with another constant §’ > 1 (indeed belonging in (1, 4)), Cauchy-Schwartz inequal-

ity gives
2 (HM>“M / 6(sL) () — o(sL) f ()2 W) v
gl/m 0 ) ,U(2jQz‘)

lo l2

—d—2N—25'
) {; (1) /Q 5L f) — o) S

19



since for each [y

3 (1 N d(Qzl,Q12)>d2(55/) <1,

gl/m
l2

Then Proposition 2.7 and Poincaré inequality (Ps) yield

~28'; AQuy Qi) T (@)

PP <1+172> ‘ Mao_ [Vé(sL)f]2d

J; ;2 sl/m w2Q) Jo, [Vo(sL) f) dp
Qll c27Q;

which can be divided in two quantities (we have used that d(Q;, Qi) < d(Qy,,Qy,) + 27s1/™).
For the first one, we can compute the sum over ¢ since for every [y

n(Qi) 1(Qi)
2 eyt X hon st

7

QIICQjQi QiCQlel

_l’_

where we used that Q;, C 2/Q; implies Q; C 2/Q;, and 2/72Q; ~ 2/72Q);,. For the second one,
we can estimate the sum over [ thanks to for every [y

—d—2N—2(8'—1) —2(0'-1)
5 (14 42,00 @) S p@u) Y (1 A0 )

l2 l2

Cu@ LT Y
k

l2
A(Qpy Q)2

S Q) Y 2 HER 29kt <@y,
k

due to the doubling property, ¢’ > 1 and arguments similar to (16). So we obtain

—d—2N—-2(5' 1)
Isl g Z 2—2(61_1)j Z < (Q?/vfb)) MQ_E[Sl/mV(b(SL)f]Qd

7>0 lla Qi,

+22,2(5/,1>j Z 2% / Mo [sY/™V(sL) f2du
>0 i,lq

Q, C27Q;

<Z Mo (s V(sL) fPdp+ Y 27 *HZ M2 sV e(sL) f12du

@1y 3>0
< / Mo [sY"™Vo(sL) f|2dp

We have used the bounded-overlap property of (Q;); (balls of radius s). By the L?-boundedness
of the maximal operator My_. (see Theorem 2.3), we conclude to

< / [sYmvo(sL) f| d (25)

It remains to study the second term I2, which is equal to

I B A AR ) ([ PRICECEE S () )

i >0
20




Since Ty1(x) = (sL)fe *L(1 — e*L)T(1) and T(1) belongs to BMOy,, Proposition 2.12 yields

/ Tt (@) de < ju(Qy).
Qs

Hence,

EIY Y e A [0 1o ) duty

i 320

2
S [+ o - i an (26)
where we used similar arguments as (16) in order to prove that for each integer j, the collection
(27Q;); is a 2/%-bounded covering :
Z laig, S 2
i
Consequently, from (25) and (26) we obtain

15 [ [mvotsnys] + 1[0+ spM — 1] (L) 1] di

which finally yields

[(Error(f), g

S llgllre (/ /( Ymgg(sL) f ( + [ +sD)M ]¢(sL)f(y)\2M>l/2.

We also conclude to the desired estimate

[Error(f)llz2 S If1

by invoking Assumption (6) for the first quantity and point 2 of Remark 2.8 for the second one.
Since the two terms Main(f) and Error(f) of (23) have been bounded in L?, we have also proved
that U, g is uniformly (with respect to €, R) bounded on L?. The second step is also finished
and the proof of the first part of the theorem too. ]

Proof of the second part of Theorem 3.3.
We assume that 7" admits a continuous extension from L? to L?. By symmetry, it suffices us to
check that T'(1) belongs to BMOy,. By definition of BM Oy, (see Subsection 2.4), we have to
show that 1
sup —/ T(1) — e T1)|du < .
S A(®) Q ‘ |

TQ:tl/m

We recall that 7°(1) is assumed to be well-defined. Indeed, we will prove a weaker but equivalent

property e
sup( /‘T e (1 (1)] du) < 00 (27)

due to John-Nirenberg inequality (see Theorem 3.1 in [23] for a proof of such properties in this
general framework concerning semigroups and [11] for an extension of such results in a more
abstract setting).
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Let us fix a ball Q of radius 7 := t'/" and by duality a function f € L?(Q) such that 1 £1lz2() <
1(Q)~/2. We have to bound

(1= e ) T(), ] = (), (=) p)]

First we set xg for the characteristic function of 4@Q) and by assumption, it comes

(T(x@), (1= )1)] S Ixallz2 1112
Sn@YVu@? 1,

where we used the doubling property and the L?-boundedness of the semigroup. So we have to
bound the remainder term, which we differentiate as follows

(T(1— XQ)7 (1— e_tL* / ‘ (sLe™ SLT 1— XQ | —

For each s and each integer j > 1, we consider (Qf’j ); a bounded covering of 2/Q \ 2/71Q by

1/m

balls of radius s and we associate x;” a partition of unity, in order that

XQJFZZXIJ =1

j>1

Similarly, let (Q7); be a bounded covering of @ by balls of radius s¥/™ and we associate Xj a
partition of unity, in order that
F=Y_1x
l

From off-diagonal decay (9) and since k = 1, it yields

|<3Le T - xq), ZZ‘ (sLe kT Xl‘is)7lesg>
7=011,l2
. —d—§
ST S s hrdee (1+ 35
J=11,l2
1/2 1/2 ' s
/2 \/m
j 2y r d/2 [ g
J>$ 512
Jj=1 I Io
< iQ)L/2 -2 (_" —j(d/2+9)
Y nPQ QT () 2
j>1
l/m 0
< ZQ o
7>1

N

sl/m 0
" .
We have used Cauchy-Schwartz inequality in /; and [y with as previously (see arguments em-

ployed for (16))
E 1S <
51 5

21j/7;n>d and Zl (1/m)d
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By integrating for s € (0,t), we deduce

* tsl/m6s
T =xo) 1= < [ ( ) L3t

which concludes the proof of (27). U

4 Applications to new paraproducts and to Calderén-Zygmund
operators on a Riemannian manifold

We consider an operator L satisfying the assumptions of the previous sections. Moreover we
will assume off-diagonal decays for the gradient of the semigroup, as follows: for all s > 0, all
balls Q1, Qs of radius 7 = s¥/™, we have for every integer k > 0

< — 777 2 .
2@ Y (1 + £l 220 (28)

r

Hsl/mV(sL)ke*“’L(f)‘

We just emphasize that this new assumption still holds in the examples described in Subsection
2.5. Indeed usually, gradient of the semigroup satisfies Gaffney estimates.

We want to study new kind of paraproducts, relying on the semigroup. For b € L> C BMOy,
(indeed since Remark 7.6 in [8] and Proposition 6.7 in [22], we know that L>° € BMO C BMOy,
thanks to L(1) = 0) and f,g € L?, let us consider the trilinear form

o dt
N L) = [ el ] S

where we write for convenience
Gi(L) = (tL)Ne (1 —e™™) and (L) =7,

with a large enough integer N > d/m.

As a direct consequence of Cauchy-Schwartz inequality, pointwise bound on ¢;(L) and quadratic
estimates (due to Remark 2.8), we know that A! is bounded on L> x L? x L2, Then we deduce
the following result.

Proposition 4.1 The trilinear form A is bounded on L x LP x LP" for every exponent p €
(1,00).

Proof : Let us fix the function b € L* and consider the linear operator U such that
{U(f),9) = A, f,9).
It is given by
o dt
U = [ e mban T

We have just seen that 7" is bounded on L?. Then, we let the details to the reader and refer to
Proposition 4.5 (where we prove a stronger result). It is quite easy to check that U satisfies the
assumptions (9), (10) and (11). We also deduce the desired result by applying Corollary 3.6. [

We are now looking to invert the role of the L>®-function b and the L?-function f :
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Proposition 4.2 The trilinear form A? defined by

A2(b, f,g) == /M /0 " (L)) (000 (L)) T,

is bounded on L™ x LP x LV for every exponent p € (1,00).

Proof : Using the Carleson measure property (Proposition 2.12 and since L> C BMOy,)
together with Cauchy-Schwartz inequality, we obtain the desired result for p = 2. By the same
reasoning as used for Proposition 4.1, we conclude this proof. (]

Using tri-linear interpolation and symmetry, we deduce the following result.

Proposition 4.3 The trilinear form A defined by

Ah, f,9) //w )o 6 (L) P ()R

is bounded on LP x L9 x L" for every exponents p,q,r € (1,00] satisfying
1 1 1
+ -+
p q T

These results concerning paraproducts with two functions ¢; are also easily obtained, thanks
to duality and Cauchy-Schwartz inequality in the variable ¢. Let us note that we do not need
N > d/m. We are now interesting to paraproducts, involving only one function ;.

Remark 4.4 Let us first examine to this situation in the “classical case”. Let us consider
the Fuclidean space M = R% and denote by ¥ a smooth function on R¢ whose its spectrum is
contained in a corona around 0 and ® another smooth function with a bounded spectrum. Then
with the usual notations Wy := t~W(./t) and similarly for ®, we are interested in the following

paraproducts .
£ [T wlenee) T
0

with b € L*°. By duality, it gives rise to the following trilinear function :

vt = [ [ wawnnmTE

Since we know that the spectrum of a product is contained in the Minkowski sum of the spectrums,
it follows that we can find some “good” smooth functions U and ® (satisfying the same spectral
property than VU and ®) such that

jdud dtd
//\Iftét@ x//xyt (F) Ty (b) 222
Rd R4 t
dtd
/ / W, (g) Wy (f) 4 (b) 2t
R4 t

So it comes that such paraproducts can be reduced to the sum of two paraproducts involving “two
functions W”. Hence, they are bounded in Lebesgue spaces.

This reduction is due to the frequency analysis of the product. It is not clear how we can
apply a similar reasoning in the framework of semigroup. This is the goal of the two following
subsections, via our T(1) theorem.
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4.1 Boundedness of new paraproducts in Lebesgue spaces with 1’ > 1

Theorem 4.5 The trilinear form A defined by

At = [ / [6u(L7) ) [Be(L) f Su(L)) Ly,

t
is bounded on LP x L9 x L" for every exponents p,q,r € (1,00) satisfying
1 1 1
+ -+
p q T

Equivalently, the paraproduct

(uf) > [T oD)f anl

is bounded from LP x L9 to L" .
Moreover p or q may be infinite.

Proof : By trilinear interpolation, it suffices us to prove boundedness for the limiting case:
when one of the exponents is infinite. By symmetry between f and h, we have also to deal with
only one case: when p = oo (step 1) and then conclude by interpolation (step 2).

Step 1: Estimate for p = cc.
Let us fix h € L™ and consider the operator U defined by

- [T awn

in order that
A(h, f.g) == (U(f), 9)-

We will prove that U satisfies Assumptions of Theorem 3.3, then the desired result will follow
from Corollary 3.6. First, L(1) = 0 yields

/% )i (L h——chELOOCBMOL

where ¢ := fo e (x) Py (x )— is a numerical constant independent on x. Moreover, it is obvious
that
U*(1) =0.

So it remains to check Assumptions (9), (10), (11), which we recall here.

Consider a large enough integer k. For balls Q1, Qs of radius r = s/™, we have
o if d(Ql,Qg) > 2r, then
s d(@1,Q2)\

e 1122 (29)

and the dual estimates
—sL* d(Q1,Q2)\ "V
LHyre sy ( < (14 QL2 . 30
[srresvm),,,, < (1+4% 1fln (30)
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o if d(Q1,Q2) < 2r, then we have

H(SL)KG_SLU(B_SLJC)HLQ(QQ) +

(SL*)me—sL* U(e—sL*f)‘

vy S Mz @D

Step 1-1: Assumption (29).
The operator U is given by

U(f) = /0 D) (L) au(Lyn] .

We divide the integral on t as follows

(/ JsEre U i) P ren

with s 0t
— litNLli+N 7(S+t)L 1— —tL L DA e
s L1 =) () DR,
and - U
I [ | e et et s sl T
S 2

Let us treat the first term I (the reasoning is similar to the one used for Corollary 3.6).
Thanks to the L2-off diagonal decay of the semigroup (and its derivative), we have since t + s €

[, 2s]
S
rs |
0
s KN
< / 5"t
~ 0 (S—i-t)”JrN
Let now fix t € (0,s]. Then s+t € [s,2s] so we know that (s 4 t)*+tN LN e=(HDL gatisfies

L? — L? off-diagonal decay at the scale s. Hence by considering (Ry)x a covering of the whole
space M by balls of radius r, we get

ﬂ
t

SN LN CHOL (1t [,(L) u( L)

L2(Q2)

(5 + N DN 01— o) (D) f (D] D

L2(Q2) t

|5+ &y N pr e RO (1 — ety (g (L) £ (L)

—d—2N—-§
o3 (1422 1L~ ) [Bu(L)F (L] 2, -
k

r

L2(Q2)

Since (1 — e *) and ¢;(L) satisfy L? — L? off-diagonal decays at the scale ¢ and ¢;(L)h is
pointwisely bounded, it comes that f — (1 — e %) [¢(L)f ¢¢(L)h] satisfies similar L? — L?
off-diagonal decays. So let (Ri) ; a bounded covering of Ry, by balls of radius tl/m (and similarly
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for Q1), it yields

1/2
(1 = e ™) [¢¢ (L) f ¢e(L)A] lz2(ry) S (Z e ) [¢e(L)f ¢e(L) ]HL2(RJI )

d(Rf,Q]f) “d-2N-$§ 2
JZ jz F T 122 22)

oy 1/2
d(R —d—2N—-§
<1+ %) (Z (ZfLQ(Q%) )
J2

1/2

A

N

J1

1/2
d(R ,Q —d—2N—-§
(1 D) iy | 201

J1,J2
d(R 7@ —d—2N—§ s\ d/m
S <1 + %) (FAIVEIeN (;) ;

where we refer the reader to (16) for the estimate of the sum over ji, jo. Finally, we get

‘MS4_QR+NIF+N67@+0 (1—e ) [ge(L )f¢AZJM‘L%Qﬁ

R —d—2N—§ d(R —d—2N-¢ d/m
SO ( ) () e ()

Q ,Q —d—2N—-¢ d/m
< (1 ) )" 1fllxcn

This permits to deduce (29) for the first term I since N > d/m and

/S stV s\ d/m dt
o ()
o (s+t) N \% t

Concerning the second term I, we produce a similar reasoning and we deduce that for t > s
(@, @)\
5 (144022 I£ll200)

Indeed, each appearing operator admits off-diagonal decay at the scale t1/ since s+t ~ t. We
also conclude to (29) for the first term I since for K > d + 2N + 9§

/OO( sit <1+ d(Q2,Q1)>_d_2N_6@ < <1+ d(er, Q1)>_d_2N_6.

5+ t).VHrN tl/m t

(s + &) N LN e (H 0L (L — 1) g (L) £ (L)1

L2(Q2

We have also finished to check Assumption (29).

Step 1-2: Assumption (30).
By duality, (30) is equivalent to

—d—2N—§
UL e ) g 5 (14 F ) 1F12200 (32

27



which we are going to prove.
We will just give the sketch of the proof since technical details are by now routine. As previously,
the quantity to estimate can be divided in two quantities I and I1* with

P | [t - e [snye o s o) 4
0 L2(Q2)
and
* > N _—tL —tL Ko—sL di
II ::/ [(tL)Ne (1 — ) [(sL)ke ¢t(L)f¢t(L)hH\L2(Q2>?

The second one can be exactly estimated as I in the previous point and so we only deal with
the first one. First, it is easy to check that we can replace the above quantity

(tL)Ne ™ (1 — ™) [(sL)e™* de(L) f ¢1(L)h]

by
(t)Ve (1L — ) [Su(D)f 6u(L)h] |

where ¥s(L) = (sL)*e~*F since (sL)fe *L¢y(L) = (sL)fe~tDL and ¢ € (0,s]. Indeed by
computing the difference, it appears

e 5L — et sl = E(sL)ef“;L,
S
involving an extra factor é which permits to easily bound the difference as desired. So let us
just consider

Since 1/75 (L)f is essentially constant at the scale ¢ << s, we can compare the previous quantity
to the following one

which satisfies the desired estimate since [ (tL)Y e " (1—e~"L) [¢,(L)h] % is a uniformly bounded
function for h € L. It also remains us to study the difference between (33) and (34). We let to
the reader the details, but the analysis of the difference is based on exactly the same arguments
as used for the study of I, in the proof of Theorem 3.3. The difference makes appear the

gradient Vi, (L) at the scale ¢, so it comes an extra decay like

dt

[ anreta - e [ awn]

a . (33)

L2(Q2)

dt

(L) /0 LNe (1 e s L] (34)

tllr2(qu)

1/m
2Img (L) f = (g) S/ (L) f.

Since Assumption (28), we obtain the desired off-diagonal decays and the extra factor (%)1/ "

permits one more time to make the integral on ¢ convergent.

Step 1-3: Assumption (31).
We let to the reader to check that the two previous points (Steps 1-1 and 1-2) still holds when
d(Q1,Q2) < r and permit to prove (31).

This finishes the proof of the step 1 and by Corollary 3.6, it yields the desired estimates for
p = 0.
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Step 2: End of the proof.

By symmetry between f and h, we know that the trilinear form A is bounded on L® x L9 x L7
(step 1) and on LP x L x L*' (by symmetry). So for € (1, 00) fixed, we know that A is bounded
on L® x L™ x L" and on L" x L™ x L", which by bilinear interpolation gives a boundedness
on LP x L9 x L". (]

By duality, we have the following results :

Theorem 4.6 The trilinear form A defined by

dt
g M,
Ah, f.g / [ gl o) o)

is bounded on LP x L9 x L" for every exponents p,q,r € (1,00) satisfying
1 1 1
+ -+
p q T

Equivalently, the paraproduct
©° d
()= [ D) D) o)
0

is bounded from LP x L1 to L" .
Moreover p or q may be infinite.

Remark 4.7 The tri-linear forms of Theorems 4.5 and 4.6 naturally appear, in the study of the
product. For example, let ¢ be the function

o(x) = —/ ye (1 —e Y)dy.
We let to the reader to check that all the previous results still hold with the new operator

¢i(L) = o(tL)

(instead of ¢s(L) = e~**). Then we get a “spectral” decomposition of the identity as follows :
up to some numerical constant ¢, we have

/ S 0) 7%

according to Remark 2.8. So for two smooth functions, we have

dsdudv
suv

fo=¢ [ GG [L) o L))
s,u,v>0
Since ¢/ (x) = (x) := ze T(1—e™ %), it comes that (by integrating according to t :== min{s,u,v})

fgi=c / (L) [6(tL) f B(tL)g] / SL) WD) (1))

/ S(1L) (DL w(1L)g) & dt

Consequently, the pointwise product fg can be decomposed with tree paraproducts (involving only
one function 1), studied by Theorems 4.5 and 4.6.
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4.2 Boundedness in weighted Lebesgue spaces and extrapolation to expo-
nents ' <1

We are now interesting to extend previous results to weighted Lebesgue spaces and with expo-
nents ' < 1. We move the reader to Definition 3.7 for the usual class of weights.

Proposition 4.8 Let 1) and ¢ be defined as in Theorems 4.5 and 4.6. Let p,q,r € (1,00) be
exponents satisfying
1 1 1
+ -+
p q T
and consider a weight w belonging to A, N A,. The paraproducts

dt

(nf) = [ D o0 000

and

()= [ o) s o
0
are bounded from LP(w) x Li(w) to L (w).

Proof : Theorems 4.5 and 4.6 corresponds to the desired result with the constant weight w = 1.
It is well-known that weighted estimates are closely related to estimates of some maximal sharp
functions. Let us denote the following maximal sharp function associated to an exponent s €
[1,00) (introduced by J.M. Martell in [43] and extended in [8])

1 1/s
M (h)(x) = <21>18W/B(m,tl/m) |1,Z)(tL)(h)|sd,u> .

Let us explain how can we obtain the desired result only for the first paraproduct (the reasoning
for the second one beeing similar)

dt

T )= [ D) D) f D]

The L? — L? off-diagonal decays (29), (30) and (31) yield that

ME(T(h, [))(2) S Ma(f)(@) Ma(h)(2).

We let to the reader to check this point, but it is a direct consequence of the off-diagonal decays
and the pointwise bound of the heat kernel (see Theorem 6.1 in [8] for a detailed proof of such
inequalities). In addition since we assume L' — L off-diagonal decays of the semigroup and
its derivatives (pointwise estimates of the heat kernel), it is easy to see that we can obtain
off-diagonal decays (29), (30) and (31) for all exponents s € (1,00) and not only for s = 2. So
we can obtain an estimate like

MYT(h, f)) (@) S Mo(f)(x)M(h) (@) (35)

for every exponent s > 1.

In order to compare the Lebesgue norm of T'(h, f) and the one of Z\ﬂi(T(h7 1)), we need to use
a Fefferman-Stein inequality. We refer the reader to [43] (Theorem 4.2), [8] (Corollary 5.8 and
Theorem 6.4) and to [9] (Lemma 2, Remark 3 and Lemma 3 for the weighted version) for such
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inequalities. Since pointwise estimates on the semigroup and Step 3 in the proof of Corollary
3.6, we know that for every s € (1,00) and weight v

MR Dy S |[MET R £

Lr(v)

Such inequalities are based on “good-A inequalities” relatively to the two maximal operators,
obtained in a very general framework by P. Auscher and J.M. Martell in [6] (Theorem 3.1).
Consequently, for our weight w, Holder inequality and (35) give

1T £y < IMSIT (o, Pl e
<[tz i),

S IML (M) e

S IM) oy M)

Then we chose s € (1,min{p,q}) in order that M; is bounded in LP(w) and in L(w) (due to
w € A,NA,) and so we conclude that T is bounded from LP(w) x L9(w) into L™ (w). 0

Remark 4.9 Using recent works of L. Grafakos, L. Liu, A. Lerner, S. Ombrosi, C. Pérez, R.
H. Torres and R. Trujillo-Gonzdlez [40, 30] ; it seems possible to get similar results with different
weights for h and f. This requires the notion of bilinear A condition and the use of a “bilinear
strong maximal function”. We do not detail these possible improvements here.

Then we use theory of extrapolation to obtain new boundedness for our paraproducts (see
Theorem 2 of [29]):

Theorem 4.10 Let ¢ and ¢ be defined as in Theorems 4.5 and 4.6. Let p,q € (1,00) and
r" € (1/2,00) be exponents satisfying

+ /
p q T
and consider a weight w belonging to A, N A,. The paraproducts

(nf) > [ D) oD)f nl

and

()= [ 6D ) oD
0
are bounded from LP(w) x LI(w) to L (w).

Remark 4.11 The improvement in this new result is that the exponent r' could be smaller than
one.

4.3 A “classical” T(1) Theorem on a Riemannian manifold

We devote this subsection to the proof of a T(1) theorem for Calderén-Zygmund operators on
a general doubling Riemannian manifold (M, d, ) of infinite measure.

31



Definition 4.12 A function K defined on M x M\ {(x,z),x € M} is called a “standard kernel
of order 1+ €” for some € € (0,1] if for all x # vy
1

K (z,9)| < m,

for ' € M satisfying |z — 2’| < 3 max{|z — y|, |2’ — y[}

d(z,2')*
(d(z,y) +d(a/, y))dH3N+1te

VK (2,y) - VK(2,y)| <

and for yf € M satisfying |y — y/| < 4 max{|z — yl, o — ¢/|}

/)‘ < d(y,y,)E
™ (d(z,y) + d(z,y)) N

|VK($, y)— VK(x,y

A linear operator T, continuously acting from M to 8'(M) and satisfying the integral represen-
tation

Vi€ C(M), Va ¢ supp(f)  T(f)(x) = /M K (. 9)f (0)du(y),

1s said to be associated to the kernel K.

Theorem 4.13 Let us assume that the doubling manifold M satisfies Poincaré (Py) and As-
sumption (8), on its heat kernel. For T a linear operator associated to a standard kernel of order
€ (such that T'(1) and T*(1) are well-defined in M), the two following properties are equivalent :

e T is bounded on L?

e T(1) and T*(1) belong to BMO_a and T satisfies to the weak-boundedness property (11).
Since BMO C BMO_p, if T(1) and T*(1) belong to BMO then they belong to BMO_x too.

Proof : We look for applying our new T(1) theorem as follows. Let us consider L = —A given
by the Laplacian. Then we have seen if Subsubsection 2.5.2 that under (8) all our required

assumptions are satisfied by the heat semigroup (e~*");~¢ with m = 2. Moreover, we know that

we have pointwise gaussian bound of the heat kernel p; :
P y)| S e

for some constant v > 0.
Since BM O is included in BM Oy, (see Proposition 6.7 in [22] and Remark 7.6 of [8]), it remains
us to check that our operator T satisfies to (9), (10) with x = 1. By duality and symmetry, we
only deal with (10) : for every s > 0, every ball Qq, Q, of radius r := s'/2 (with d(Qq,Q2) > 2r)
and function f € L?(Q1)

d —d—2N—-¢
H(_SA)GSAT(JC)HB(QQ) S <1 + M) HfHL2(Q1)- (36)

So let us consider the balls @1 and Q2 and write for zg € Qo
(~sD)eAT(1)(w0) = [ spia. ) T 0)du)
=~ [ 580, )T w)du(y)
— [ Vupule0 ) VI ) du)

= [ Vana0.0) FTG)0) = VT o)) (o)
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where we used the self-adjoint properties of the Laplacian, an integration by parts and at the
last line the fact that

/ Va0, y)dp(y) = 0.

So it comes
(= sA)eST(f) (o) < / / 5 Vy0s (w0, 9)| [V K (1, 2) — VK (20, 2)] |£(2) dpa()dpa(2).

Using the properties of the standard kernel, we deduce that

(st T an)] < [ [ 519000 G g e ) ) ).

Then using Cauchy-Schwarz inequality and the weighted estimates on the gradient of the heat
kernel (see Lemma 2.2 of [18])

/ IV, 50, )2 900 @) gy < (B, 7))~ V2

we obtain (since d(zg, z) > d(Q2,Q1) > 2r):

1 1
—sA)e*AT(f)(zo)] < / f(2)]du(z),
(52T )] £ s (e
which yields (36) by integrating over xg € Q2. H

Remark 4.14 Due to our main theorem 3.3 with § > 1, we can only treat operators of order 1+¢
with € > 0. However this result seems to be the first one, which holds in a general Riemannian
manifold.

Usually, for a linear operator T' associated to a standard kernel K. We use the following weak
boundedness property : for all smooth functions f, g such that for some zg € M and R > 0 and

every
v —d—la d(x, ) -N
IV f(x)| S p(B(wo, R)) ™ | |<1+7>

for large enough integer N (and similarly for g), we have

1
(T(f) 9| S m-

Indeed this property implies our one (11), since e **(f) is a smooth function at the scale ¢'/2.
We also recover the classical T(1) theorem in Euclidean space and extend it on a large class of
Riemannian manifold. It could be interesting to make a mixture of our present study with the
works of F. Nazarov, S. Treil and A. Volberg [46, 47] and X. Tolsa [51] in order to obtain results
in Riemanian manifolds with a non doubling measure.

We finish this work by asking an open question: in some situations, the semigroup (e*tL)Do
does not satisfy pointwise estimates as (4) but only L? — L? off-diagonal estimates (like Gaffney
estimates). Can we expect a similar 7'(1)-theorem under just off-diagonal decays for the heat
kernel 7 In our proof, the pointwise bound seems to be very important in a one hand to get a
Sobolev inequality (Proposition 3.10) and in a other hand to bound the maximal function (24)
appearing in the “Carleson measure - argument”.
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