N

HAL

open science

From link grammars to categorial grammars.

Erwan Moreau

» To cite this version:

Erwan Moreau. From link grammars to categorial grammars.. Proceedings of Categorial Grammars

2004, Jun 2004, Montpellier, France, France. pp.31-45. hal-00487053

HAL Id: hal-00487053
https://hal.science/hal-00487053
Submitted on 27 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00487053
https://hal.archives-ouvertes.fr

From link grammars to categorial grammars

Erwan Moreau

LINA - FRE CNRS 2729 - Université de Nantes
2 rue de la Houssiniere - BP 92208 - 44322 Nantes cedex 3

Abstract

In this paper, we propose a way to convert link grammars, for which an important
English lexicon exists, into categorial grammars. We also provide a parser in order
to test the correctness of the approach by comparing its results to the original link
grammar parser. Thus our method makes available a lexicon for categorial grammars
that covers an important subset of English. The formalism used is very simple, in
order that it can be easily reused with other categorial grammars formalisms.

Key words: Link grammars, classsical categorial grammars, English lexicon,
efficient parsing.

1 Introduction

Categorial grammars include various formalisms intended to represent lan-
guages. These systems generally offer an elegant and precise way to represent
natural languages. They are characterized by their total lexicalization and a
close relation between syntax and semantics. Recently, some works have been
done to make available linguistic resources in the perspective of real applica-
tions of categorial grammars [Moo03], [Hoc03]. In [Hoc03], Hockenmaier shows
that a wide-coverage Combinatory Categorial Grammars parser can be built
by acquiring an English lexicon from the Penn Treebank.

In this article we explore another way to build a categorial grammars lexicon,
by converting link grammars data. We propose an intermediate formalism
called categorial link grammars, where some important features of categorial
grammars are emphasized. We also show how to convert such a grammar into a
classical categorial grammar, the most simple categorial grammars formalism.

Email address: Erwan.Moreau@lina.univ-nantes.fr (Erwan Moreau).

And in order to show that this transformation has real applications, we propose
an efficient English parser that uses the converted data.

Link grammars are defined by Sleator and Temperley in [ST91]. This is a rather
simple formalism which is able to represent in a reliable way natural languages.
This can be seen in the modelization that the authors provided for English
in this sytem : their grammar deals with most of the linguistic phenomena
in English, as it can be verified using their link grammar parser [TSL]. Their
work is very interesting for our objectives for the following reasons:

e There exists a close relation between link grammars and categorial gram-
mars: both are totally lexicalized and based on some kind of dependency
notion.

e [t is possible to express the link grammars model as a small set of rules
using unification. This point is essential because several categorial grammars
formalisms share this property, and also because it seems to be an advantage
for learning applications.

e The authors have carefully documented their parser and the lexicon they
use, in a clear and precise way. This is important when thinking about real
applications, since it is not rare that good parsers (able to deal with a lot
of linguistic aspects) often use some hidden mechanisms that make hard to
understand how they work.

The transformation we propose as well as the lexicon built from link grammars
data are intended to serve as a basis for other categorial grammars applica-
tions. In particular we hope that it will be possible to take benefit from some
learning properties in categorial grammars to extend the link grammar lexi-
con. Existing learning algorithms for categorial grammars make this hypothese
rather plausible (see [BP89], [Kan98)).

2 Basic link grammars

Link grammars are a formal system defined by Sleator and Temperley in
[ST91]. Informally, a sentence is correct in this system if it is possible to link
all words according to the links needed by each word, defined in the lexicon.
Links represent syntactic relations between words.

A link grammar G is a tuple (3,C,>), where ¥ is the set of words, C is the
set of connectors. A disjunct is a pair of lists denoted d(L,R), where L and R
are lists of connectors, and > is the relation assigning disjuncts to words: wrd
means that the disjunct d can be used with the word w.

Given a sentence wy, .., w,, a linkage is a set of links drawn above the sentence,

each link connecting two words and being labelled with a connector. A linkage
is valid if it satisfies the following conditions:

e Planarity: all links can be drawn above the words without crossing.

o Connectivity: given any couple of words (w;, w;) there exists a path of links
between them.

e Ordering: for each word w; there exists a disjunct d; such that w; > d; and
d; is satisfied. A disjunct d; = d([L,,..,L], [Ry,..,R,]) is satisfied if for each
connector L; (resp. R;) there is a link labelled with the name of the con-
nector coming to w; from the left (resp. the right), and for any couple of
connectors Lj, Ly, (resp. R;, Ry) with j < k, the words wj/, wys respectively
connected to them verify 7/ > k' (resp. j/ < k') !.

e Fxclusion: No two links may connect the same pair of words.

These conditions are called the meta-rules of link grammars. It is shown in
[ST91] that link grammars are equivalent to context-free grammars.

Example 1 With the following lexicon, the linkage below s valid:

a,the > d([l,[D])
cat, snake > d([Dp],[S]), d([0,D],[])

chased > d([s],[0])

S O
D (w (D W
/R N
the cat chased a snake

3 From link grammars to categorial link grammars

Link grammars are closely related to categorial grammars: both formalisms
are totally lexicalized, and share the property to link words or constituents
through a binary relation of dependency. However this dependency relation is
different in the two systems. In link grammars, dependencies are not directed
and apply only to words, contrary to categorial grammars where dependencies
are directed and may apply to constituents of the sentence.

1 In other words when j < k the word wjr is closer to w; than wy,. Remark: in the
original definition the right list is written [R,,...,R;]. We choose the reverse order
to be coherent with the cons(c,L)/nil notation presented in section 3.1.

3.1 Categorial link grammars

We propose here an intermediate formalism based on link grammars but closer
to categorial grammars. In this formalism, called categorial link grammars
(CLG), dependencies are directed and apply to constituents. We first show
that under some restrictions link grammars can be interpreted with different
“meta-rules” without changing their concept. The formalism we propose takes
exactly the same definition for grammars as the one presented above. But the
rules governing derivations of sentences are expressed as the rewriting of a
sequence of terms into another, like in classical categorial grammars.

In order to emphasize that disjuncts are simple terms, we reformulate their
definition in the following way: the set of connectors lists C'L is defined as the
smallest set such that nil € C'L and foralll’ € CL and ¢ € C, cons(C, L’) € CL.
The set of disjuncts, now called types, is defined as Tp = {d(L,R) | L,k € C'L}.
One can see that this definition is coherent with the first one.

3.1.1 Derivations with CLG

The two reduction rules between two types are

d(L, cons(c, R)), d(cons(c, nil), nil) — d(L,R) (with c € C and L,R € C'L)

d(nil, cons(c, nil)), d(cons(c, L), R) — d(L,R) (with ¢ € C and L,k € C'L)

Let = be the relation defined by at ts0 = atof if and only if t1ty — ty, with
a, € Ip* and ty,ts,tg € Tp. = is defined as the reflexive and transitive
closure of =. Let G = (¥,C,>) be a grammar. A sentence x = wyws...w, is
correct for G (denoted = € L(Q)) if there is a sequence of types (t1, s, ..., t,)
such that w; > t; for all 7 and t1¢s...t,, =* d(nil, nil).

Example 2 With the lexicon defined in example 1, the sentence “The cat
chased a snake” can be derived in the following way? :

2 Remark: in the following we will keep the notation [c;,c,..,c,] for connectors lists,
easier to read than cons(c,cons(ey,..cons(c,,nil)..)). Nevertheless it is important to
notice that there is no associativity in these terms.

the cat chased a snake
d([1,[nl) d([pl, [s1) d([s1,[0]) a([1, D a([p,o],

\/ ~_

d([1, s d(fo1, 1
d([s1,

d(f1,

One can notice that a given linkage in basic link grammars can have several
equivalent derivation trees in CLG. These ambiguities appear because links
are not directed, and no order is required between connectors.

3.1.2 FEquivalence between cycle-free link grammars and CLG

The original definition of link grammars does not forbid cycles. For example,
the following linkage where links (R,C,S,B) form a cycle is valid:

S

B

AIAC AA 1

the cat that the dog chased ran fast

A linkage is said cycle-free if it does not contain any cycle, and a link grammar
G is said cycle-free if for each sentence z € L(G) there exists a cycle-free
linkage.

Proposition 3 Let (tq,ts,..,t,) be a sequence of types, with n > 1. The two
following propositions are equivalent:

e There exists a valid cycle-free linkage for the sequence (ty,ta, ..., 1),
e There exists two types ty,tyr1 in (l1,ts,...,t,) and a type t' such that
tp,ter1r — t' and there exists a wvalid cycle-free linkage for the sequence

<t17 D) tk—la tla tk+27) tn)

PROOF.

=. Suppose there is a valid cycle-free linkage for (t1, ¢, .., ¢,). Since the linkage
satisfies the connectivity condition and does not contain any cycle, There must
be at least one type t; that is connected by only one link in the structure. Let
t; be the type to which ¢; is connected by this link. If ¢ < j, let [= ¢ and
r = 7, otherwise let [= j and r = i. We show by induction on the distance

|r — I| that there exists two adjacent types ty,t,+1 in the range [¢;..t,] which
are connected together and such that one of them has only this link:

o if r —[| =1 then t; and ¢; are adjacent. Since ¢; is connected only to ¢;, the
property holds.

e suppose |r — 1| > 1. Any link from a type which belongs to the range [t;,,]
must be connected to another type inside this range, otherwise this link
would cross the link between t; and ¢; and then contradict the planarity
condition. Since the linkage is cycle-free, there exists a type ¢y which is
connected by only one link to a type t;;, with l < ¢ < j <rorl <j <
i" <r.|i'—7'| <|r—1], so by induction hypothesis there exists two adjacent
types tx,tr+1 in the range [ty..t;] (or [tj..ty] if 7° < ') connected together
and such that one of them has only this link.

If ¢, has only one link going from ¢y to tx41 (resp. from ¢y to tx), then there is
a connector € such that t; = d(nil, cons(C,nil)) and tz,1 = d(cons(C,L),R) (resp.
t), = d(L,cons(C,R)) and t;,1 = d(cons(C,nil),nil)). As a consequence there exists
t' = d(L,R) such that tg,tr1 — t'. tg (resp. tx41) is not connected to any other
type than ;1 (resp. t;) and the connectors contained in L,R in ¢ (resp. ty)
are the same as those contained in ¢’, therefore it is possible to replace the
couple of types (tg,tr+1) with ¢’ in the linkage: the new linkage obtained for
the sequence (ty,..,tx_1,t' tgya, ., t,) is valid and cycle-free.

<. Suppose there exists a valid cycle-free linkage for the sequence of types
(t1, ., tg—1,t trsa, ., ty), and there are two types tx, tx1 such that ¢y, tx 1 — t'.
From the form of the rules defining — it is clear that one of the two types
has only one connector ¢, which can be linked to the other type. The other
connectors of the couple of types are the same as those contained in ¢/, so it is
possible to replace t' in the linkage with ¢, and ¢, 1, connected together with a
link ¢. The linkage obtained for (t1, .., tg, txy1, .., tn) is valid and cycle-free. O

Proposition 4 Let (t1,ts,..,t,) be any sequence of types, with n > 1. There
exists a valid cycle-free linkage for this sequence if and only if t1,ts, .., t, ="
d(nil,nil).

PROOF. By induction on the length n of the sequence:

e if n = 1, t; must be d(nil, nil) because it is the unique valid linkage with
only one type. =" is reflexive.

e if n > 1. From proposition 3, there exists a valid cycle-free linkage for
(t1,to, .., t,) if and only if there are two adjacent types (¢;,t;41) (0 <7 < n)
and a type t' such that t;t;,; — ¢’ (1), and there exists a valid cycle free
linkage for (t1..t;_1t't;1o..t,) (2). The length of this sequence of types is
n—1, so by induction hypothesis (2) holds if and only if ¢1..t; _1t't;o..t,, ="

d(nil,nil). Since t;t;1; — t' (1), the definition of = gives tity...t, =
ti..t;i 1t't; 9..t, =* d(nil,nil), which is equivalent to tits...t,, =* d(nil,nil).

Corollary 5 cycle-free link grammars and categorial link grammars are weakly
equivalent.

Clearly any cycle-free linkage is a tree, but there is no isomorphism between
this tree and the equivalent derivation tree in CLG. This is due to the fact that
nodes in the first tree are words of the sentence, whereas the CLG derivation
tree contains types corresponding to constituents of the sentence. However the
relation between the two structures is stronger than a simple weak equivalence,
because each node in the derivation tree must correspond to a link in the cycle-
free linkage.

This similarity between structures is important, because it implies that the
meaning of each connector is preserved through the conversion into a CLG
grammar. Thus a CLG derivation tree describes real syntactic relations, as
they were defined in the original link grammar.

4 Parsing English with a Categorial Link Grammar

One of the main reasons why link grammars are interesting is that the au-
thors Sleator and Temperley have built such a grammar for English. The
lexicon they provide contains approximately 59000 words, distributed into
1350 entries, each entry corresponding to a set of types. The grammar deals
with an important number of linguistic phenomena in English, “ndicating
that the approach may have practical uses as well as linguistic significance”
[ST91]. Furthermore, the link parser provided by the authors includes a file
containing 928 sentences, labelled as correct or incorrect.

In this section we explain how it is possible to adapt the link grammars lexicon
for English to the formalism of CLG. This adaptation leads to the possibility
of parsing a rather large part of English with a CLG, as it will be shown using
the example file for link grammars.

4.1 Conwversion in practice

First we need to detail some features added to the basis of link grammars by
their authors “to streamline the difficult process of writing the dictionnary”
[ST91]. The choices made to convert the link grammar to a CLG are mainly
guided by the necessity to keep the system as simple as possible: thus, the

system will be maximally reusable (in particular for learning applications, see
section 6). It is also emphasized that the conversion that we propose is totally
automatic: the advantage is that it can be computed with any link grammar,
but it is clear that some parts could be improved using the human expertise.

4.1.1 Multi-connectors and the dictionnary format

Iterations are represented using multi-connectors: Any connector C in a con-
nectors list may be preceded by the operator ¢, meaning that this connector ec
can be connected to several links C. For example, nouns can be given the type
d([ea,n],[s]), allowing them to be preceded by any number of adjectives. This
feature is included in the same way in CLG, by replacing the “basic rules”
with these new ones (where [€] means that @ is optionnal):

d(L, cons([@lc, R)) , d(cons([@]c, nil), nil) — d(L,R)
d(nil, cons([@]lc, nil)) , d(cons([@]lc, L), R) — d(L,R)
d(L, cons(@c, R)) , d(cons([@]c, nil), nil) — d(L,cons(@c, R))
d(nil, cons([@]c, nil)) , d(cons(@c, L), R) — d(cons(@c, L),R)

The disjuncts are given in the original dictionnary as formulas using or/and
operators, where left connectors are denoted C- and right connectors ¢+. An
operator “?” is allowed for optionnal subformulas. The conversion simply puts
all formulas in disjunctive form.

4.1.2 Subscripts

Subscripts are used to specialize connectors, in a similar way than feature
structures in unification grammars. They are used to make the grammar easier
to read and understand. For example, the subscripts s and p are assigned to
nouns (and pronouns, determiners, etc.) to distinguish between singular and
plural ones. Practically the subscript is a sequence (eventually empty) of lower
case letters that can contain the wildcard *. Two connectors match if their
subscripts can be unified. For example, the right connector Spa+ can match a
left connector $-, Sp- or Spa-, but not a Ss-, Ssa- or Spb-.

In order to maintain the simplicity of the reduction rules, subscripts are con-
verted into types that do not contain subscripts. This is achieved through a
program that classifies all existing connectors (with their subscripts) in such
a way that all connectors in a same class match the same set of connectors.
When it is possible two classes are merged together, in order to minimize their
number. Finally a new type is created for each such class. In the general case,
an incoherence can occur with multi-connectors because it is possible that

a single muti-connector match several connectors with different (and poten-
tially incompatible) subscripts However it appears that this is not the case
with the set of connectors used in the English grammar: it is sufficiant that
multi-connectors be processed first to avoid any ambiguity in the conversion.

4.1.8 Cycles

Cycles are the main problem for this transformation. We propose two dif-
ferent solutions to get round this difficulty. The first one consists in adding
appropriate reduction rules:

d(nil,cons(x,cons(y,nil))), d(cons(x,nil),cons(z,nil)) — d(nil,cons(z,cons(y,nil)))
d(cons(z,nil),cons(x,nil)), d(cons(x,cons(y,nil)),nil) — d(cons(z,cons(y,nil)),nil)
d(nil,cons(x,cons(y,nil))), d(cons(x,cons(y,L)), R) — d(L,R)

d(L, cons(x,cons(y,R))), d(cons(x,cons(y,nil)),nil) — d(L,R)

The first two rules introduce transitivity between two types. These rules are
similar to composition rules in Combinatory Categorial Grammars [Ste87]:
A/B,B/C — A/C (Forward Composition). They permit to reduce the bottom
part of the cycle. Then one of the last two rules is used to link two connectors in
the same time, thus reducing together the up and bottom parts of the cycle. It
is important to note that these last rules violate the exclusion constraint, since
two words can be linked together by two different connectors. Nonetheless, no
sentence was found in the example file where this method causes an error.

The second solution is to eliminate in each possible cycle one link, so that it
is possible to use the standard reducing rules. This task is possible because
the original link grammar parser uses some particular constraints on cycles
to ensure that some incorrect sentences can not be analyzed. That is why
a list of “cycle connectors” is available. It seems in the examples file that
deleting these connectors from the types (during the conversion) is sufficiant
to eliminate any cycle in the linkages. But there are two drawbacks: firstly,
nothing ensures that there is no other cases where cycles are needed, even
if there is no example indicating that. Secondly, this simple deletion makes
the converted grammar overgenerating, because the cycle links were used to
exclude some ungrammatical constructions.

4.2 The CLG parser

The correctness of the conversion has been tested by comparing results of pars-
ing the example file using the converted grammar to the ones obtained using

the original link parser. The CLG parser is a standard CYK-like parser run-
ning in o(n?), applying the binary reduction rules defined above. The rules
described in [TSL] concerning punctuation, hyphenated words, capitalized
words and idioms are followed. Since the number of disjuncts?® is consider-
ably increased by the conversion, some methods have been implemented to
optimize performances. These methods are mainly the same as those used in
the original parser, comprising pruning and “fast-matching data structures”

(described in [ST91], [GLS95]).

The file 4.0.batch provided with the original link parser contains 928 sen-
tences, in which 572 are correct and 356 are not. We extensively used this set of
examples as a benchmark to test the CLG parser soundness and completness.

The CLG parser does not handle some “high-level” features of the original
parser. Our objective being to provide a simple system based on a little set
of rules, we did not translate these abilities into the CLG parser, and conse-
quently modified the set of examples. Therefore sentences needing these fea-
tures (conjonctions, post-processing rules, cost system and unknown words)
have been removed from the example file : after this process, a set of 771
sentences is obtained, in which 221 are incorrect.

4.2.1 Results

The current parser is rather slow * , probably because all possible optimization
have not been implemented yet. Two cases have been tested with the bench-
mark, corresponding to the two possible solutions for the problem of cycles
(see 4.1.3):

o If the cycle-free grammar is used (i.e. the grammar in which cycle links have
been removed during the conversion), the parsing of the 771 sentences takes
approximately 40 minutes. But the overgeneration (due to the deletion of
cycle connectors) causes 38 incorrect sentences to be considered correct (the
error rate is then 4.9%).

o [f the complete grammar is used with the cycle-reduction rules, the 771
sentences are parsed in approximately 46 minutes. All and only correct
sentences are parsed successfully.

Example 6 Here are some sentences taken from the examples file:

What did John say he thought you should do
*What did John say did he think you should do

3 The biggest entry contains 30360 disjuncts. The average number of disjuncts per
entry is 2176.
4 Tests were done on a PIII 1GHz. The parser is coded in SWI Prolog.

To pretend that our program ts usable in its current form would be silly
That our program will be immediately accepted is hardly likely

*Is that our program will be accepted likely

The man there was an attempt to kill died

5 CLG and classical categorial grammars

AB grammars (also called classical categorial grammars) are the most simple
formalism in categorial grammars. An AB grammar G is a tuple (X, Pr,>)
where Y is the set of words and Pr the set of primitive types. The set of types
Tp is defined as the smallest set such that Pr C Tp and A/B, A\ B € Tp for
all A, B € Tp. The relation > C 3 x Tp assigns one or several types to each
word. The relation — is defined with the two following universal rules:

A/B, B — A (for any A, B € Tp)

B, B\A — A (for any A, B € Tp)
Let = be the relation defined by at 1t = atyf if and only if t1t, — ty, and
let =* be the reflexive and transitive closure of =. A sentence z = wyws...w,

is correct for G (denoted x € L(G)) if there is a sequence of types (tits...t,)
such that w; > t; for all 7 and t,t¢s...t,, = s.

5.1 From CLG to AB grammars

AB grammars are equivalent to context-free grammars [BHGS60], thus their
expressive power is the same as link grammars. We propose here a more
straightforward transformation from cycle-free link grammars to AB gram-
mars, through the intermediate formalism of CLG. We have shown that any
cycle-free link grammars can be interpreted as a CLG. Let define the following
transformation from CLG to AB grammars:

Let D = d([L],..,L[],[Rl;--,Rr])a
LN AL \L\s/Ry/R;_y/.../ Ry,
CLG2AB(D) = § Li\..\Li_,\L{/R}/R;_,/.../ R},
LN AL \LN\RL/ R/ Ry

All types are flat in the converted grammar, i.e. there is no complex argument:
given any subtype of the form A/B, B is always a primitive type. we suppose

that the operators / and \ are associative, i.e. (a\b)/c = a\(b/c). Each connector
is labelled with a superscript [or r: this is needed to avoid that two left (or
two right) connectors be connected together, when one of them is converted
as the principal type.

Given a CLG grammar G = (¥,C,r), the AB grammar CLG2AB(G) is
(3, Pr,»), where Pr = C U {s} and w » t for all ¢ such that w> D and
t € CLG2AB(D).

Proposition 7 Let G = (X,C,>) be a CLG grammar and G' = (X, Pr,») be
an AB grammar such that G' = CLG2AB(G).

For any type t' € Tpe and any sequence of words v € X1, there exists t € Tpg
such that x =& t and t' € CLG2AB(t) if and only if x =& .

PROOF.
(only the = part is proved. The < part is similar.)
By induction on the height h of the proof tree:

e h = 0.z = (w) =¢ t implies that w > t. By definition w » t' for all
t' e CLG2AB(t), so x = (w) =& t.

e h > (. Suppose the rule used at the root is t1,t, — ¢ with £; = d(L,cons(c,R)),
ty = d(cons(c,nil), nil) and ¢ = d(L,R). Let 27 and x be the leaves of the
two subtrees (i.e. x = x1 @ 29 and x; =§ t; and x9 =7 t3). By induction
hypothesis, any type t; € CLG2AB(t;) (resp. t, € CLG2AB(t;)) is such
that 1 =% t] (resp. o =7, t,). Observe that CLG2AB(t2) = {c, s}
(because ty has no other connectors), and any t; € CLG2AB(t;) has ¢ for
rightmost argument. From the form of the rules, it is clear that for each
t' € CLG2AB(t) there exists a type t} € CLG2AB(t;) such that tjc — t'.
The case where the first subtree is argument (corresponding to the second
rule) is symetrical.

O

Corollary 8 Let G be a CLG grammar. If G' = CLG2AB(G) then L(G) =
L(G).

PROOF.

Suppose G' = CLG2AB(G). Let © € ¥ be a sequence of words such that
x € L(G): ©x =§% 4,0). CLG2AB(d(1,)) = {s}, so by proposition 7
xr =% 8, in other words € L(G’). In the same way, if z =, s then (also

from proposition 7) there exists ¢ such that =¢ t and s € CLG2AB(t). The
only way to have s € CLG2AB(t) is that t = d([1,[1), so z € L(G") implies
that © € L(G’). We have shown that L(G) C L(G’') and L(G') C L(G),
therefore L(G) = L(G'). O

5.2 An AB grammar parser for English

This transformation has been applied to link grammars data for English. A
parser has also been implemented, based on the CLG parser.

Usually iterations in AB grammars are obtained using types of the form ¢/t
or t\t. But transformating multi-connectors into such types implies the loss
of structural similarities between derivation trees and original linkages. That
is why link grammars multi-connectors are handled with special “iteration
rules” (like in CLG) of the form A/(eB),B — A/(eB) and A/(¢B),B — A

(the backward direction is symetrical).

Cycles can not be handled easily using AB grammars. Adding ad hoc rules
(as shown in 4.1.3) is possible but it is counter-intuitive in the viewpoint of
the distinction functor/argument. For this reason, the current version of the
parser only works like the cycle-free version of the CLG parser, i.e. when all
cycle-links have been removed during the conversion. As a consequence it is
unable to fail (as it should) on 38 incorrect sentences (the error rate is 4.9%).

6 Future work

Clearly the grammar built from this conversion could be improved: conjonc-
tions are not handled although it is a very important point in order to consider
real applications with unrestricted texts. The cycles problem is not solved in a
totally satisfying way, in particular in the case of AB grammars. But there are
also some aspects that need further attention even if it seems to work well: the
“double direction” of links in the original lexicon causes unnecessary ambigu-
ities in the derivation trees. It is not clear wether it is possible to set a unique
direction for a connector, but perhaps it is possible for some of them. More
generally, the lexicon could be improved (manually or not) to take benefit of
some more sophisticated categorial grammmars formalisms.

There exists good results about learning categorial grammars in Gold’s model
[Gol67]: Buszkowski has proposed in [BP89] the first learning algorithm for
AB grammars. This algorithm learns rigid AB grammars from structures,
and has been extended to several other cases by Kanazawa. In particular,

Kanazawa shows that k-valued AB grammars (in which each word has at
most k types) are learnable from flat strings [Kan98]. One of the important
points in Kanazawa’s work is that the unification method used in Buszkowski’s
algorithm is general enough to be used in other frameworks. That is why this

kind of symbolic learning has been applied to different formalisms (see for
example [BRO1]).

Recently Bechet has shown that k-valued link grammars are learnable from
flat strings [Bec03], and proposed an algorithm. Thus it is highly probable
that learning algorithms described by Kanazawa can be adapted to the CLG
formalism. In particular on can use the English lexicon built from link gram-
mars:

e to build a non-trivial set of positive examples with structures, in order to
test algorithms that learn from structures.

e to test algorithms that learn from strings, by comparing the types they infer
from a set of sentences (typically the example files of link grammars) to the
lexicon.

e partial learning: in the framework of partial learning it is supposed that some
words are already known. The goal of the learning algorithm is then to find
types for unknown words according to sentences provided as examples, in
such a way that they do not contradict with the known part of the lexicon.
The link grammars lexicon seems suitable for this case, since it can be used
as the known part of the grammar.

Applying learning algorithms to categorial link grammars is particularly in-
teresting, because it would permit to extend the original English lexicon (as
well as any other). Actually, in the hypothese where it is possible to design ef-
ficient algorithms that learn from simple text, one could obtain a more flexible
system by enriching the lexicon with any specialized vocabulary.

7 Conclusion

We have shown how it is possible to convert a link grammar into two dif-
ferent categorial grammars systems. The system we obtain needs some im-
provements, and is certainly less powerfull than Hockenmaier’s one [Hoc03].
Nevertheless, its simplicity (simple AB grammars) together with its ability to
deal with an important subset of the English language can give rise to numer-
ous extensions. In particular, the lexicon and rules can easily be extended to
suit to other categorial grammars formalisms. Furthermore, closeness between
the two systems should permit to combine the learning properties from catego-
rial grammars and the data from link grammars. Thus it would be possible to
extend the English lexicon using symbolic learning algorithms, then obtaining

robust and reliable categorial grammars data.

References

[Bec03]

Denis Bechet. k-valued link grammars are learnable from strings. In
Proceedings Formal Grammars 2003, pages 9-18, 2003.

[BHGS60] Y. Bar-Hillel, C. Gaifman, and E. Shamir. On categorial and phrase

[BP8Y]

[BRO1]

[GLS95]

[Gol67]

[Hoc03]

[Kan9g]

[Moo03]

[ST91]

[Ste87]

[TSL]

structure grammars, 1960.

Wojciech Buszkowski and Gerald Penn. Categorial grammars determined
from linguistic data by unification. Technical Report TR-89-05,
Department of Computer Science, University of Chicago, June 1989.

Roberto Bonato and Christian Retoré. Learning rigid lambek grammars
and minimalist grammars from structured sentences. In Lubos
Popelinsky and Miloslav Nepil, editors, Proceedings of the 3d Workshop
on Learning Language in Logic, pages 23-34, Strasbourg, France,
September 2001.

Dennis Grinberg, John Lafferty, and Daniel Sleator. A robust parsing
algorithm for LINK grammars. Technical Report CMU-CS-TR-95-125,
Carnegie Mellon University, Pittsburgh, PA, 1995.

E.M. Gold. Language identification in the limit. Information and control,
10:447-474, March 1967.

Julia Hockenmaier. Data and models for statistical parsing with
Combinatory Categorial Grammar. PhD thesis, School of Informatics,
The University of Edinburgh, 2003.

Makoto Kanazawa. Learnable classes of categorial grammars. Cambridge
University Press, 1998.

Richard Moot. Parsing corpus-induced type-logical grammars.
In R. Bernardi and M. Moortgat, editors, Proceedings of the
CoLogNet/ElsNet Workshop on Linguistic Corpora and Logic Based
Grammar Formalisms, 2003.

Daniel D. K. Sleator and Davy Temperley. Parsing english with a
link grammar. Technical Report CMU-CS-TR-91-126, Carnegie Mellon
University, Pittsburgh, PA, 1991.

Mark Steedman. Combinatory grammars and parasitic gaps. Natural
Language and Linguistic Theory, 5:403-439, 1987.

Davy Temperley, Daniel Sleator, and John Lafferty. Link grammar.
http://hyper.link.cs.cmu.edu/link/.

