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ABSTRACT

This paper discusses new algebraic methods to predict the qualitative
structure of (P, T) and similar type phase diagrams. Chemical
multisystems are considered that have n independent chemical
components and n + k phases, with no solution. Graphical
representations are developed by use of composition and reaction
matrices, and based on equilibrium thermodynamids. The problem is
expressed in terms of the optimum of the G function, written in a (linear)
programming problem. Two types of duality between the representations
are stressed, in the geometric and algebraic (or combinatorial) sense.
The construction of phase composition space (chemography), reaction
space and chemical potential saturation space is discussed in the
general framework. A new type of space, in combinatorial and geometric
duality with the chemography is introduced: the « affigraphy ». The
thermodynamic meaning of affigraphy originates from adding to the
condition that n phase assemblages are obtained at optimum or
equilibrium, the condition that the k remaining phases cannot appear;
this is expressed by the positivity of the k affinities of the dissociation of
these phases. Affigraphy is organized by the affinity vectors of k
independent chemical reactions around an hyperinvariant point in a k-
dimensional space; the vectors are the column vectors of the chemical
reaction matrix. As a « fundamental theorem », it is demonstrated that
the intersection of the afﬁgraphy space by a two-dimensional plane gives
the structure of the feasible (P, T) diagrams. Several consequences of
this result are outlined on simple examples. Aspects of the structure of n
+ 3, n+ 4 and n + 5 systems are discussed; a thermodynamic
understanding and generalization of Zen's polyhedra is proposed. A rule
for predicting all the possible stability successions on univariant lines for
n + k systems is given. Other results on the p‘rediction of stability
sequences in multidimensional domains, on the structure of degenerate
systems, as well as ways of generalization and new types of diagrams
are proposed. The qualitative Schreinemakers'rules for two-dimensional
diagrams are seen as consequences of the laws that rule the
arrangements of vectors and hyperplanes in the affigraphy. New
algorithms to construct phase diagrams are proposed, that may
particularly be useful when only a partial set of data on the system is
available.




Key-words: multisystems; phase diagrams; duality;' chemography;
affigraphy; chemical affinity; mathematical programming;
Schreinemakers rules; Zen polyhedra; potential solutions; degenerate
systems; metastability successions; closed net; pseudosections; n+4;
n+5; n+k




INTRODUCTION

Numerous works have been dedicated to the understanding of the
qualitative structure! of phase diagrams; elementary information on the
graphical representation of chemical systems may be gained, without
quantitative thermodynamic data, provided the composition of the
phases is known. Gibbs phase rule (Gibbs, 1876, 1878) provides first
information of this type; in the general case in a two parameter pressure-
temperature diagram, and if n is the number of independent chemical
components, the domains of the plane correspond to n-phase
assemblages, the limits between these domains correspond to chemical
reactions that associate n + 1 phases and, at the invariant points, n + 2
phases co-exist. Combinatorial analysis easily allows the counting of the
possibilities to choose groups of n, n + 1 or n + 2 phases among the n +
k possible phases. In his work at the beginning of the century,
Schreinemackers (1915-1925)2 pursued this analysis and in particular
showed how in (P,T) diagrams the lines corresponding to the chemical
reactions are ordered around the invariant points, depending on the
composition of the phases involved. This work has been exposed and
discussed by Zen (1966a, 1966b, 1967) for its application to the
mineralogical assemblages relevant to earth sciences. After studying n +
2 systems and the organization of reactions around invariant points, Zen
studied the more complex n + 3 phase systems. Invariant points
themselves are organized in the (P, T) plane depending on the
composition of the phases. « Polyhedra » and « closed nets » were
introduced as tools to understand this structure and to predict the finite
set of the possible diagrams to which the real physical diagram of the
particular system will belong. The observation of the co-existence or of

1 Expression « qualitative structure » or « structure » will often be preferred to
« topology » frequently used in the same meaning; the combinatorial aspect seems
more important than the properties of continuity, frontier and so on, allowing to speak of
topology; this last word is generally not used in its proper mathematical meaning; from
a mathematical point of view it would be more correct to speak of « combinatorial
geometry » or « matroidal structure ».

229 papers have been published by Schreinemakers during the years 1915-1925, in
the Proceedings of Koninklijke Akademie van Wetenschappen Te Amsterdam, under
the general title: « In-, Mono-, and Di-variant Equilibria »; they will be designated here
by Schreinemakers, 1915-1925; only the first and last paper of this series are reported
in the list of references. A complete collection of the papers has been gathered by the
Pennsylvania State University, University Park, Pennsylvania, June 1965, 322 p.




the incompatibility of phases in natural systems may allow one to choose
the most likely diagram. Such an approach has been followed by Burt
(1972) and explained on a general standpoint by Korzhinskii (1959). A
few authors recently set forth rules that apply to the still more complex n
+ 4 phase systems (Guo, 1980 a, b, c, 1981, 1984, Guo and Chen, 1982;
Usdansky, 1987). The utility of structural studies has been emphasized
for a long time; it allows to put order in the observations, in the results of
experimental studies and calculated predictions whose precision is
always limited. It also allows to make qualitative predictions. In Ferry ed.
(1982) a general introduction to the graphical representation of phases
can be found. The structural properties of phase diagrams have been
discussed in many other fields, especially in metallurgy (Prince, 1963).

1, OUTLINE

In the present work, similarly to the previous authors, we are still first
interested by the qualitative properties of the diagrams. The approach
presented is theoretical but the main results are rather simple. A general
outline is now given, with little mathematics, to help introduce the
reading. Chemical systems (or « multisystems ») are considered that
contain n independent components, with which n + k different species
may be built. Each of them will correspond to a physically distinct phase,
as it is the case for the multiphase assemblages met in geology. So the
species will be termed phases and there will be one component per
phase. The case of solid (or liquid) solutions will not be treated on a
general standpoint. The composition of the n + k phases in the n-
component system can be described in an n x (n + k) chemical
composition matrix, C. Composition vector of any phase will be
designated by the name of the phase. A list of symbols and vector and
matrix notations is given at the end of the paper.

As generally understood, phase diagrams such as (P, T) diagrams,
represent the univariant equilibria that may be obtained between
different sets of generally n + 1 phases belonging to a given chemical
multisystem. In order to construct the univariant curves, the possible
equilibria are usually considered one by one in the literature; for each of
them equations of the type AG(P, T) = 0 are written, where the variation




in Gibbs free energy relates both sides of the chemical reaction. In a
linear approximation, Clapeyron relations allow to compute the slopes of
the univariant lines.

1.1. Basic choices

At variance with the last point of view, phase diagrams will be
considered here as geometrical two- or three- dimensional views onto a
given multidimensional structure taken as a whole and described by a
single mathematical problem3. This problem reflects a thermodynamic
problem as follows: let a closed system be defined by the n quantities of
n independent components; the information is given that n + k phases
may be constructed. Pressure P and temperature T are fixed. The
problem is to know what will be the contents in the n + k phases at
thermodynamic equilibrium, depending on both the overall system
composition and the values of pressure and temperature. There are n +
2 physico-chemical parameters (n composition parameters plus P and T)
on the system allowing to compute the n + k unknowns. As will be
illustrated in the text, the problem will be set as a mathematical
programming problem. minimize the Gibbs free energy of the whole
system dependent on n + 2 parameters. This minimization method is
less often used than writing the different mass action laws for each of the
relevant chemical reactions, but is equivalent (e.g. Smith and Missen,
1982). When changing the values of P and T and the system
composition as parameters, the mineral associations will change. This
will eventually define different domains in the P, T space and boundary
univariant curves of the phase diagram.

In parallel to the last point of view, the important choice will be
done to disconnect the algebraic structure of the problem from the
thermodynamics, or to disconnect the mathematical variance of the
system from its physical one. If the mathematical structure of the
problem is considered independently of the physical parameters P and
T, k independent parameters instead of two can be taken; they are the
lacking parameters to the n + k unknowns, when the n initial content
constraints have been taken into account. Algebraically, there are

3 Although the word « diagram » is restricted to a two or three-dimensional space that
can be graphically represented, it may sometimes be used by extension in the place of
the word « space » for dimension greater than three.




indeed k independent chemical reactions whose AG’s can be taken as k
independent parameters to completely characterize the system, although
the AG’s eventually all depend on two parameters P and T.

Multidimensional mathematical spaces will be considered whose
appropriate intersection or projection provide the searched two-
dimensional representations or phase diagrams. The n-dimensional
chemography depicts the phase relations in the system given by the
columns of C matrix. For n < 3 concentrations may be represented in a
plane; when n = 4, a tetrahedron may still be viewed in two dimension;
for higher values of n, chemography is no longer directly representable
in a single view. When considering now the chemical reactions, a k-
dimensional space may be defined where the opposite of the AG’s of the
k independent reactions chosen are represented. In a first step, it will be
considered that this choice is possible independently of the usual two
parameters P and T.

In order to choose k specific reactions a convenient way is to select
first a n-phase basis, i.e. a set of n independent phases in the algebraic
sense allowing to write the composition of all the phases. The k
remaining phases allow to define k chemical reactions corresponding to
the dissociation of each of them in the n-phase basis; each of the k
reactions is written with the corresponding phase on the left and a
combination of the basic n phases on the right. When the basis is
changed, the new writing of the reactions is computed by elementary
matrix operations.

1.2. Absent phase vectors

The - AG’s quantities are equivalently considered as the affinities of
the dissociation of the k phases. They are analogous to the « standard
affinities » defined in Prigogine and Defay (1948) for the reactions from
which phases are constructed from a given set of basic phases. The
affinity of dissociation of phase M is noted as A™ = - AG™; extending
the conventions used in the literature on multisystems, phase M is
written between brackets because its dissociation or disappearance is
considered. If the affinity is positive, the corresponding reaction leads to
the absence of the phase. In the k-dimensional space, one unitary or
basic vector may be defined for each affinity and called « absent phase
vector ». the affinity is unity for this reaction and zero for the other
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reactions of the k independent affinity set. The basic affinity vector may
also be noted as A™ in bold or < A™> or similarly to the composition
vectors, the absent phase vectors will be designated by the name of the
phase between brackets, such as (M), the notation is the same as for the
scalar affinity of the dissociation reaction of phase M but there is no
ambiguity in general. The k unit affinity vectors of the chosen k reactions
will define a basis of the - AG’s or total affinity space. The co-ordinates
of the system affinity vector are the values of the affinities for the k
independent reactions chosen reported along the k basic unit affinity
vectors, in vector a. In order to identify it from the n-phase basis, the k
basis may be called a co-basis. Thanks to matrix operations, unit affinity
vectors may be defined for all the possible n + k phases in the k-
dimensional co-basis and total affinity vector A may be defined by its n
+ k coordinates on the n + k unit affinity basis. When the phases present
in the system are A, B, C..., their mole numbers verify xa > 0, xg > 0, X¢c >
0.. and A® =0, A® =0, A9 =0 ... Then the absent phases M, N, P...
verify xm = 0, xy = 0, xp = 0..., and A™ > 0, A% > 0, A®? > 0... This can
also be expressed as A > 0, (A) = 0 for the first group of n phases and M
=0, (M) > 0 for the second group of k phases. The k-dimensional space
of the A™ will be called « affigraphy » (Guy and Pla, 1992). The
independent chemical reactions may be described in an k x (n + k)
chemical reaction matrix R where the coefficients of the n + k phases
(columns) are written for each reaction (lines). If the composition matrix
C has been written with an n-phase basis, the reaction matrix may be
written with the help of the other k phases as a co-basis. The k
remaining phases may be constructed with the n phases in the basis;
they thus define k chemical reactions. Generic element riof R matrix (k
rows; n + k columns) is the coefficient of phase i in reaction f. Matrix R is
written with the help of matrix C in duality as explained in the
appendices.

As an important result, the n + k unit affinity vectors in k-dimensional
affigraphy behave like the column vectors of matrix R; it is analogous to
the case of chemography where present phase vectors are given by the
columns of C composition matrix. The physical unit used to measure the
unitary affinity is the same as that used for the free energies and
chemical potentials.
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1.3. H,O system

The discussion of a simple example on a k = 2 system will give a first
understanding. In that case the dimension of affigraphy and of the (P, T)
diagram are the same and the two diagrams coincide thanks to a a
change of co-ordinates. The H,O system is a one component - three
phase (solid, liquid and vapor) system whose composition C matrix is

where liquid | is chosen as the basis; the composition of v and s with
respect to | is indicated in the second and third columns of the matrix.
Well-known pressure - temperature diagram is represented in Fig. 1A.
There is one invariant point. The three univariant lines radiating from it
are named by the absent phases in the corresponding reactions, (v), (I)
and (s) respectively. The two-dimensional domains limited by the lines
may also be defined by the absent phases. In the domain where liquid is
stable, the solid and the vapor are lacking; it is noted by (v, s) and is
limited by the two lines (v) and (s) corresponding to the reactions s = | (v
lacking) and v = | (s lacking) respectively. And so on for the other
domains (s, ) and (v, I) for the vapor and the solid.

The affinities of the dissociation of the phases with respect to the
liquid basic phase are AY = g' - ¢, A® = g° - ¢' corresponding to
reactions v = | and s = | respectively. The basis is here reduced to one
phase: the liquid |, and the co-basis is two-dimensional with two absent
phases (v) and (s) as unit vectors. The quantities of solid, liquid and
vapor in the system are xs, x, and x, respectively. The following relations
hold in the liquid domain:

x, =0, AY>0
xs=0, A® >0
x>0 A%=0

The interconnected directions of the three vectors depicting the

univariant lines are given by the columns of the (k x (n + k)) = (2 x 3)
reaction matrix; two independent reactions are written in lines, the three
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phases are read in the columns; the coefficients are those in the two
independent reactions:

B (s) (v)
) [-1 |1 o
v |1 [0 |1

The notation of line and column indices is given between brackets.
Contrary to the ordinary notation of reaction matrix, we have reported
here the relations between the three vectors (I) (s) and (v) (or A%, A®
and AY) in the basis (s), (v). Vector (-1, -1)" indeed represents A® in the
basis A® (1, 0)7, AY (0, 1)" and the three vectors AY, A® and A® do
represent the diagram of water with the right definition of reactions and
domains. We are thus able to find back a known phase diagram by a
specific use of the reaction matrix.

1.4. Chemical reactions in the k-dimensional frame; (P, T) diagrams

The same method will be followed and extended, for the case when k
is arbitrary and greater than 2. Affigraphy may be viewed as a
generalization of the two dimensional structure around the invariant
point described for k = 2, defined by the n + k column vectors of the
chemical reaction matrix representing each an absent phase. The
situation for k = 2 is particular because the reactions are defined by just
one absent phase and so coincide with the absent phase vectors. In the
general case, the chemical reactions will be varieties defined by
collections of k - 1 absent phase vectors (= n + 1 present phases in a
reaction). This is the definition of hyperplanes in the affigraphy i.e. k - 1
dimensional varieties in a k-dimensional space, where a linear variety is
the multidimensional generalization of a line, surface etc. The chemical
reactions are read as the lines of the chemical reaction matrix and in k-
dimensional space correspond to all the possible ways to gather k - 1
unit affinity vectors among the n + k. We will call « basic hyperplanes »
the hyperplanes constructed with the basic affinity vectors; they contain
the origin (other hyperplanes may may be envisaged not containing the
phase absent vectors and in general position).

In the H,O reaction matrix, the two independent reactions are s=land v = |
They correspond to the absence of v and s respeclively. However, the
corresponding lines are named (s) and (v) and not (v) and (s). The horizontal index
does not refer here to the whole line as usual for a reaction matrix but merely
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refers to affinity vector co-ordinates. In composition matrix a line index also refers
to vector co-ordinates and not to the whole line. With the new type of notation, the
two matrices C and R are on an equal footing. In affigraphy, the definition of the
equation of an hyperplane (corresponding to a chemical reaction) must be
distinguished from the co-ordinates of a vector. In the case k = 2, the hyperplane
(a line) in the equation of which the coefficient of (v) is zero is perpendicular to the
other basic vector (s)*. So the line contains vector (v) which is perpendicular to
(s). From a general point of view, hyperplane representing chemical reaction {(A),
(B), (C) ..} where the named phases are absent in the reaction, contains affinity
vectors (A), (B), (C)...

One essential result of the paper is that chemical reaction matrix may be read
in columns. For a given chemical system at equilibrium, a duality is observed
between, on the first hand, the association of n phases in equilibrium
(paragenesis) pointed in the chemography and defined by the domain limited by
the corresponding vectors of the chemical composition matrix; and on the second
hand, the k absent phases (remaining from the complete n + k set) that belong to
the affigraphy domain limited by the corresponding absent phase vectors of the
chemical reaction matrix. Conversely, a meaning may be given to the lines of the
composition matrix: they give the equations of the limits between n-phase sets in
the chemography as explained in App. 2.

If one now gets back to the ordinary two-dimensional (P, T) phase
diagrams, the k affinities or - AG’s of the basic reactions are not actually
independent; only two of them are, since all the g’'s depend on P and T.
Geometrically, this corresponds to an intersection of affigraphy with a
two dimensional plane. We are then driven to the essential theorem that,
in the linear approximation where the values of the g’s are linearized in P
and T, the (P, T) diagrams result from the intersection of the affigraphy
vectors by two dimensional planes. This is a ready way to predict the
structure of phase diagrams. The univariant lines correspond to the
intersection of the two-dimensional plane with the affigraphy
hyperplanes. The invariant points result from the intersection of k - 2
vectors with the two-dimensional plane, or equivalently from the
intersection of two hyperplanes. This method allows generalizations for
the correlation between chemical reactions and absent phase vectors
that could not be done while remaining in a two dimensional diagram
where the analogy works only for k = 2 (in that case the (P,T) diagram
comes down to the affigraphy).

4For simplicity we speak of perpendicularity between two vectors although no
scalar product is defined. The underlying property is that some of the co-ordinates
of the two vectors are zero and the others non zero, such that the sum of the
products of corresponding co-ordinates is zero. In the same manner, we can speak
of a vector perpendicular to an hyperplane. In Fig. 1, basic affinity vectors are not
drawn perpendicular to one another.
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1.5. Example of sulfur system (n =1, k= 3)

This may be enlightened on an example with k = 3; let us take a
simple n = 1 system as for instance the sulfur system (four phases S,,
Sg, Siquis @nd Syaper) described by the composition matrix

Sa SB Sl SV
Se 1 1 1 1

Here, the affigraphy is three dimensional and composed of four vectors
representing each an absent phase organized according to the columns
of the corresponding reaction matrix:

(Se) (Sg) (S) (Sv)
Sy l-1 |1 o o
s) |11 lo |1 o
S) |1 lo lo |1

where (S,) represents affinity vector A®® and so on. The basis is defined
by S. and the co-basis by the three other phases. According to the
preceding theorem, the cutting by a two-dimensional plane gives the
structure of a possible P, T phase diagram, Fig. 1B. The diagram has the
known structure of the sulfur diagram; the univariant lines are defined by
two absent phase vectors, and the invariant points by one absent phase
vector. The construction gives a method to define stability levels as will
be discussed thoroughly below. More complicated examples than for n =
1 will also be discussed in the rest of the paper (e.g. Fig. 31).

In brief, the ordinary two dimensional phase diagram is immersed in a
higher k-dimensional space, representing the absence of the phases as
measured by their dissociation affinity, in the sense we have given. In a
way, this is possible thanks to a mathematical extension of the meaning
of ordinary parameters such as P, T and A.

1.6. Contents of the paper

In spite of, or because its simplicity, the preceding theorem leads to a
great number of consequences. It may allow to predict the structural
properties of phase diagrams currently demonstrated in the literature by
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pieces of reasoning adapted to each property: it may for instance
forecast the Schreinemakers laws on the arrangements of univariant
lines around invariant points, give a proper theoretical understanding of
Zen’s polyhedra in the case k = 3, give a general rule to prognosticate
all stability successions along univariant lines for arbitrary value of k.
Similarly, Guo’s, Usdansky’s etc. rules on n + 4 systems will find suitable
explanation therein. The understanding and predicting of potential
solutions will be readily achieved as well as the properties of degenerate
systems; the present framework will provide insight on systems with solid
solutions. Also, ways of rigorous generalization for phases with negative
quantities of some of their components and corresponding reactions will
be provided. The connection between several types of diagrams, namely
composition diagrams, chemical potential saturation diagrams, chemical
potential grids, reaction space, affigraphy and (P,T) diagrams will be
enlightened with indication of new types of diagrams. An algebraic
approach to affinity will be proposed. At last, schemes for new
algorithms for constructing phase diagrams, with the possible account of
a limited amount of data will be provided.

It is the objective of the paper to present the mathematical tool
allowing to predict all the listed structural properties and discuss the
general structure of phase diagrams. The proposed approach does not
render the complicate problems more simple but at least provides a
systematic way to handle them. A still more abstract approach based on
matroid theory (Guy and Pla, 1986; Pla, 1989a) is developed closely
parallel to the one presented here and will be published in a separate
paper (Guy and Pla, in prep.); the questions related to the qualitative
positioning of the chemical or algebraic items (phases, reactions etc.)
with respect to one another in the diagrams, and to the subsequent
counting and enumeration of the solutions of the problems of interest will
be discussed therein.

The affigraphy approach has proven very fertile and it was not
possible to examine in detail all its consequences, even on problems of
common application, nor to re-examine with this idea all the literature on
phase diagrams. We leave this for the future and for those readers
interested with whom we shall be disposed to communicate. An however
Iérge number of applications has been discussed in the present paper,
even briefly, based on the consideration of simple examples that are
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model systems to natural systems. Some of them are discussed in detail
from an algebraic point of view so as to make the reader understand the
theory. The main part of the paper is made of sections 2, 3 and 4
(examples) and 6 (P, T diagrams). The other sections are mostly other
applications and are independent in a first approximation. Four
mathematical appendices are given at the end as a theoretical support to
the main text. Some sections written in small print are of technical and
more limited character and may be omitted at first reading. The points
exposed in the present section are developped for some technical
aspects in following sections. One may prefer to go directly to Sect. 3.4
or4.

2. THE PRIMAL PROGRAMMING PROBLEM

Mathematical programming theory has already been applied for
predicting the thermodynamic equilibrium in complex systems (e.g. Smith
and Missen, 1982); the use of the mathematical programming concepts
in the present paper is new because mostly geometric and qualitative.
Mathematical programming and especially linear programming has been
applied in earth sciences for different purposes (e.g. Gordon 1973,
Greenwood, 1967) that will not be discussed here.

In the composition (n x n + k) matrix C, the rows refer to chemical
components (number: n) and the columns to the phases (number: n + K):
generic element ¢! is the number of moles of chemical component i
contained in one mole of phase j; a set of n independent phases may

equivalently be chosen instead of the n basic components. A priori, a
chemical system is defined by the n + k mole numbers Xj of the possible

phases in the system: they define the column vector x (j = 1,..., n + K);

vectors and matrices will be written in bold. In the closed systems being
considered, the total amount (in number of moles) ¢j of each of the n

chemical components i is constant®. This defines column vector ¢ (i =

S Thanks to matrix operations discussed in the text, the n + k dimensional vectors will
be projected onto lower n- or k- dimensional subspaces. In order to avoid confusion
with n + k dimensional vectors, vectors in lower n- or k- dimensional subspaces may
be underiined. The values of the co-ordinates of ¢ are dependent on the choice of the
basis used to write composition matrix C.
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1,.... N)8. The whole range of the possible system compositions will be
obtained by varying the ¢j and taking them as parameters. The values of
the molar Gibbs free energies of the n + k phases will be noted as gl
(row vector g) in arbitrary units (joule for instance); we said that we
ignored the thermodynamic data of the phases and, in the sequel, the gl
will also be taken as parameters.

Thermodynamically, the chemical equilibrium for specified P and T is
obtained for the minimum of the Gibbs free energy of the whole system,
with the constraints given by the conservation of chemical components
and the positivity of the mole numbers. This reads:

n+k

Min G = Min gx = Min 2, gixj

(P) X >0

The first line expresses the minimum condition, the second the
conservation constraint and the third the condition of non-negativity of
the phase contents. Problem (P) is called a linear programming problem
because the constraints and the G function (cost or objective function)
are linear forms on the variables (e.g. Pla, 1980, Jeter, 1986); the
program is in its so-called standard form. The linearity of the objective
function holds for systems where the phases have no solution, a
situation common in a first approximation for many geological examples;
if there is solution, this is no longer true since the molar free energies
non-linearly depend on composition parameters (this frequent case is
solved by specific algorithms, e.g. Smith and Missen, 1982); although it
was mentioned that the case with solution would be avoided, some
general information will be gained, even if the programming problem is
non linear and without solving it completely. The important in our case is

6 The n + k or n- dimensionality of the composition for x and € spaces may be

reduced by one by considering concentrations or mole fractions instead of mole
n+k n

numbers. In which case an additional condition is verified Zxp=1or Zg = 1; this
j=1 j=1

gives the equation of an hyperplane which, as aiready reminded, is a linear variety of

dimension n - 1 when n is the dimension of the space: mathematically, this operation

is thus equivalent to cutting the composition vectors by an hyperplane and shifting

from a linear (or vectorial) to an affine representation. In the following, both

representations will be used and discussed separately if necessary.
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that the Gibbs free energy function is convex and differentiable (see
Dantzig, Johnson and White, 1958, White, Johnson and Dantzig, 1958).

Vector x will be said a solution of (P) if it verifies Cx = ¢. A solution x
will be said (primal) feasible if it verifies both constraints (Cx = ¢, x > 0).
The so-called optimal solution x* also verifies the first condition. In a set
of phases called a basis, the chemical composition of the system may be
expressed by an independent combination in the algebraic sense of the
« basic » phases. The basis will be said to be feasible if the coefficients
Xj of the corresponding linear combination for the bulk system are
positive. We can simply speak of a feasible basis. In matrix C, the set of
column indices of all the phases will be called M; the set of the indices of
the phases defining a basis will be called | and the set of the remaining
indices will be called M-I. In general, the cardinal (i.e. the number of
elements) of | is n and that of M-l is k. By extension, one may speak of
an index in a basis when the phase is present in the corresponding
association.

3. OPTIMUM CONDITIONS; THE AFFIGRAPHY

Detailed results of Mathematical Programming are exposed in
Appendix 1. So-called « simplex tableau » that gathers all the
information on the system (the objective function and the constraints) is
presented. The following is mostly a consequence of the use of this
tableau. Optimum solution is a basic solution that verifies two groups of
conditions; the first conditions express the so-called primal feasibility
and read

Xj 2 O for j in the basis, j € I; n conditions

and

xj = O for j outside the basis, j € M - |, k conditions

The second group of conditions are the so-called dual feasibility
conditions and may be expressed in our case by
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- AG? > 0 for j outside the basis j € M -1, k conditions

and
-AG? = 0 for j in the basis j < |, n conditions

where the AG? is Gibbs free energy for the dissociation reaction of
phase j as expressed in the n-phase basis |, as announced in Sect. 1.
Each of these two groups of conditions are now examined.

3.1. First group of optimum condition; the structure of chemography

The first group of conditions implies that at equilibrium x belongs to a
n-dimensional space, and is a conic convex linear combination of the
phases defining the basis of this space; it is merely a convex
combination when concentrations are considered that verify Zx = 17,
Different possible n-phase representations are linearly dependent and
equivalent thanks to matrix operations, and the system composition may
be represented in one of them. Such an n-dimensional space is called
the chemography. The n-dimensional spaces corresponding to different
possible equilibria all belong to the total (n + k)-dimensional composition
space of the x’s. In the projection onto one of them chosen to represent
all the compositions, (the chemography), they will overlap. This is not a
problem as long as the equilibrium is defined by only n phases. In some
particular cases where for instance the system is just at a reaction
defined by n + 1 phases, the preceding representation looses some
information. Other spaces are then necessary to fully represent the
proportions of the n + 1 phases (Sect. 13). A domain of the chemography
corresponds to the presence in the system of the phases limiting the
domain for given P and T conditions.

A specific representation basis of phases may be chosen and termed
lo. By changes of bases, all the possible representations may be
computed. Each column vector of C refers to a « present phase ».

It is useful to the general understanding of the paper to discuss the
equations of the limits between the chemography domains. As an
example, six phases are considered in an 3 + 3 system, A B, C, D, E

7 A conic convex combination of algebraic elements is a linear combination of these
elements with all coefficients positive; it is simply convex when the sum of the
positive coefficients amounts to 1; refer to Appendix 1.
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and F in Fig. 2. The composition of the phases in the A, B, C basis is
given by the matrix:

A B C D E F
A |1 [0 |O [04 |04]0.2
B |0 {1 |0 102 (04104
c |0 |0 |1 |04 [0.2(04

in general, limits between chemography domains are hyperplanes
gathering n - 1 phases. The equations of such geometric varieties, here
lines such as BC or BF for k = 3 affine representation (Fig. 2), are given
by the lines of matrix C. This is explained in detail in Appendix A2.1. The
equation of line BC is given by A = 0, read in the first line of the matrix;
phases B and C are absent in the equation. The phases D, E and F do
not appear in the restriction of the line equation in the basis {A, B, C}.
Other chemography boundaries are computed after basis changes in the
matrix as illustrated in the appendix.

3.2. Second group of optimum conditions; definition of affigraphy

The second group of optimum conditions deals with k reactions whose
AG’s must be negative; the completion of these reactions would allow
the synthesis of the k phases lacking at equilibrium. This is
thermodynamically forbidden or, the presence of the phases is
metastable. If an affinity is defined by A? = -AG! for the dissociation of
phase j in the basis, it must be positive; the conditions stated above are
simply rewritten:

A% > 0 for j outside the basis, je M - |, k conditions
and
A® = 0 for j in the basis, j € M, n conditions
The conditions express that total chemical affinity A* of the system
belongs to a k dimensional space, and is a conic combination of the

elementary dissociation affinities. Similarly to the composition space, the
different possible k- absent phase representations are linearly dependent
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and equivalent thanks to matrix operations and the system affinity may
be represented in one of them. The k-dimensional diagram of affinities
has been called the affigraphy; the physical meaning of this
mathematical space will be submitted to restrictions discussed in the
sequel. When an arbitrary basis Iy has been chosen as a representation
basis in the chemography, a natural representation basis or co-basis for
the affigraphy is M - .

The k-dimensional spaces corresponding to different possible
equilibria all belong to the (n + k)-dimensional total affinity space of the
A's. In the projection onto one of them chosen to represent all the
affinities, (the affigraphy), they will overlap. This is not a problem as long
as the equilibrium is defined by only k absent phases. In some particular
cases where for instance the system is defined by k + 1 absent phases
because of composition or thermodynamic degeneracy (see below), the
preceding representation looses some information. Other spaces are
then necessary to fully represent the proportions of the k + 1 absent
phases (Sect. 13).

Within the algebraic frame, the thermodynamic chemical potentials of the
phases and of the elements may be defined by row vectors p (n + k co-ordinates)
and p (n co-ordinates) respectively (see appendix A1); the potentials are related
by p = uC where C is composition matrix. The dissociation reaction of phase P; in
the basis Iy reads

n .
P;= ZdlP;

i=1

where the sommation is taken on the n phases P; of the basis. At thermodynamic
equilibrium the same relation holds between the potentials of the phases and

If the system is in basis Iy then each of the p's of the phases in the basis is equal
to the corresponding g and the potential of the absent phase is given by

With the help of chemical potentials, the k basic affinities may thus be interpreted
in another way. The affinities of the basic dissociation reactions are defined by

A=-(-g)=g-y

where the gj are the molar Gibbs free energies, and the p.j the chemical potentials of the
phases. In the affinity, the left hand side phase of the above reaction is defined by its
free energy (the phase is present), and the right hand side by its chemical potential (the
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presence of the phase is not specified). We can also consider a system in basis | and
wonder whether phase j added to the system will be stable. This depends on the sign of
the affinity A’ written as above. In the paper the word affinity mostly refers to phase
dissociation reactions written in a specified phase basis.

At optimum, the affinities corresponding to the dissociation of the
phases belonging to the basis are equal to zero; the corresponding
phases are present, and the potentials are equal to the energies.
Conversely, the affinities for the k absent phases are positive; the
corresponding phases are actually absent; the potentials are lower than
the energies. The equilibrium is thus not precepted by the nullity of all
affinities. The relations between the affinities may be expressed more
precisely with the help of the chemical reaction matrix R. The useful
relation is here R.A" = a' connecting the n + k dimensional total affinity
A to the projected affinity a in the k-dimensional affigraphy; a represents
the affinities of k independent reactions for specified values of P and T.
This is in mathematical correspondance to the closed system constraint
in composition representation C.x = ¢.

In Fig. 3, affigraphy corresponding to composition matrix of Sect. 3.1.
is given. The equations of the hyperplanes corresponding to the different
chemical reactions in the system are computed in App. A2.2. In this
appendix, the relations between affigraphy vectors and hyperplanes is
discussed. The different chemical reactions in the system are given by
the lines of reaction matrix, written for the different choices of possible
co-bases. All the corresponding hyperplanes intersect along the n + k
column vectors of matrix R.  Other representations of the affigraphy may
be proposed. In Fig. 4A an affine representation of the affigraphy
corresponding to Fig. 3 is given; in Fig. 4B and 4C, a convex polyhedron
is constructed on the vectors of the affigraphy and in Fig. 4D another
affine representation of the affigraphy is represented. The constructions
are explained in the captions. Chemical reactions correspond to
hyperplanes (dimension k - 1) constructed in all the possible manners

with the column vectors of R matrix; all the hyperplanes (C',ﬁ;,‘( in number)

intersect along the same n + k affinity vectors that are the column
vectors of R matrix. The total number of chemical reactions is CR i1k
because each chemical reaction associates n + 1 phases among the n +
k possible phases; in the affigraphy each hyperplane representing a
chemical reaction contains k - 1 vectors; the total number of such

hyperplanes is the same as the previous number because
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chit=chik-(+=ck;l. The equations of all the hyperplanes describing
all the possible chemical reaction in the system are obtained by use of
the pivoting procedure described in Appendix 1 to have all the different
possible bases of affinity space.

Affigraphy is in combinatorial duality with chemography. In other
words, groups of kK phases are considered that remain (or are
supplementary) when sets of n chemography phases have already been
chosen in the whole n + k set. The words primal and dual may be used
in this combinatorial sense. In the same manner as affigraphy is defined
from chemography, chemography may conversely be defined from
affigraphy; this can be expressed in condensed form by o = x* where y
designates chemography and o affigraphy and the operation «*»
means the combinatorial duality; conversely x** = a* = . Because of this
duality any attribute of the chemography has an equivalent in the
affigraphy, and conversely any property that is true for the affigraphy
needs not be demonstrated for the chemography, provided the
translation is done from one type of space to the other. The restatement
of properties in one space from the other will not be done systematically.
As an example: « co-reactions » will be written between reactions or,
other said, « reactions » may associate k + 1 absent phases of the
affigraphy; they join n - 1 present phases and correspond to the
hyperplanes of the chemography. The equations of the « reactions » of
the chemography thus give the boundaries of the different domains
corresponding to the different bases and are obtained by reading the
lines of matrix C. This result also expresses the duality between two
types of chemical reactions, those produced by the variation of the free
energies g's of the phases, that is to say by the variation of the physical
parameters P and T, and those produced by the variation of the
chemical composition of the whole system; this variation may be
expressed by the contents ¢j that are the dual quantities to the g,
behind which are P and T. Some generalizations of the dual relations
between chemography and affigraphy are proposed in Section 10.

3.3. General geometric approach to chemography and affigraphy
Another understanding of affigraphy and chemography may be gained
by considering again (n + k)-dimensional composition and affinity
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spaces. Different linear varieties of interest in composition x space have
the following nomenclature:

- linear variety Cx = Cx, = ¢ is called V; it is the intersection of n
hyperplanes in a n + k dimensional space; its dimension is thus k if the
hyperplanes are in a general position; it is parallel to Cx = 0, named V,,
which defines the kernel or null space (e.g. Fisher, 1989) of the linear
application (k is called the nullity). Lines of R matrix generate the kernel
Vi, because CR" = 0 (Appendix A1). X is the initial composition of the
system.

- the n-dimensional image by C of the n + k dimensional phase space,
and containing the origin 0, is called Wy, it is orthogonal to V; it is the
space of the columns of C; it allows to shift from x to its projection ¢. in
the projection, unit vectors of the n + k dimensional composition x space
project along the n + k vectors of matrix C. W is parallel to W, and
contains Xo.

Similarly to those related to matrix C, varieties may be defined as
related to R matrix acting on affinity A, The equivalent in affinity space
of ¢, projection of initial composition, is a; if P and T are known the g's
are known and so the affinities of k independent reactions; this defines
vector a. In the generalized framework, one may conceive a a point
independently of the physical parameters P and T.

- linear variety RA" = R AT = a is called V; it is parallel to V'o: RAT = 0,
which is the kernel of R; it is the space of the lines of C. Ay is the total n
+ k dimensional initial affinity of the system.

- the k-dimensional image by R of the n + k dimensional affinity space,
and containing the origin, is called W, it is the space of the columns of
R; in the projection unit vectors of the n + k dimensional A space project
along the n + k vectors of matrix R. W' is parallel to W'y and contains A,.

On both x and A sides, conventional relations Im CT = (Ker C)* hold
and connect spaces V and W,, and W, and V' respectively (« Im»
means image, « Ker » kernel and symbol «* » means the orthogonal).

The combined representation of the system at optimum has a
geometrical interpretation. On one hand, the mineralogical composition
of the system, that one would at first define in an n + k dimensional
space, may be represented in the n-dimensional space W of chemical
components, the "chemography"; one shifts from x to ¢. For ¢ fixed, x
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belongs to the k-dimensional variety V defined by conservation
constraint Cx = ¢. The projection ¢ of x onto the n-dimensional variety
W, perpendicular to that variety is independent of x. Initial composition
Xo also projects on the same point. It is natural to project x on that
variety, because at equilibrium the system belongs to an n dimensional
basis and also because the projected position is independent of the
bases, i.e. of Pand T.

On the other hand, after n conservation constraints are considered, k
pieces of information are lacking for the resolution of the problem to
know the n + k components of x . K independent potentials are imposed
through the choice of P and T; in other words the affinities a of k
independent reactions give the lacking constraints. All chemical affinities
fulfill the condition imposed by the choice of physical parameters RA” =
RA, = a, where R is the chemical reaction matrix. It is n dimensional,
and define space V. In a similar way to what is done for the
chemography, it is natural to project the total affinity vector onto the
linear variety W’ perpendicular to V' because the projection of A*™ onto

‘0 Is constant, independent of the composition of the system; this gives
another justification of affigraphy. One then shifts from A to projected a.
The projection of the initial affinity vector A, is also the same.

3.4. First examples

The graphical illustration of the above geometrical concepts may be
done only for systems with n + k < 3; in Fig. 5A the complete x space is
illustrated for n = 1, k = 2; varieties V and W, are represented. In Fig. 5B
the chemography of this system is obtained by projecting the unitary
vectors of the space x (Fig. 5A) onto variety W,. In Fig. 5C an affinity
space is given and portrays the three affinities of the phases. Spaces V'
and W’y are represented. In Fig. 5D the affigraphy is represented after
projecting the basic vectors of the total affinity space (Fig. 5C) onto
variety W'qs. The origin in the affigraphy is Q.

In Appendix A2.3, the systematic exploring of all the chemography
bases, by the determination of the intensive properties (affigraphy
regions) for each possible basis, is done by the method described in
Appendix A1.5 for a (3 + 3) system; the corresponding associated
chemography and affigraphy are represented in Fig. 6, 7 and 8§;
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explanations are given in the captions and the appendix. Fig. 7A through
J gives all the corresponding regions of chemography and affigraphy.
Fig. 8A is a new representation; for each chemography domain, several
bases are possible; these correspond to several affigraphy domains that
are represented as insert in the chemography itself. Fig. 8B is the dual
representation where, for each affigraphy domain, the possible
chemography bases are represented; in this case where k = 2, this
representation is equivalent to an usual two-dimensional thermodynamic
diagram such as (P, T) diagram.

3.5. Complementarity relations
At optimum the following condition are verified

Ax=(g-p)x=gx-pCx=gx-pc=0
because at equilibrium
p=pCandpc=gx=G

Condition A.x = 0 is called the complementarity condition8: it expresses
that the components of x which are non zero correspond to the
components of A that are equal to zero, and conversely for the other
components.

3.6. The hyperinvariant point

The origin of the k-dimensional affigraphy space is Q. The missing
phase vectors are organized around Q as predicted by the columns of R
matrix. In the k-dimensional hyperspace, Q represents an hyperinvariant
point where all the phases are present together. It is a generalization of
the invariant point of the k = 2 dimensional space. Zharikov (1961) and
Laffitte (1961) postulated the existence of a k-dimensional space where
all the phases could be present together, as a generalization of the 2-
dimensional (P,T) space. According to phase rule, the variance or
degree of freedom of the system is given by v=n + p - ¢, where n is the

8 A writing such as A.x and others of the same type is a condensed form to write
n+k

'21 Al xj although no scalar product is defined.

]=

27




number of independent chemical components, p of physical parameters
and ¢ of co-existing phases. In order n + k phases co-exist, there must
be k physical parameters instead of the usual P and T, this was a first
justification for considering at most a k-dimensional space; the authors
gave no more thermodynamic basis to such a space that was never used
in the literature.

Generally speaking, at Q, the phases may be seen as all present, but
the amounts of some of them may be zero; or the phases may be
considered as all absent, but their dissociation affinities are zero, so
they are at saturation, and they could appear. So there is an
indetermination in the thermodynamic sense, but also in the sentences
that can be used. The actually observed phases depend on the history
of the system. At an invariant point for k = 2 the same paradox holds: all
the phases are present, but the invariant point is also the intersection of
the univariant lines defined by the absence of the phases. When the
system is actually in Q, this represents an improbable case of what we
can call thermodynamic degeneracy (t.d.). In terms of Gibbs free energy,
the situation of « thermodynamic degeneracy » where more than n + 2
phases co-exist may be understood on a (G, X) diagram. For instance
consider a system n = 2, k = 4. The Gibbs free energy of the phases
could be represented along a vertical axis, and the composition along
the horizontal axis. In case of t.d. the g's of the six phases would be
collinear and so any association of two to six phases is stable. The
situation of t.d. is discussed more fully below in Section 6.3. for the
consequences in phase diagrams.
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4. EXAMPLES OF ASSOCIATED CHEMOGRAPHIES AND
AFFIGRAPHIES

Examples of associated chemographies and affigraphies for different n
and k values are given in figures 10 through 19. For each example,
corresponding C and R matrices are recorded in the captions. In the
upper part of each figure, the usual affine representation is used for the

chemography; phases are represented as points that belong to the
hyperplane Z x; = 1. Below the chemography, a vectorial representation
i

is used for the affigraphy; the absent phases are represented by vectors.
Each affinity vector has a positive part represented by a solid line, and a
negative part represented by a dotted line; in some drawings the
negative part may be lacking. A third, affine, representation of the

affigraphy may be added; it is obtained by intersecting the affinity vectors
by the arbitrarily chosen hyperplane = (P;) = 1, where (P)), or A®, is the
[

dissociation affinity of phase P;. This operation allows one to gain one
dimension, as in the chemography. Due to the structure of R matrix, the
affinity vectors do not all cut the Z(P;) = 1 hyperplane along their positive
part®. As a convention, and when the representation is possible, a black
point will be chosen when the representation hyperplane cuts the
positive part of the affinity vector, and a white point when the negative
part is cut. The hyperplane Z(P;) = 1 has no particular physical meaning

and other affine representations of the affigraphy are possible, contrary
to the case of chemography for which the hyperplane £ x = 1 has a
i

specific interpretation. For the same reason the vectors may be
normalized to one in matrix C, but this has no basic meaning in matrix
R0,

~ 9See also Sections 6 and 9.
10 One could decide however that the affinity of the total disequilibrium of the system
amounts to one, and that the different affinities of the independent reactions are

proportions of this unit such that = AY =1.
i
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Values of n have been taken from 1 to 4, and values of k from 2 to 4:
this leads to 12 possibilities that can all be represented. When the
dimensionality is equal to 4, only the affine representations may be used.
The case k = 1 has no interest. The cases n = 3, k = 2, 3 have already
been illustrated previously and are not given again in this group of
figures. When affine representation is utilized for both diagrams, some
types of symmetry may be observed between chemography and
affigraphy. For instance, the case n = 3, k = 2 may be obtained from the
case n = 2, k = 3 by exchanging the corresponding chemography and
affigraphy. However, as has been said, the representation points may
have a different algebraic meaning in the chemography and in the
affigraphy; in the first case, only positive parts of vectors are usualy
possible (points are all black), and in the second, positive and negative
parts are possible (points are black or white); so the whole set of n and k
values has been kept unless some appropriate generalization are
defined (see Sect. 10). On each figure the regions of the chemography
and of the affigraphy are in thermodynamic correspondence as
explained in the preceding section. For example, in Fig. 17 (n =4, k =
2), if the system is in the basis BCDF of the chemography, then it must in
the same time be in the convex cone (A)E) of the affigraphy (the
position of the global system is represented by a star). Classes of
topological arrangements of the points in the chemography correspond
to classes of arrangements of vectors in the affigraphy. The correlation
between the classes needs matroid theory and will not be discussed
here on a general standpoint. In Fig. 20 to 22, examples are given of
associated chemographies and affigraphies for different topological
arrangements of the chemography for a 3 + 3 system. A discussion of
chemography classes for 3 + 3 systems may be found in Day (1972),
Zen and Roseboom (1972). Stout (1990) discusses quaternary system
chemographies.

5. STABILITY SEQUENCES

Sequences of phase assemblages may be observed in increasing or
decreasing stability order in the two dimensional (P, T) diagram regions;
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they have been predicted for unary, or unary and binary, systems by
several authors (Kujawa and Eugster, 196611, Zen, 1967, etc.), following
Ostwald’s work (1902, quoted in Zen op. cit.) for unary systems. This
discussion may be done in the affigraphy space before any two-
dimensional diagram is considered. The rules obtained on the stability
sequences in the affigraphy will be transported in the two-dimensional
(P, T) diagrams.

Domains may be defined in the affigraphy as limited by sets of k affinity
or absent phase vectors; each corresponds to an n-phase basis of the
chemography. These domains are referred to as cobases. The phases of
the chemography bases are listed by simple complementation to the list
of the phases of the affigraphy co-bases. A field correlated to a stable
basis of the chemography is limited by the k positive parts of the
affigraphy vectors. But other fields may be considered where 1, 2, ..., k
negative parts of the vectors are taken. We will note (-A) the negative
part of vector (A). When the negative part of one or several vectors is
considered in the affigraphy, one or several phases do not appear in the
system. They should be present however from a thermodynamic point of
view, perhaps not together, since their affinity of precipitation is positive;
so they define metastable associations. For instance, in the generalized
co-basis (A, -B, -C, D...) phases B and C do not participate to a possible
domain in the chemography whereas they should 12; the corresponding
basis (M, N, P...) complementary to the set (A, B, C, D..) thus has two
degrees of metastability. We will call «degree of metastability » or
« stability level » of a basis of the chemography, the number of negative
vectors in the corresponding co-basis of the affigraphy. This definition
correlates with that given in the literature (number of more stable phase'
assemblages) and allows generalizations. The stability level of one basis

11 In their paper, these authors give interesting terminology on categories of phase sets
that will not be repeated here and to which the reader should refer.

21n the following the co-basis {(A), (-B), (-C), ...} will be written (A, -B, -C, ...) or
simply (A-B-C...), or even A-B-C... when there is no ambiguity; and the same rule holds
for the bases where comas and parentheses may be omitted in the cases where they
would be utilized. When n = k, bases and cobases may be distinguished by their
number of elements. Similarly, collections of phases or absent phases, and collections
of vectors in the chemography or affigraphy, may be identified and the vectors may not
be written in bold font.
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will be indicated by an index associated to the list of the phases; for
instance (M, N, P, ...)° will be a stable basis (zero negative vector in the
corresponding co-basis), and (M, N, P, ...)! will be a singly metastable
basis (one negative vector in the corresponding cobasis) and so on. The
ordering of the stability levels allows one to define a basis stability
« sequence ». The corresponding bases are classed by increasing
Gibbs free energy (less and less stable or more and more metastable).

More generally, the stability level of any variety of the phase space will
be defined by the number of negative vectors of the supplementary set of
the dual affigraphy space; we will call « stability signature » of a variety,
the complete set of corresponding co-vectors with the indication of their
positive or negative sign'3. By extension of the vocabulary, the stability
level of a linear variety or portion of variety (point, line, plane, p-
dimensional variety... hyperplane) in the affigraphy itseif or in (P, T)
diagram may be alluded to as the number of negative part vectors
involved in the definition of this variety; although by symmetry the
stability of a variety in affigraphy should be defined by a property of the
corresponding supplementary set in chemography. In a first approach,
no negative quantity of a phase is possible in a basis; no negative sign
appears for the individual phases of the basis; only a collective index is
indicated for its stability level, whereas phases in the cobases may have
negative signs because of possible negative part vectors; generalized
bases with negative proportions of the phases (or equivalently negative
phases) are discussed in Section 10.

For a given domain of the affigraphy, and for each possible class of
chemical composition in the chemography, several bases may be
accessible at different stability levels. The procedure to find these levels
can first be illustrated on examples. A unary system with three phases (n

3 The word « stability sequence » is also used in literature in a spatial meaning
different from the present energetic one; in affigraphy words it is the list of the oriented
(positive or negative) affinity vectors along the different portions of an univariant line
(Sect. 8); in order to avoid confusion with the « stability sequences » at a given point (in
the sense of the present section), « stability successions » would be more appropriate
in this geometrical sense. As a generalization, we will call multidimensional « stability
pattern », the correlated set of the stability signatures for the different spatial domains
limited by a set of k hyperplanes (Sect. 8).
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=1, k = 2) is considered, Fig. 23. The domain of the affigraphy delimited
by the positive part of (C) and the negative part of (A), as a sub-region of
the (B, C) field, is selected; the accessible cobases are (BC) (-AC) and (-
A-B), so that a point in the chosen region may belong to the convex
cones (B)(C), (-A) (C) and (-A) (-B). The corresponding bases are A, B,
and C respectively; according to the above rule, their stability levels are
respectively 0, 1 and 2, written as A%, B' and C% The stability sequence
is thus A, then B then C, or A < B < C because in that case g* < g° < g°
Another sequence of phases is displayed in the figure for domain (A, -B).
In Fig. 24, an example is presented for a n = 1, k = 3 system. The
different reaction planes, defined in the affigraphy by pairs of vectors,
also intersect along other vectors than the basic affinity vectors. The new
vectors correspond to the so-called indifferent crossing (i.c.) points on
the thermodynamic diagrams (see Section 6.4 below for notation of i.c.
vectors and points); for such indifferent crossing vectors, different co-
bases are accessible, and so different bases, related in general to
different incompatible chemical compositions, unless in case of particular
degenerate situations (in the cases where n = 1, the system is always
degenerate). The i.c. vectors allow the definition of subregions of the
affigraphy. In the figure, a three-dimensional domain of the affigraphy is
considered as bounded by two basic vectors (-A), (C) and one i.c. vector
(-A-D, BC);. respectively; its intersection by the two-dimensional plane
connecting the extremities of (B), (C) and (D) vectors is shown; the
accessible co-bases are (BCD), (-ABC), (-AC-D) and (-A-B-D)
corresponding to the sequence A° < D' < B? < C® of bases. Metastable
phase D is associated to cobase -ABC; the degree of metastability is just
one and A is surely the stable phase; when C is considered, as
associated to cobase -A-B-D, it may be concluded that the three phases
A, B and D are more stable than C, but the sequence of these phases is
unknown.

The general procedure to find the sequence of bases in increasing or
decreasing stability order for a given region of the affigraphy is defined
as follows. 1) the different subregions of the affigraphy are listed, as
limited in all the possible manners by positive and negative vectors and
indifferent crossing vectors. 2) For a given subregion of the affigraphy,
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the list of the accessible co-bases (with all possibilities of positive and
negative vectors) is written; to it corresponds a list of bases. To each of
the bases an index is affected that corresponds to the number of
negative parts of the affinity vectors in the corresponding cobasis. 3) In
the chemography the different subregions are defined in a way similar to
that done in 1) for the affigraphy. 4) For each subregion of the
chemography the list of the accessible bases is established. 5) This list
is compared to the bases obtained for the chosen region of the
affigraphy in step 2). 6) For each region of the chemography the
sequence of bases is determined according to the indices determined in
2); this ends the procedure. The different steps may be automated. In the
general case, more than one base with the same degree of stability may
be possible for a given region of the chemography; this is the reason
why the stability level as defined above does not allow a total ordering of
the bases. The sub-order of the bases having the same stability index is
dependent on the value of the thermodynamic functions of the phases,
and may not be determined by the sole affigraphy approach. In Section
10 below, stability sequences are generalized to affigraphy co-bases
when phases with negative compositions are allowed in chemography
space.

As another example, in Fig. 25, a 2 + 2 system is studied. The
chemography is represented in Fig. 25A; for each domain of the
chemography, the list of the possible bases is indicated below the
composition bar. For instance, for the compositions of the system
between phases B and C, the four bases BC, AC, BD, AD are possible.
For the region limited by (D) and (A) of the affigraphy, the list of the
cobases is given, and the list of the corresponding bases with their
stability index is then identified for each domain of the chemography
below the composition bar (Fig. 25B). For instance cobase (-B,D)
corresponds to base (AC)' which may be obtained for chemography
regions between A and B, and between B and C respectively. One
notices that, in the domain between B and C, AD is the less stable basis
and BC the most, and that two bases BD and AC have the same stability
level equal to 1; in order to go further in the discussion, it is necessary to
represent the g functions of the possible assemblages as is done above
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the chemographic bar. One thus sees that for the composition of the
system on B side the sequence is BD then AC, and for the composition
on the C side, it is AC then BD; the limit between these two domains is
dependent of the value of the g functions. When the basis AC is
considered as associated to (-BD), one knows that B must appear, but
whether it is with A or C or D is unknown. B is associated to A in the AB
domain (basis AB®) and to C in the BC domain (basis BC®). When AD? is
considered as associated to (-B-C) it may be concluded that B and C
must be more stable but perhaps not together (actually the more stable
bases are AC and AB and not BC). The synthesis of the stability
sequences for the different composition domains and for the different
affigraphy regions is given in Fig. 25C. This is a new representation
where the ordinary (stable) composition bars in the different intensive
(affigraphy) fields are augmented by new portions corresponding to
phase associations of higher metastability. For a given composition
region, one may readily know the different phase .associations of
different stability level that may be obtained in a given region of the
phase diagram.

In Fig. 26, a more complicated 3 + 2 system is studied (cf. Fig. 3 to 5).
In Fig. 26A, 7 regions of the chemography are defined with the
corresponding list of accessible bases. The aifigraphy is represented in
Fig. 26B and a region is chosen and marked by a star (region I). The list
of the cobases, corresponding bases, and list of bases with their stability
index for all of the 7 regions of the chemography is given in Table 1. One
sees that in the regions with more than three bases, i.e. in regions 4, 5
and 6 (four bases) and 7 (5 bases) respectively, two and three bases
have an intermediate stability level equal to 1 (the highest and lowest
stability levels are always represented by one basis). The ordering of the
intermediate bases in these cases is dependent on the values of the g
functions of the phases and variable with them; in Fig. 26C, an example
is given of g values and the corresponding ordering of the bases in
regions 4 through 7 is as follows: zone 4; ABC® < BCE™ < CDE"™ <
ADC?; zone 5: ABC® < ABE™ < ADE™ < ACD? zone 6: ABC® < BCE™ <
BDE'™ < ABD? zone 7: ABC® < BCE™ < ADE™ < BDE" < ACD? where
the sequence a, b, ¢ ranks the bases whose stability level is one for all.
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The synthesis of the stability sequences for the different composition
domains and for the different affigraphy regions is given in Fig. 27. Such
computations are allowed by the affigraphy approach and can be done
automatically for k > 2 spaces.

Metastability is relative to the whole system defined by its overall Gibbs free energy
G. One can imagine partial metastability with respect to just one, or to a limited set of
variables defined as a limited number of affinity vectors or combination of basic affinity
vectors (e.g. with respect to T in a chemical potential saturation diagram or grid in the
sense given in-Sect. 13); the limits of the metastable fields may be projected onto one
thermodynamic diagram; they will not coincide in general with the limits of stable
associations of the basic diagram.

As a whole, the results of the present section are a generalization of
Ostwald step rule stated for unary systems. The sequence of
assemblages is dependent on the composition of the system.

6. THE (P,T) DIAGRAMS

6.1. The fundamental theorem

The affinity diagram or « affigraphy » presented in the preceding
sections may be constructed for all kinds of phases, either of constant
composition or with solid or liquid solution. In the following, we will
restrict to the case with no solution; then, the Gibbs molar free energies
of the phases may be expressed by relations that are independent of the
quantities x; of the phases in the system (that correspond to proportions
of end-members in the case of solutions). The hypothesis will also be
taken that, within some approximation, these relations are expressed by
linear relations of the type:

g=vP+sT+u (j=1,.,n+K)

as a function of pressure and temperature; the coefficients Vi, molar
volume, s', molar entropy, and U internal energy, are taken as constant;
in the present approach, these constants are taken as parameters. The
preceding relation is valid at least in a certain domain of pressure and
temperature. At critical points, two surfaces g(P,T) merge into a single
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one whose curvature may be important. This case will not be examined
here. In the chosen « representation basis » | = |y, the k components of
the total affinity of the system along the basic affinities are A =g - |/ =
g - g(C")"C (this writing in general form, cf. App. A1, is equivalent to that
in Sect. 3.2.; we usualy take C' = Un); due to the linear approximation on
the gi, these are linear combination of P and T that can be written in
condensed form as

AV= AVP,T)
A® = A%(PT)

AY = A¥(P,T)

where the relations are linear. By eliminating P and T between these k
relations, k - 2 linear relations are obtained between the A these
represent k - 2 hyperplanes that define a two-dimensional plane (Fig.
28). If one merely wants to know the qualitative structure of the (P,T)
diagrams, the following fundamental theorem is then arrived at:

The qualitative structure of the (P,T) diagrams may be obtained by
cutting by two-dimensional linear varieties, the n + k vectors and
associated hyperplanes of the k-dimensional affigraphy space,
constructed by the column vectors of the chemical reaction matrix.

In the natural examples, the varieties are not linear; (P, T) is a two-
dimensional surface, and there is a non Euclidean deformation of the
affinity coordinates. In our approach, the values of the coefficients in
g(P.T) are unknown, but one can imagine the different possible
structures by cutting in the different possible manners. The potential
solutions will be all the qualitatively possible ways to cut the affigraphy
by two-dimensional planes; among these, one will fit the thermodynamic
data of the system (Sect. 14). Other types of diagrams may also be
obtained by the same operation (Sect. 13). In Appendix 3, the
coordinates in the affigraphy frame of the origin of (P, T) plane, of the
vectors P =0 and T = 0 are computed, and, conversely, values for P and

T are affected to Q. As already told, a reciprocal way to interpret our
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approach is to say that (P, T) plane is plunged into a higher dimensional
space and that, by doing this, one is able to predict and understand its
structure.

6.2. Notations of points and lines in the (P, T) diagrams

In this section, some comprehensive remarks and examples are given
on the properties and notations of invariant points and univariant lines in
the diagrams, as resulting from the intersection operation defined in the
last section. Expansion and new illustrations follow in the rest of the text
(Sect. 6.3, 8.6., 9.4., 13). On a general standpoint, the dimension d" of
the intersection of a d-dimensional variety with a d'-dimensional variety
is found by considering that the first variety is defined by k - d
hyperplane equations and the second variety by k - d' equations. The
total number of equations is 2k -d-d' =k -d";sod"=d +d' - k; thisis a
maximum. Among the 2k - d - d' equations, some of them may be
proportional if the position of the two varieties with respect to each other
is not general, and the number of independent equations is bracketed by
2k - d - d'and sup(k - d, k - d'). The dimensionality of the intersection is
bracketed by d + d' - k and inf(d, d')'4. For dimensions greater than 3,
unusual features appear; for example, in a four-dimensional space, two
two-dimensional planes usually intersect in one point (dimension 0; 2 + 2
-4 = 0). In the intersection operation of affigraphy by two-dimensional (P,
T) planes, hyperplanes of the affigraphy defined by k -1 vectors
correspond to the chemical reactions or univariant lines of the (P,T)
diagram; groups of k - 2 vectors correspond to the invariant points (Fig.
28). Each vector of the affigraphy has a positive part and a negative part.
In the collection of the k - 1 vectors of the hyperplane, the number of
negative parts may be zero, one ... k - 1; so the total number of stability
levels for univariant lines is k (the word stability is used in its
thermodynamic sense as demonstrated in Sect. 5). A type of line may be
chosen for each of these combinations: solid line for zero negative part
of the vectors, dotted line for one negative part and so on. Similarly, the

14Sup(a, b, c...) designates the greatest number among a, b, c...; Inf(a, b, c...)
designates the smallest number.
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invariant points possess k - 1 stability levels (0 to k - 2 negative parts),
and the divariant fields k + 1. The stability character of fields, lines or
points lies on the affigraphy, not in the intersection operation.

In the (P, T) diagram, the notation of the points, lines and domains may
be the same as the corresponding varieties of the affigraphy, although
there is a reduction in dimensionality in the intersection operation. In
general there is no ambiguity. The vectors of the affigraphy are usually
referred to by bold letters, contrary to the points in the intersected (P, T)
plane. The absent phases are indicated between brackets: the number
of phases gives the dimensionality and so the nature of the variety, the
values of n and k being known. In the notation, it can also be indicated if
the positive or the negative part of the vector is concerned; as was told
symbol -A may be used for the negative part of A.

In the case k = 2, the (P, T) diagram is simply equivalent to the
affigraphy with a change in the origin, orientation and scale of the
coordinate axes (Fig. 29A). In the case k = 3, the possible invariant
points, related to vector (A), are (A) and (-A) corresponding to the
notation A and A' of Zen in his papers (op. cit.), see Fig. 30 below. As
another example, in the case k = § (Fig. 29B) the invariant points
correspond to three vectors; for the three vectors (A), (B) and (C), there
are four possible types of invariant points (A, B, C) (-A, B, C) (-A, -B, C),
(-A, -B, -C). Different line portions are also indicated in the figure:
(ABCD), (ABC-D), (AB-C-D), (A-B-C-D) and (-A-B-C-D). This extended
notation of the varieties by taking into account the negative parts of the
absent phase vectors is new and directly results from the affigraphy
approach.

When crossing an invariant point along one univariant line, one vector
is suppressed among the k - 2 vectors that define this point and replaced
by the remaining vector in the k - 1 set defining the line. When crossing
one invariant point, the sign of one vector among the k - 1 defining the
adjacent line portions changes.
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In ordinary case (see exceptions in Sect. 10) the coefficients of the chemical reaction
matrix are not all with the same sign, positive or negative; the affinity vectors cannot all
be cut in their positive part by a two-dimensional plane, whatever its position. Thus, in
the two dimensional section, it is not possible in general that all positive nor all negative
parts of the vectors are implicated. So a (P, T) diagram cannot possess all points with
the same stability level. Each invariant point is obtained once either stably or
metastably and each assemblage occurs but once with a given stability level; this is
related to the fact that linear varieties are considered, in similar assumption to the
« straight line hypothesis » of several authors; the univariant lines are not expected to
form closed loops (e.g. Mohr and Stout, 1980, Zharikov, 1961). Residual nets can be
considered as defined by sections of the affigraphy different from that chosen for the
actual (P, T) diagram; they contain the complementary sets of intersecting points and
lines; their number increases with k. The number of invariant points in a diagram is

Ch ¢ whereas all the possible points with all stability levels amounts to (k - 1) times the

last figure. The maximum number of stable invariant points is a priori CR £ - 1; in the

case k=3 itisn+ k- 1=n+ 2 The actual number must be less, depending on the
hypotheses made.

The general method to obtain (P,T) diagrams by intersecting the
affigraphy by two dimensional planes is illustrated in Fig. 30A through G
(n=1,k=3), and 31 (n = 3, k = 3). Some characteristic numbers of the
phase diagrams depending on the value of k are reported in Table 2.

6.3. Thermodynamic degeneracy

« Thermodynamic degeneracy » is arrived at when the position of the two-
dimensional (P, T) plane is not arbitrary in the affigraphy; the physical probability of
this situation will not be discussed. A justification was discussed in Sect.3.7. As
another justification, when a new phase is added to a multi-system such that Ak =
+1 with An = 0 then the dimension of the affigraphy is raised by one k' = k + 1. The
old diagram is in a situation of thermodynamic degeneracy with respect to the new
one since it is restricted to an hyperplane of the new affigraphy (k' - 1 = k).
Thermodynamic degeneracies allow to complete the understanding of the structure
of the phase diagrams. Three types of degeneracies may be defined:

1) (P, T) plane may contain the invariant hyperpoint Q; if so, Q is the only invariant
point of the diagram. If the orientation of (P, T) plane is arbitrary with respect to the
affigraphy vectors, all the univariant lines are visible on the (P, T) plane. When
crossing Q2 along each of these lines, there is a change in the stability level of the
line, from the level it had at one extremity in ordinary univariant lines, to the level at
the other extremity; in this case there are no intermediate portions on the line and
so no intermediate stability levels, contrary to the usual case. This situation is
illustrated in Fig. 30E on the 1 + 3 system already studied (the general discussion
on stability levels on univariant lines is done in Sect. 8.1.).

2) (P, T) may be parallel to varieties having dimensions from 1 (vector) to k - 1
(hyperplane); in that case, the invariant points that join together the vectors of the
parallel variety do not appear, because (P, T) plane do not intersect them. In Fig.
30B, (P, T) plane is parallel to affigraphy vector (C), and the corresponding invariant
point (C) disappears from the four points of the system; in Fig. 30C, (P, T) is parallel
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to two vectors and two invariant points are suppressed. If (P, T) is parallel to a
variety of dimension k - p, defined by k - p affigraphy vectors, the number of

invariant points left is CK7%-_k+p=CKk7# because each invariant point regularly
associates k - 2 vectors. The missing points are rejected at infinite and some
corresponding portions of univariant lines are lacking.

3) (P, T) may contain one or two vectors, or be contained in a variety of dimension 3
to k - 1. In that case, some of the intersecting points of the arbitrary (P, T) plane with
the variety will merge.

4) The foregoing degeneracies may be associated. (P, T) plane may in the same
time contain Q, and be parallel to a variety or, equivalently in that case, be
contained in it. In Fig. 30F, (P, T) plane contains both Q2 and 1 vector, and in Fig.
30G, (P, T) contains Q2 and two vectors.

5) Other cases may be irhagined depending on the dimensionality of the affigraphy.
In the case k = 4, the (P, T) plane may cut the intersection of two planes belonging
to the same hyperplane. This will be illustrated below as well as similar situations for
k=5.

6) For memory, one can imagine that thermodynamic degeneracy combines with
chemographic composition degeneracy (Sect. 11). This will not be treated here.

In summary, cases of thermodynamic degeneracy show new types of invariant
points, lower in number, and with new types of stability changes across the points,
some steps being abolished. Also, in the case of thermodynamic degeneracy, the
invariant points may gather more than n + 2 phases. Such points usually correspond
to k - 2 vectors, or n + 2 present phases. Two invariant points may have k- 2 - q
vectors in common; if the (P, T) plane belongs to the hypervolume of k - 2 - q
dimension, the two invariant points will merge in a single point with n + 2 + q
present phases. New types of notations and rules must be defined for the stability
levels of the points and the lines in these cases. No general statement will be given;
a useful guide for that purpose is to consider the number of affigraphy vectors and
the number of negative parts involved. The paradox on the presence and number of
phases at such points is of the same nature as for the hyperinvariant point (cf. Sect.
3.5 above). The complexity of the notations for such points results from the fact that
a same point may correspond to different types of pairs of neighboring line portions
depending on the degenerate orientation of the two dimensional plane. Depending
on the dimensionality of the space, the possibilities of types increase and a
hierarchy of points with increasing degeneracy may be defined. An ordinary
univariant line contains k - 1 points; these points may merge two by two until one
single points remains (). So one can coalesce from 2 to k - 1 points and there are
k - 2 possible thermodynamically degenerate point types on a line. The indifferent
crossing points (see next section) are invariant points of particular type that may
also disappear depending on the position of the intersecting (P, T) plane.

6.4. Indifferent crossings

The question of the indifferent crossings (e.g. Zen, 1866b, 1967) can be discussed
at the affigraphy level, prior to the construction of (P, T) diagrams. Invariant points
in the (P, T) diagram correspond to affigraphy linear varieties of dimension k - 2,
resulting from the intersection of pairs of hyperplanes; for ordinary invariant points,
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two univariant curves (two hyperplanes) that intersect are always compatible from
the composition point of view. For indifferent crossing points, univariant curves
(hyperplanes) may intersect that do not correspond to the same composition of the
system, that is to say that share less than n phases in common. Each hyperplane
correspond to k - 1 absent phases so that for both hyperplanes 2k - 2 phases at
most may be absent, or other said n + k- 2k - 2) = n - k + 2 phases may be
present. This number may be lower than n for k > 2; depending on the values of n
and k, the chemical systems corresponding to the two intersecting hyperplanes may
have zero common phase. The compositional dimension of the variety
corresponding to indifferent crossing is n - k + 2, or other said only for degenerate
compositions the indifferent crossing point will be compatible for both reactions.
Various cases may be considered depending on the stability level of the
hyperplanes that intersect. In the (P, T) diagram univariant curves of different
stability level may thus intersect along indifferent crossing points of several types.

This situation is illustrated in Fig. 20 where the affigraphy planes may intersect
along other vectors than the basic affinity vectors. For instance planes (A)(F) and
(D)(C) intersect along line A; in the two-dimensional plane connecting the four points
(A), (C), (D), (F) in the figure, line A corresponds to the intersection of the diagonals
of a face of the polyhedron constructed on the affigraphy vectors. The absence of
the four phases A, C, D and F corresponds to the presence of only two phases B
and E. Thus only for a composition of the system along the chemographic BE two-
dimensional joint will the indifferent crossing point be compositionally compatible
(here n - k + 2 = 2). Another way to say is: reaction (A, F) corresponds to
compositions taken in the quadrilateral CDEB of the chemography (Fig. 20) and the
same for reaction (D, C) in the quadrilateral AFEB. Only along the common edge
EB of both quadrilaterals are the compositions compatible.

The number of invariant points on a given univariant line is C:ﬁ:f = k - 1. Each

invariant point corresponds to the meeting of n + 2 reaction hyperplanes or other
said of n + 1 hyperplanes in addition to that corresponding to the line considered. So
the total number of all the hyperplanes involved in the invariant points of a given
univariant line is (k - 1){n + 1) without counting the hyperplane defining the
univariant line itself. The total number of hyperplanes corresponding to all chemical

reactions is C:,'j[:< So the total number of indifferent crossing points along a given

univariant line is njg = CR! - 1 - (k - 1)(n + 1). The notation of the indifferent

crossing points may be done according to the names and positive or negative part
of the 2k - 2 affigraphy vectors involved, separated into two sets for the two
hyperplanes. In a two-dimensional diagram, each of the two intersecting univariant
lines may have k stability levels, so there are (k)2 possible types of indifferent
crossing points. So far as stability is concerned, each of the phases in the (2k - 2)
phase set must be considered independently for the sign, and there are 2k - 1
stability levels at most (if the same phase appears in the definition of both i.c.
hyperplanes it will have the same sign because it corresponds to the same situation
in the affigraphy frame). The number of stability levels is greater than k - 1 in the
ordinary case because the number of present phases is lower and so more absent
phase vectors can appear in the place of the present phase ones. Forn = 3, k = 3,
the total number of hyperplanes is 15 - 1 = 14 and the number of hyperplanes
involved in the invariant points is 8 so the number of indifferent crossing points is 6
(the 4 affigraphy vectors left are taken two by two). That is verified on Fig. 20, 24
and 31. In these examples for k = 3 each indifferent crossing point has four phase
labels; their dimension is one however (points) resulting from the intersection of two
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varieties of dimension k - 1; in the label of i.c. point (-A-B,CD),,, Fig. 24, a coma
separates the two intersecting hyperplanes and an index ic is written in order to
avoid confusion. The two hyperplane portions may have different stability levels as
described by the sign of the vectors; for this figure n = 1, k = 3 and we verify that n;
= 1 and 2k -2 = 4 (number of vectors for an i.c. point). Forn =1,k =4 njg = 3
verified in Fig. 37.

Another way to look at the problem is to consider pseudosections (e.g. Hensen,
1971). If different pseudo-sections are considered that correspond to the diagrams
computed for specific chemical compositions, the indifferent crossings will
correspond to the intersection of these diagrams. Some degenerate compositions
may be at the border of the different composition domains and for them the
indifferent crossing may correspond to the same composition.

This system degeneracy corresponding to a specific composition of the system
(for which an indifferent crossing point may be obtained) must be distinguished from
the structural degeneracy (phase composition degeneracy, Sect. 11 below, or
thermodynamic degeneracy, Sect. 6.4 above). In the case of thermodynamic
degeneracy other univariant lines are possible that correspond to varieties of
dimension lower than k - 1 that connect k - 2, ... 2, 1 affigraphy vectors. When
intersecting with the other possible lines, these lines may in turn give rise to
indifferent crossing of special character that will not be numbered nor studied in
detail here; this is merely an application of affigraphy and combinatorial analysis.

By generalization, if phases are accepted that have negative components or
phase assemblages with negative phase amounts (see Sect. 10 below), then ali
univariant reactions are accessible to all compositions (a chemical system may be
described by any phase basis provided some phase amounts are negative). The
indifferent crossings will then correspond to pairs of composition systems that do not
have the same « chemographic stability level »; this must be understood in its
mathematical generalized composition sense, defined by the number of positive
basic phases in the assemblage.

6.5. Pseudosections

As has been said, pseudosections are restricted (P, T) diagrams computed for a
specific chemical composition of the system (e.g. Hensen, 1971) 15, Let us discuss
briefly the method to obtain them. For a given composition C* of the system, one
must first list all chemography bases that contain C*, i.e. for which C* may be
expressed by a positive linear combination of the phases in the base. Let |4 be this
list. Then, the list of chemical reactions accessible to composition C* must be
determined: in list l4, all pairs of bases that share n - 1 phases in common define n +
1 phase accessible reactions. They compose list I,. The pseudosection is then the
diagram representing reactions of list |,.

If composition C* is degenerate, that is to say, belongs to a linear variety defined
by n - p phases (n - 1, n - 2, ... 1 phase) instead of belonging to a n phase basis,
then, one must exclude from list |; the bases that contain the n - p phases of the
subspace; because a system composition described by phases in those bases could
not be degenerate in the n - p subspace (a basis containing an hyperplane, cannot
overlap it). For instance for n = 3 (Fig. 2), if system composition belongs to line AB,
the bases ABC, ABD, ABE and so on containing phases A and B must be excluded;
because a composition described by a positive combination of phases A, B, C or A,

15 Hensen is probably among the first people to have used pseudosections although the

term « pseudosection » as such is not employed in the 1971 paper.
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B, D or A, B, E and so on does not strictly lie on line AB. This still diminishes the
number of possible chemical reactions with which the final diagram (pseudosection)
is constructed. On the whole, in a pseudosection, the number k may diminish and so
the number of invariant points, univariant lines and stability levels. At worst, if the
composition of a system strictly lies at a chemographic external phase, this phase is
always stable and the (P, T) pseudosection has no point, nor line.

If bases with negative proportions of some of the phases are accepted, all bases
are kept in above list |y and the chemical reactions are written in a generalized
sense (Sect. 10).

7. ADISCUSSION OF ZEN POLYHEDRA (k = 3); GENERALIZATION

In the case k = 3, the structure of the possible (P,T) phase diagrams
may be predicted with the help of the « representation polyhedra »
proposed and constructed by Zen (1966b and subsequent papers) for
their application to geological examples. The construction of these
polyhedra is founded on empirical rules. These are based on the
knowledge of the diagram structure for a given chemography (i.e. the
Schreinemakers rules, Sect. 9); the justification is given by their power of
prediction. Briefly stated, for each (n + 3)-phase system, a polyhedron
can be constructed whose apices represent the invariant points. Each
corresponds to an absent phase, and the edges connecting the apices
represent the invariant reactions. The total polyhedron may be projected
onto a sphere, and after cutting and opening the sphere, the projection
may be applied to a plane. In this manner one obtains what Zen calls
« closed-net » that contain all the information of the polyhedron (other
kinds of nets, open or partially open nets, are defined by similar
operations described in Zen). Because of all the possible intersections of
the lines on the sphere, the closed net contains all the invariant points
twice, both stable and metastable, which is not the case for the real
phase diagrams. In the projection of the polyhedron, the different edges
radiating from each apex must not coincide; this could happen
depending on the plane of projection. In order to avoid this problem, Zen
proposes that the edges of the polyhedron are not straight but curved
lines. The (P, T) diagrams are parts of the closed nets, but which part is
not known a priori. It should be stressed that, according to Zen himself
(1966b; see further discussion in Zen and Roseboom, 1972) the
polyhedron has no thermodynamic significance, and the three
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dimensional space or volume within which it is constructed has no
meaning; only its surface is utilized. On the whole, it is merely a tool
which proves to be useful.

Without discussing in detail the use of polyhedra and closed nets in the
literature, it can be shown that the affigraphy approach gives a
thermodynamic significance to the polyhedra; it allows a revision of their
practice and a generalization of their definition. In the case k = 3, the
affigraphy indeed allows to define a polyhedron where each apex is the
extremity of an affinity vector. In the approach based on the affigraphy,
the (P,T) diagrams are obtained by an intersection of affigraphy by a
plane, whereas it is a projection in the case of Zen 's polyhedra (or a part
of the projection for the open nets supposed to be candidates to physical
(P, T) diagrams). These two operations are equivalent. The projection of
a point is a point and the projection of a edge is a line. In the intersection
of the three-dimensional affigraphy, the intersection of a vector gives a
point and the intersection of a plane gives a line. The difference is that in
the affigraphy approach, a center is added to the polyhedron. The
thermodynamic significance of this operation has been shown and, when
an intersection operation is considered, the condition that the edges are
curved is not necessary. The lengths of the vectors of the affigraphy may
be normalized to one: the important is the direction of the vector, not the
length. So the extremities may be on a sphere and a convex polyhedron
may be drawn. The affigraphy may be synthesized in different ways: the
apices may or may not be connected, the center (invariant hyperpoint)
may or may not be represented and connected to the apices. Many
examples have been given in the preceding figures (8B, 8C, 11D, 14D,
18D, 20D, 21D, 22D) and they are in exact correspondence with the
polyhedra proposed by Zen, and Zen and Roseboom (op. cit.), e.g.
tetrahedron for a 1 + 3 system, Fig. 11, pentagonal pyramid, fora 3 + 3
system Fig. 21D and so on.

In the affigraphy frame, the closed net corresponds to the projection of
the entire affigraphy, whereas the open net or partially open net
correspond to the intersection by two-dimensional planes of specific
orientations, and the residual net to another complementary intersection.
A thermodynamic significance for the nets is thus given. The intersection
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by two-dimensional planes is in accordance with the physical straight
line hypothesis (e.g. Mohr and Stout, 1980) where the univariant lines do
not form loops, contrary to the case of closed net. In that case, the
invariant points occur once either stable or metastable. In the
intersection operation, some of the affigraphy vectors are cut along their
positive part, some others along their negative part. So for a given
orientation of the (P, T) plane, two nets may be defined that are
symmetric with respect to the affigraphy center Q, and the stable and
metastable points substitute to each other (the so-called inversion of
topologies in potential diagrams results from the same consideration). A
polyhedron with the metastable apices may also be drawn; this is new
with respect to Zen and more in conformity with his representing of
invariant points by pairs both stable and metastable.

In the case k > 3, the affigraphy can no longer be displayed as a
polyhedron in R®. Several ways can be found however to portray
graphically the affigraphy and the information on the chemical system it
conveys; but the unity of representation is lost because more than one
projection may then be useful. A convex hyperpolyhedron can be defined
in the k-dimensional space, and constructed on the n + k affinity vectors,
in the same way a polyhedron was defined in R® (other multidimensional
figures may also be constructed by geometrical transformation of the
basic hyperpolyhedron). The hyperpolyhedron can be projected as a
hyperclosed-net onto lower dimensional spaces such as the two-
dimensional plane or space R®. The net gives the connections and
hierarchy (similar to the mathematical « freillis ») between the different
invariant points and univariant lines of the diagrams. For instance, the
hyperpolyhedron of a 1 + 5 system is a simplex'® in a (k = 5)-
dimensional space, and is projected in Fig. 32. The univariant lines are
groups of 4 phases and invariant points groups of 3 phases; the
quadrilateral (A,B,D,E) gathers the four invariant points (A,B,E) (A,B,D)
(B,D,E) and (A,D,E); point (A,B,E) also belongs to line (A,B,C,E).

16 A simplex is the convex enveloppe of k + 1 independent points in a k-dimensional
space.
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The systematic discussion of the possible types of affigraphy and
corresponding polyhedra or hyperpolyhedra, depending on the
arrangements of the phase in the chemography, and more generally the
link between symmetry properties of the affigraphy and chemography will
be given elsewhere. This has been proposed for unary, binary and
ternary systems by Zen (1966b, 1967) and Zen and Roseboom (1972).

8. REMARKS ON N +4, N + 5 AND N + K SYSTEMS

The particular cases k = 4, 5 are now examined. Meanwhile, some
general results are derived that come in addition to those given in Sect. .
6.2. and followings.

8.1. n + 4 systems: univariant lines and stability successions

The affigraphy approach and the Fundamental Theorem exposed in
Sect. 6 above allow to discuss some properties of n + 4 systems. The
affigraphy is four dimensional. Univariant lines in the (P, T) diagram
correspond to the intersection of the two dimensional (P, T) plane with
the different three-dimensional hyperplanes defined by sets of three
vectors taken in the n + 4 affinity vector set. The invariant points on a
given univariant line are the intersection of the (P, T) plane with the
different two-dimensional planes defined by pairs of vectors inside the
three vector set defining the univariant line. One can then propose to
represent graphically this disposition on an affigraphy restricted to the
three dimensional subspace of one univariant line; three vectors defining
such subspace are represented in Fig. 33A. The intersection with the (P,
T) plane is a one-dimensional line; the two dimensional (P, T) space
itself cannot be represented since it is not a priori contained in the three-
dimensional subspace. Only its intersection with the subspace -the
univariant line- is visible. The univariant line may cut the three planes on
three invariant points; according to the location of the intersection points,
three stability levels may obtain according to the number of negative
parts (zero, one or two) of the two basic affinity vectors of the intersected
sector. The stability of the portions of the univariant line are defined
according to the part, positive or negative, of the basic vectors of the
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three dimensional sector they are crossing. One important result of this
method is then that all the possible successions of invariant points and
univariant line portions with different stability levels may be found by
cutting three planes by a straight line. As told in Sect. 5 and in order to
avoid mixing up, the word « succession » is preferred to the word
« sequence » in the spatial meaning. Examples of this operation are
given in Fig. 33A and 33B; the synthesis of the results is given in Fig. 34.
There are eight possible successions.

These successions may also be obtained provided one single is known,
and by use of the symmetries of the problem; the three basic vectors
may change their sign one at a time, or by groups of two (symmetries
with respect to the three planes defining the hyperplane) or all together
(symmetry with respect to the hyperinvariant point). The starting
succession of invariant points along one univariant line corresponds to
line A4 in Fig. 33B and is described by the following succession of
invariant points

1) AB BC -AC

The parentheses around the labels are omitted for simplification. By
inverting the signs of the phases (exchanging A in -A and reciprocalily -A
to A), we obtain

2) -AB  BC AC

This is Aq reversed. Then successively, B is changed to -B and C to -C
on the starting succession:

3) A-B -BC -AC
4) AB B-C -AC

Then, by successive pairs of permutations (A —-A, B - -B), (A - -A, C
—-C)and (B —» -B, C — -C) one gets

5) -A-B -BC AC
6) -AB B-C AC
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7) A-B -B-C -A-C
Lastly, the three permutations (A — -A, B - -B, C — -C) together lead to
8) -A-B -B-C A-C

The eight successions of Fig. 34 are obtained. Successions 4 and 5
correspond to A, and successions 7 and 8 correspond to Az. The
stability levels of the line portions are determined by the points that
border it; for instance, portion of line 4 between AB and B-C is noted AB-
C with one negative vector (stability level 1); and the next portion
between B-C and -A-C is -AB-C (stability level 2). At each crossing of an
invariant point along an univariant line, the vector of the line portion not
included in the definition of the point changes its sign. For instance by
crossing point B-C the sign of A is changed and the two portions in
contact with point B-C are AB-C and -AB-C respectively. Only one finite
portion of stable univariant line may thus be obtained in the different
univariant successions, it is comprised between the two stable invariant
points when these are present (successions 1 and 2); a semi-infinite
stable portion is obtained in successions 4 and 5. These rules will be
stated on a general standpoint in Sect. 8.6. This approach may also
allow to define closed loops for a monodimensional path rotating around
Q: in Fig. 35 two examples of univariant loops are given as may be
constructed by the method exposed for Fig. 33 (cf. also Guo, 1980a,
1984).

8.2. Affine representation of n + 4 systems

A three-dimensional affine representation of the affigraphy may be
used for the n + 4 systems. The n + 4 affinity vectors may be cut by a
three-dimensional hyperplane and then be graphically represented; the
resulting n + 4 points will be black or white depending on whether the
positive or negative part of the vector is cut. In the affine representation,
two-dimensional planes of the normal affigraphy correspond to lines
connecting pairs of such points. These lines may cut a two-dimensional
plane and thus define the structure of a (P, T) diagram. The rules for the
stability levels of the invariant points that result from the intersection of
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pairs of affinity vectors with the two-dimensional (P, T) plane, are easily
derived. For this purpose, comparison is made with the method of the
previous section, in such a way that there is agreement with the results
of the three dimensional representations of Fig. 33A and B. The
convexity properties in vectorial and affine representation are in
correspondence: the consideration of a point located with respect to a
set of vectors or of points gives similar rules for the stability levels as in
previous sections. The resulting rules are summarized in Fig. 36. In Fig.
37 an example of a (P, T) diagram for a unary 1 + 4 system is shown by
application of this method. Successive intersection of the affigraphy has
been done by a three-dimensional hyperplane then by a two-dimensional
plane; thanks to this new geometric procedure, different types of n + 4
diagrams are obtained that are similar to those given by Usdansky
(1987), Ceolin and others (1991). The different possible structures of the
diagrams are gained according to the different ways to choose first the
three-dimensional hyperplane and second the two-dimensional plane. All
the possible structures will not be discussed here on a general
standpoint.

Another representation of four dimensional systems is possible by use
of three two-dimensional plane projections in correspondence with one
another like in descriptive geometry (Baracs, 1987).

8.3. Discussion of other works on n + 4 systems

In a series of papers, Guo (1980 a, b and ¢, 1981, 1984) and Guo and
Cai (1982) discuss several properties of the n + 4 diagrams. Kujawa,
Dunning and Eugster (1965), Kujawa and Eugster (1966) examine the
case of unary 1 + 4 systems, Roseboom and Zen (1982) also discuss
binary 2 + 4 systems. These contributions will not be commented upon
here in detail. One of the important conclusions common to these papers
and to others dealing with the same matter is that for k = 4, it is no
longer possible to depict all phase relations within a single closed net
(and corresponding polyhedron) as in the case of n + 3 systems. This
result is clearly understandable in the affigraphy approach. For k = 3 the
structure that depicts the phase relations has its meaning in a three-
dimensional space. For k = 4 the corresponding structure has its
meaning in a four-dimensional space that is no longer representable
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without loss of information in a three-dimensional space, nor a fortiori in
a two-dimensional space. Several intersections or projections in lower
dimensional spaces are needed (e.g. four 1D, or 3 2D, or 2 3D
representations). One may for instance imagine to cut the four-
dimensional affigraphy by two three-dimensional spheres contained in
two perpendicular three-dimensional hyperplanes; by projecting the
obtained structures onto two-dimensional planes as is done with three-
dimensional polyhedra, one thus obtains pairs of associated closed-nets.
Guo (1980b) also uses « complete systems of closed nets» or
polyhedra with two-phase vertices that can be understood in the
affigragphy frame; in the second example, polyhedra indeed correspond
to an affine representation of the affigraphy where vectors A? -A? give
rise to points by intersection with a three-dimensional hyperplane. This is
another way with respect to that exposed in Sect. 7 to obtain an affine
representation of the affigraphy by cutting lines defined by pairs of
extremity of affigraphy vectors.

The approach set forth in sect. 8.2. may help understand the classes defined for k = 4
diagrams by Usdansky (1987). From the affine representation of affigraphy for k = 4, it
is easily shown that a singie class of transposition operations in the sense of Mohr and
Stout, 1980, (i.e. a geometrical transformation allowing to move from one type of
diagram to another, cf. Sect. 14 on « potential solutions ») is not enough to define all
the possible diagrams. For each type of intersection with an hyperplane, one can define
a set of diagrams by rotating the two-dimensional intersecting plane around the n + 4
apex polyhedron defined by the affinity points in the three dimensional space. If the
intersecting plane goes inside the polyhedron one obtains the points corresponding to
another polyhedron (cf. Fig. 36; if the plane is inside the polyhedron, the change of the
stability of the intersecting point of the two-dimensional plane with the edges of the
three-dimensional polyhedron is equivalent to change the position of the hyperplane
with respect to the basic vectors, the inversion of any vector is always possible). So
one only needs to rotate the plane outside the polyhedron and equivalence classes may
be defined by the different possible starting polyhedra. Provided the intersecting plane
is outside the polyhedron, the points of intermediate stability level do not change their
stability level when the intersecting two-dimensional plane is rotated (Fig. 38); these
sets define equivalence classes having such property (invariance of intermediate
stability level) in agreement with the resuits of Usdansky (op. cit.).

The works of Provost, Lépine and Vielzeuf (1992), Lépine, Provost and
Vielzeuf (1992), Guo (1980 a) treat the univariant stability sequences or
rather successions for n + 4 systems and are in agreement with the
results presented so forth. The so called fundamental theorem of Guo
(1980a) is understood in the geometrical representation of Sect. 8.1.
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This theorem states that the stable line portion exists only once and is
either comprised between the two stable invariant points, either semi-
infinite; for the same reason, the number of stable invariant points on a
line is at most equal to two. This can be generalized. A stable portion on
an invariant line corresponds to all affinity vectors positive; this can
occur but for one combination of the vectors. On the contrary a singly
metastable portion occurs when one vector among the k - 1 defining the
line is negative; this may occur k - 1 times. And a portion whose stability
level is p, may occur for CR4 combinations of the vectors. So the
maximum number of occurrences of the p-stability level portion on a line
is Ck-1. The matter is that a p-level metastable portion is graphically
represented by only one type of line whereas it may be defined by CR_4
different vector associations. The above conclusion on the stable line
portion holds for the highest (k -1)-level metastable portion which may
also occur once. Inspection of Fig. 34 and 40 for k = 5 show that the
above maximum numbers are confirmed; the actual numbers are lower
than the maximum values; in the linear approximation of the paper (no
curved lines nor closed loops) an univariant line in the corresponding k -
1 dimensional space can encounter but a definite number of times, and
lower than the upper limit, the sectors corresponding to a specific
number of negative vectors. This number of times is not determined
here.

8.4. n + 5 systems

Affigraphy approach still permits to gain visual information on n + 5
diagrams. In n + 5 systems, the univariant lines are obtained by the
intersection of four-dimensional hyperplanes with the two-dimensional
(P, T) plane. The hyperplanes may be represented by affine sections in
a three-dimensional space, defined by four points settling a tetrahedron.
The three-dimensional space contains the univariant line, but not the
two-dimensional intersecting plane. The univariant line cuts the four
faces of the tetrahedron in four points. The stability of the intersecting
points and of the intermediate portions of lines are determined according
to similar rules as previously. Two examples are given in Fig. 39A and B;
all the possible tetrahedra obtained by the intersection of four vectors in
a four-dimensional space by a three-dimensional hyperplane, are not
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represented here, neither all the possible ways to intersect them by
lines. The synthesis of the possible univariant lines is given in Fig. 40; all
the possible successions are represented. In order to find them, use may
be made of the symmetries of the problem as exposed below in Sect.
8.6. The stability successions of Fig. 40 together with the list of
corresponding vectors with their signs are listed in Table 3. This list of
stability successions for univariant lines in n + 5 systems has not yet
been given in the literature.

8.5. Examples of thermodynamic degeneracies for k = 4, 5 systems

One can use Fig. 33A to construct different examples of thermodynamic
degeneracy for k = 4; first, the (P, T) plane contains the intersection of two planes
belonging to the hyperplane considered for the chemical reaction univariant line.
Line A; may thus cut vector (B) and invariant points (AB) and (BC) will merge as
illustrated in Fig. 41A. The corresponding invariant point will be termed (B). Next
step is the merging of (B) and (A -C) when A contains Q. In these operations, the
corresponding stability changes on the univariant line are obtained by connecting
the extreme portions of the non-degenerate case as given by Fig. 34. Similarly, one
can use Fig. 39A to construct cases of thermodynamic degeneracy for k = 5; A} may
cross the edge (B)(D) of the tetrahedron, and points (ABD) and (BCD) will merge in
(BD); subsequently A; may contain (B), and (BD) and (AB-C) will merge in (B) (Fig.
41B). Next step is the merging of (B) and (-ACD) when the line contains Q. This
cannot be represented on the affine intersection of Fig. 38A where Q is lacking. All
the possible stability changes for this type of degeneracy are obtained by use of Fig.
40 where 1, 2 or 3 intermediate portions are suppressed. In these cases of
thermodynamic degeneracy, the notations of the points could be modified as
suggested in Fig. 41C; one possibility would be to define composite invariant points
gathering the underlying ordinary points. Hyperinvariant point Q itself gathers all the
types of invariant points.

8.6. Stability successions on n + k system univariant lines

The previous method to determine stability successions (or '
« sequences ») on univariant lines may be generalized to any system for
arbitrary values of n and k. As a rule, the univariant line is defined by the
intersection of a k - 1 dimensional hyperplane (k - 1 vectors) by the (P,
T) plane. The succession of points correspond to different sets of k - 2
vectors among the k - 1, and reflect the intersection with other
hyperplanes defined by other sets of vectors, but sharing each k - 2
vectors with the whole line vector set. In order to find the possible
successions, one only needs to know one of them. The other ones are
obtained by use of all the symmetries concerning the relevant k - 1
vectors. |
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Rules correlate the changes of labels for points and line portions on
univariant lines; they have been partly exposed so far and it is necessary
to state them exactly (Fig. 42 ). a) The label of a line portion is defined
by the union of the labels of the limiting points. b) At each crossing of an
invariant point, the vector of the line portion not included in the definition
of the point changes its sign in the new line portion. c) As a
consequence, candidates for next invariant points to a given point on a
line may be proposed. They are k - 2 in number, because one must
subtract to the line portion vector set, any of the k - 1 vectors, but not the
one already subtracted in the previous point.

Let us suppose that the succession where the stability of the different
invariant points increases or decreases monotonicaly by steps from the
most stable point (stability 0) to the least stable (stability k - 2) is always
possible. As a proof, one can consider one one-dimensional line,
considered as the intersection of the (P, T) plane with one reaction
hyperplane; this line is supposed at first to contain the hyperinvariant
point Q and to cross the affigraphy from the region where all the k - 1
vectors of the hyperplane are positive to the opposite region where they
are all negative. If now the intersecting (P, T) plane is moved a little
away from Q, then k - 1 points will appear corresponding to intersections
of groups of k - 2 vectors with the univariant line and the stability levels
of the points will decrease by steps. The proof is complemented by the
actual construction of such a succession below. The determination of a
set of possible labels for this starting univariant succession may be done
as follows. First choose a set of all positive letters, k - 2 in number, for
the first invariant point, for instance

ABCDE..MN
so that letter O is omitted from the k - 1 set defining the line; then by
substituting -O to any of the k - 2 letters, for instance here to M, we

obtain next point on the line

ABCDE N-O

54




and again we can now enter -M in the place of any letter for instance N
giving

ABCDE -M-O

for a possible neighboring point on the line; and again till all the vectors
are negative so that the requested succession with progressive decrease
of point stability levels is obtained.

Starting with such succession, we can now operate all the possible
symmetries of the problem. The change of the sign (or inversion) of the

vectors in the starting succession one by one will lead to k - 1 new
successions, then the inversion of vectors two by two will lead to Cg_;

new successions. And so on, the inversion of p vectors will lead to CR_;

new successions. At last the inversion of all the vectors will lead to one
another succession. The total number of successions will be

N=cQ_y + CP_4+...4+CP_4+...+Ck]

where the first and last term are equal to one and refer to the first and
last succession. According to the binomial Newton formula, N is equal to
2% this value was given through another reasoning by Lépine, Provost
and Vielzeuf (1992). These authors set forth a selection « stability rule »
that allows to extract the admissible stability successions from all the
« conceivable sequences » (in the present sense of succession) also
defined in their work; the great combinatorial number of possibilities
renders the task difficult. In the present approach, the variety of the 2k'1
successions is simply recovered by the group of symmetries of k - 1
vectors in the affigraphy. |

8.7. Determination of parageneses in affigraphy domains

So far, invariant points and univariant lines have been constructed by
intersections of groups of k - 2 and k - 1 affigraphy vectors by two-
dimensional planes. Next step is the construction of di-variant domains
in the (P, T) diagrams, by the intersection of polyhedric cones, defined
by k affigraphy vectors, with two-dimensional planes. The two-
dimensional domains in the (P, T) diagram are defined by groups of k
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lines or hyperplane footprints, each defined by a group of k - 1 affigraphy
vectors in the k set of the cone. The knowledge of the k lines indicates
the possible parageneses, and the position of a point in the two-
dimensional diagram with respect to these k lines indicates its stability
level. In order to know the stable parageneses, one needs to determine if
the point of interest in the two-dimensional diagram is inside a stable,
finite or semi-infinite, polygon constructed with the k lines. All the
possible parageneses accessible to one point of the (P, T) diagram for
different chemical compositions are determined by considering its
position with respect to all the possible sets of k lines of the diagram
(provided the definition of the lines in terms of absent phases is kept).
The total number of possible parageneses is CX +k but, generally, not all
of them are stable together.

As a generalization of the stability successions along univariant lines,
the knowing of the different stability levels of a phase basis in the
different domains limited by a single set of k lines, defines what we can
call a « two-dimensional stability pattern ». The metastable phases are
obtained in the domains limited by metastable portions of the univariant
lines. In order to find all the stability patterns that may be obtained for a
given set of k lines, a similar method to that used to find all stability
successions on univariant lines may be taken. The procedure merely lies
on the systematic inversions of the affigraphy vectors defining the lines.
Similarly, as an extension of the reasoning on the stability successions
on univariant lines, the number of divariant domain stability patterns is
2" because the symmetries bear on k vectors defining the different
divariant domains and notk - 1.

The k lines of a given k absent phase set cone define several types of
domains limited by two, three ..., k lines. These domains may be open, or
semi-infinite for two lines and more, they may be closed for three lines
and more, defining polygons ranging from triangles to k-apex polygons.
Guo (1984) stated through a different reasoning that for a n + k
multisystem the (P, T) domains may be up to k-apex polygons. The rule
may be stated that for a given k-polygon, k stable invariant points at
most may appear together. The total number of types of divariant
domains in (P, T) diagrams fork > 2 is 2(k - 2) + 1 = 2k - 3 because each
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k-apex polygon is open or closed and the two-lines « polygon » is only
open and counted once. In the case k = 1 there is only an univariant line
dividing the plane into two parts; the number of each type of open of
closed polygon is not discussed. In the k absent phase set of lines, any
two lines suffice to define the k absent phases and so the corresponding
paragenesis.

Examples of stability patterns may be found in the preceding figures.
For k = 2, sets of two lines must be inspected. The determination of
phase associations is merely obtained by looking at the names, in terms
of absent phases, of the univariant lines defining a given convex cone.
For k = 3, the 2° = 8 possibie patterns are given in Fig. 43. For k = 4, Fig.
44A gives the position of one point with respect to four lines. The overall
« conic » domain is defined by four lines and six points limiting one
closed and one open four-line domains, two closed and four open three-
line domains and three open two-line domains. Fig. 44B give the sixteen
possible stability patterns; the stability signatures (in terms of absent
phases) of all the varieties are given only on some of the examples of
the figure. When one line is crossed, the stability level of the
paragenesis is changed by one, when two lines are crossed at a point,
the stability changes by two.

9. THE SCHREINEMAKERS' RULES

9.1. Historical remarks ‘

Affigraphy approach may be applied to the Schreinemakers rules.
These govern the qualitative or topological properties of the
arrangements of invariant points and univariant curves in the phase
diagrams. The rules were derived by Schreinemakers (1915-1925) by a
systematic exploration of the elementary algebraic relations between the
compositions of phases and overall chemical systems, and the writings
of the chemical reactions between the phases. Contrary to what is
sometimes thought on the subject, this author did not directly consider
the geometrical properties of the intersections of the free energy
surfaces of the different mineralogical assemblages in the (G, P, T)
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space; he rather proceeded by simple algebraic eliminations of variables
between relations. No use of matrix relations was made; entropy and
volumic changes were sometimes utilized to precise the statements. On
several occasions, Schreinemakers stressed the duality between
composition and (P, T) diagrams. However, because the dimensionality
differences, this author could not go further. it is not possible to re-
examine all the Schreinemakers work. We will restrict to the most
important rules summarized in his review paper by Zen (1966a); we will
discard the matter dealing with « bundles » of lines around invariant
points (« pencil theorem » etc.), and that dealing with phases of variable
composition (see some remarks in Sect. 12). Some rules are discussed
in other sections of the paper, on degenerate systems (Sect. 11),
stability sequences (Sect. 5, Ostwald step rule) and so on. Many other
principles on the structure of phase diagrams have been stated (e.g.
Zhao, 1983, Hillert 1985 etc.; see also those on n + 4 systems, Sect. 8).
In addition to the 1915-1925 series, other papers have been written by
Schreinemakers on chemical system analysis; they will not be
commented here.

9.2. Morey-Schreinemakers' rule

(Zen, 1966a) refers then to the reactions around an invariant point
when the system is locally restricted to k = 2; this is generally the point of
view of Schreinemakers himself. Each of the reactions may be labeled
by an absent phase, written between brackets; the M.S. rule states that
the divariant assemblage where the two phases Pi; and P, are lacking,
noted (P, Pi), is bounded by the curves (Py) and (Py). This is ciearly
the case in the affigraphy where, for k = 2, the domain where phases P;
and Py, are lacking is the conic convex set defined by the affinity vectors
(Pi1) and (Py); this may be generalized to the k dimensional case where
the n phase (k lacking) assemblage (P, ..., Pk) is the convex cone
bounded by the k affinity vectors (Pi)... (Pi), Fig. 45. The number of
affigraphy vectors defining a cone may be arbitrary.

9.3. Overlap rule

Following the preceding rules and still for k = 2 where a single invariant
point is considered, the overlap rule states: if phase P; is present in a
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domain of the diagram, then the curve (P)), is contained (or overlapped)
in the domain. At this first step, no matter whether the positive or
negative part of the vector is considered. In the affigraphy framework, it
is clear that the domain that contains P; does not exclude P; and so
contains vector (P;): otherwise vector (P;) would be at the boundary of
the domain. In the case k = 2, the univariant line coincides with the
affinity vector and the overlap rule is demonstrated. This may be
generalized for the vectors in the k-dimensional frame, Fig. 46. This
result may be rendered more precise in connection with the composition
of the system. In a given affigraphy domain, several co-bases are
accessible depending on the overall composition; each is defined by a
convex set of positive affigraphy vectors. Let a first convex set of k
affigraphy vectors be considered where affigraphy vector (P;) is not
included, so that P; is a possible phase of the domain; if however another
convex set may be constructed where (P;) is-implicated, then P; is not
present for all compositions in the affigraphy domain. In order it is so,
one must not be able to construct a positive convex set with (P;) and k - 1
other vectors of the starting set. This is so provided the negative part of
(Pi) is inside the domain, and phase P; is present in the domain for all
possible bases. The Hillert rule discussed below results from the same
property.

9.4. « 180° rule »

In a two-dimensional (P, T) diagram with a single invariant point, the
different univariant curves around that point are labeled by the names of
the absent phases (P;), (P;) and so on. The « 180° rule » discusses the
angles between neighboring lines and states that the angle of any sector
where phases P; and P; are lacking, and bounded by curves (P;) and (P))
is less that 180°. This rule is a direct consequence of the convexity
property of previous Morey-Schreinemakers’ rule. It may be generalized
in the k-dimensional framework. Let us inspect again C and R matrices.
First, by convenience, let the coordinates in the chemographic matrix C
be normed to one; i.e. the sum of the coefficients of each column is
equal to one; for instance in
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A B C D E F
A 1 0 0 aap aaE aar
B 0 1 0 @8p @k  apF
C 0 0 1 8cp  8ce  Acr

one can norm with
aap + agp + acp = 1
and the same for the other columns of C. For R, we will then have

A ® © @® () (F)

(D) | -aao -agp -acp 1 0 0

(E) | -aae -8BE -8cE 0 1 0

(F) | -aar -8gF -8cF 0 0 1
So

(A)+(B)+(C)+(D)+(E)+(F)=0

and the sum of the affinity vectors is equal to zero. Thanks to coordinate
changes, any hyperplane may be defined by k - 1 basic affigraphy
vectors. The coordinates of the n + k R-matrix column vectors (some to k
- 1 of them may belong to the above set), cannot be all of the same sign,
corresponding to their being on the same side of the hyperplane,
because it would violate the above relation. This is true, whatever the
value of dimension k, and whatever the number of coordinates that are
chosen. This gives the proof of the 180° rule; for k = 2, the hyperplanes
and so the chemical reactions, are vectors, as ordinary affigraphy
vectors are; in their disposal around the single invariant point, they
cannot all be on the same side of any line, and this would give angles
greater than 180°. As a whole, the generalized rule may be stated in the
form (Fig. 47). « the n + k vectors of the affigraphy do not have all their
positive parts on the same side of any basic hyperplane ». Several linear
varieties, including hyperplanes, may be constructed on subsets of the n
+ Kk vectors, and the previous principle rules the orientation of these
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varieties with respect to the starting hyperplane. When the intersection
by a two-dimensional plane is considered, the plane may be computed
as contained in a set of k - 2 hyperplanes; not all the n + k vectors will be
on the same side of the hyperplanes, and the invariant points of the
diagram cannot be all of the stable type.

9.5. Univariant scheme

The u. s. is another consequence of the properties of chemical
reaction matrix R. This rule deals with the correspondence between the
arrangement of univariant curves (in the case k = 2) labeled with
absent phases and the writing of chemical reactions in the system (see
also Morey and Williamson, 1918). For instance in a three component
system, if reaction noted (B) is written A + C = D + E, then the curves
(A) and (C) are on one side of curve (B), and curves (D) and (E) are on
the other side around the invariant point. Let us suppose that the
restriction of matrix R to two dimensions (k = 2) is written in the basis

(A) (B)

(A (B) () (@) (E)
wl1 o 1 A -1
(B)

where the second line is not written: reaction (B) where B is absent is
given by the first line of the matrix and reads like written a few lines
above. This writing expresses in the same time that the coordinates of
the vectors along the first axis are such that (A) and (C) necessarily lie
on the positive side and the other (C)and (D) on the negative side, so
they are on both sides of the other coordinate axis (B) (Fig. 48). This
resuit can be generalized to the disposition of the n + k vectors in the k-
dimensional structure of the affigraphy: if one chemical reaction reads

AirA+..=B{+B.+ ...

where the absent phases are C,, C,, ..., C«1, then vectors (A,), (Az),... lie
on one side of hyperplane {(C1) (C) ... (Cx1)} and vectors (B4), (B2), ...
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lie on the other side. By duality, a similar rule holds for the position of the
phases with respect to chemography hyperplanes; these hyperplanes
may be considered as « reactions » between absent phases, i.e.
between affigraphy vectors (see Sect. 10 below).

Through appropriate generalization and definition of vectors for entropy
and volume, the univariant scheme may be considered as an expression
of the Le Chatelier moderation principle. The volume and entropic effect
may be written in the chemical reaction itself in the form A; + Ay + ..+ V
=By + B,+ ...+ S where V and S are written on the side of the reaction
where an increase of volume and an increase of entropy is observed
(there are four possibilities depending on V and S being on the same
side of reaction or each on one side). If these new components are
accepted (see further discussion in App. A3), the u.s. allows to change
from the point of view of the writing of the reaction to that of the position
of the corresponding univariant line in the intensive (P, T) parameters
space. In the above reaction absent volume vector, (V), corresponding to
P axis, will be on the same side of the line as vectors (A), (Az) and so
on, whereas absent entropy vector (S), corresponding to -T axis, will be
on the other side. This may be expressed by saying that, by increasing
the pressure, the system moves in the direction of the absence of
phases A, Az..., i.e. in the direction where B;, B, ... phases develop; the
reaction proceeds in the direction where more dense phases, that
« consume » pressure, are formed. Similar statements may be given for
the entropic/temperature effect, or also to the effect of adding new
amount of one phase on one side of the reaction. The Clapeyron
relations are quantitative statements related to the preceding ones (see
again App. A3).

9.6. Changes of phase assemblage stability level when crossing points
and linear varieties; generalization of the « fundamental axiom »

In the k-dimensional frame constructed on the n + k affinity vectors,
different changes occur for the signs of the basic vectors, depending on
the type of the variety that is crossed. When a path crosses the invariant
hyperpoint while staying in a k-dimensional domain, all the sign of the k
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vectors bounding this domain change; when crossing the hyperpoint
while belonging to an hyperplane, the corresponding k - 1 absent phase
vectors change their sign. The several possibilities to cross linear
varieties of dimension p while staying in a linear variety of dimension g
are indicated in Table 4. The number of affigraphy vectors that change
their sign in this operation is indicated.

The cases of interest for the two-dimensional phase diagrams are: 1)
the crossing of an invariant point while being along an univariant curve;
in this case k - 2 vectors are crossed along a variety of dimension k - 1.
Then one vector changes its sign as discussed in Sect. 8. 2) The
crossing of a chemical reaction (k - 1 dimensional hyperplane) while
being in a k-dimensional domain (= two-dimensional field of the (P, T)
diagram): one vector of the k set changes its sign. Let for instance the k -
1 phases of the hyperplane be C4, C,, .... The remaining n + 1 absent
phases will be divided into two sets; set A;, A;... on one side of the
hyperplane, and set By, B, on the other side. The two sets define a
chemical reaction as discussed in previous section. A k set cobasis is
defined by the k - 1 phases in the hyperplane to which a phase is added
from the A or B group. For instance in the A group if the corresponding
side is considered. When crossing the hyperplane, the A phase will
change its sign and be replaced by a phase in the B set. So for instance
in the k-vector set (C4, C,, ...A), vector A;, will be changed when crossing
the hyperplane so that the set becomes (C4, C,,..., -A)). This means that
there must be another positive vector, for instance B;, that takes the
place of A; so that a full positive set is (C4, C,, ..., B for a new stable
assemblage on the other side (the present phases are decided by
complementation to the absent phases). Conversely, B; becomes stable
in the first collection and this is written as (C4, C,, ..., -B;). On the whole
there is an exchange of stability between A; and B; Depending on the
composition of the system, the k set may involve the different phases of
the A set and they will be replaced by the different phases in the B set.

These rules are illustrated in Fig. 49 for the case of crossing the
hyperpoint, (refer to Fig. 28 or 29 for the crossing of a point along an
univariant line; see also figures in Sect. 8 for k = 4, 5 systems) and Fig.
50 for that of crossing an hyperplane, reduced to a vector for k = 2.
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These rules may be understood as the generalization of the
« fundamental axiom » (Zen, 1966a) ruling the exchange in stability
between two assemblages | and Il when crossing an univariant curve on
the (P,T) diagram: on one side assemblage | is less stable than
assemblage 1l, and conversely on the other side of the curve
assemblage Il is less stable that assemblage I.

9.7. « Mirror image » rule

In the end, each of the preceding topological rules is respected for two
kinds of arrangements of the univariant curves around an invariant point
in a two-dimensional plane. These two arrangements correspond to each
other in a mirror (Zen, 1966a); only thermodynamic data allow to choose
among those two. This may be understood in the affigraphy framework
where the two-dimensional diagrams are obtained by an intersection of
vectors by a two-dimensional linear variety. This plane may be
contemplated from one side or the other; in other words the orientation of
the two axes in this plane is not known. The two possibilities of looking at
the plane or of orienting the axes in the plane lead to the two mirror
images, Fig. 51A.

9.8. Other rules

It is not the purpose of this paper to examine all possible « topological »
rules pertinent to phase diagrams. In the case of the reactions around an
invariant point, Hillert (1985) recalls that the number of unstable lines in
a sector indicates the total number of phases that may be obtained in the
sector. In affigraphy words, when the positive or negative part of a vector
is overlapped in a sector, the corresponding phase cannot be taken as a
boundary for a conic domain and so, depending on the composition, can
be computed in the present phases (cf. overlap rule above). This is
illustrated in Fig. 51B for a n (= 2) + 2 = 4 phase invariant point. Sector o
(0 negative part) may be obtained by two possible cones (A,C) and
(B,D), in addition to (A,B), and n + 2 - 0 phases are possible in the
sector. In sectors B1 and B2, n +2 - 1 = n + 1 phases are possible (1
negative part); in sector y only one cone is possible (C,D)andn+2-2=
n phases may be observed (2 negative parts).
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Another rule discussed by Zharikov (1961) (cf. Sect. 6.2.) states that for
k =3, a (P, T) diagram contains at least one metastable point. This may
easily be understood in the affigraphy frame: the lines of chemical
reaction matrix R represent reactions; one coefficient at least per line is
negative. In the affigraphy space, the vectors are not on the same side of
any two-dimensional plane, and, in the section by such a plane, they
cannot be cut in just one type (positive or negative) part. This precept is
of the same nature for k = 3 as the 180° rule for k = 2, and is one
expression of the generalized 180° rule discussed above. An addition to
Zharikov rule is proposed by Stout and Guo (1994); these authors state
that, in the case there is one single metastable invariant point, the
(missing) phase to which it corresponds is necessarily an interior phase
in the chemography, i.e. it lies inside the composition domain defined by
the other phases. Again, this is a consequence of the duality between
chemography and affigraphy and corresponding C and R matrices. By
transforming the R matrix back to a C matrix, the negative affinity vector
corresponding to the metastable point will give a positive vector inside
the basis of the other phases; the positive combination expresses the
interiority of the point with respect to the other phases. The « intrinsic
stability rule » of the authors (op. cit.) is another consequence of this
duality.

As a conclusion to this section, Schreinemakers rules may be
understood and generalized in the framework of the affigraphy. They are
not by themselves a property of the (P, T) space, or of any two-
dimensional space. They are more general, and are a property of the
affigraphy space, which is dual to the chemography space. They are
more appropriately stated in the k-dimensional framework. Thanks to the
intersection procedure by a two dimensional plane, for instance a (P,T)
plane, the rules have a counterpart in the two-dimensional frame.
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10. GENERALIZATION OF COMPOSITION AND REACTION
MATRICES

In the present section, some generalizations are deduced from the
duality between chemography and affigraphy. In particular, on the
chemography side, the case of phases with negative quantities of some
of the components, or the case of systems with negative amount of some
of the phases, is examined.

In the examples discussed so forth, the problems were generally
initiated with composition matrix C showing a unit sub-matrix
corresponding to a basis of the phase space; the finding of a
complementary co-basis, and the construction of reaction matrix R was
straightforward. No basis may be explicit in the starting C matrix when
the compositions of the phases are expressed by the contents in
chemical elements (not phases) a, b and ¢ and so on. By pivoting on the
phases (i.e. manipulation of the matrix as is done in linear programming,
see App. 1 and 2), or, by adding the elements as new phases, a unit
matrix may become apparent. This procedure was utilized in the
examples discussed in Fig. 20 through 22. Similarly, no basis may be
apparent in the chemical reaction matrix, for instance when it is given
independently of the composition matrix. By the same procedure of
pivoting, a basis may become apparent. In that case, and by analogy to
the composition case, one can speak of « absent elements » as
combinations of the absent phases appeared in the co-basis. In both
cases, the elements or absent elements may be pointed on the
chemography and affigraphy respectively.

in the composition matrix, some coefficients may by generalization be
negative, depending on the choice of the basic phases, and of the origin
of the coordinates. Mathematically, there is no problem for such a
representation. Some basic phases may be non physical if they have
negative amounts of some or all chemical elements. One can call
« negative phase » that corresponding to a phase with all coefficients
negative (let restrict the word « absent » to the affigraphy nomenclature).
When only some of the coefficient are negative, words « exchange
vector » or « operator » are used in the literature. A corresponding R
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chemical reaction matrix may be constructed according to the method
described in the paper. An illustration is given on an example, modified
after the example studied in Fig. 3 to 5 (see also App. 2):

matrix C:

A B C D E
Al1 o o0 A 25
B |0 1 0 4 1
c |lo o 1 15 15

where A' = - A, so that D and E have a negative co-ordinate on A'. The
new R matrix is

A) B © @d (B
Oy|1 -4 15 1 0
E)| 25 -1 -15 0 1

and when compared to the non modified R matrix, (A') takes the place of
-(A). This is illustrated in Fig. 52. If B and C were also changed into -B
and -C in the composition matrix, phases D and E would both have all
their coordinates negative (as in a chemical reaction matrix), and the
new chemical reaction matrix would have no negative coefficient (as in
an ordinary chemical composition matrix).

By generalizing this procedure, two matrices C and R may be simply
defined in duality, whatever the signs of the coefficients of the phases. In
the discussion then, on one hand, the phases will be considered as
present, and on the other, as absent. At this stage, the physical units
used in both representations are not specified. From a physical and
thermodynamic point of view, the equivalence between mass and energy
would provide some justification for such practice. In that frame,
chemography may be seen as an affigraphy for the affigraphy, or a
diagram of present phases i.e. absent absent phases. For n = 3, the
point representing a phase in the chemography is equivalent to an
invariant point of the affigraphy. It is labeled by the present phase (=
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absent absent phase) and the lines connecting this phase to the
neighboring ones may be labeled by these last phases, similarly to the
labeling of chemical reactions around an invariant point, Fig. 53. For n >
3, one cannot define invariant points in the chemography, unless a two-
dimensional intersection of it is proposed, and the « invariant points »
then correspond to sets of n - 2 phases (Sect. 13.5). Corresponding
hyperplanes connecting present phase points or vectors are
multidimensional (not mere lines) and the labeling also involves
collections of phases. In the generalized case, because of possible
negative components of the phase vectors in the vectorial chemography,
the vectors may not all cut the plane Zx; = 1 used to construct the affine
representation of the composition space. Similarly to what is done in the
affine representation of the affigraphy or in two-dimensional phase
diagrams, one may envisage to distinguish black and white points for the
phases in the chemography (a white point is used if the negative part of
the vector is concerned in the representation). One may also envisage to
cut the chemography vectors by an hyperplane defined by Ix; = -1
corresponding to negative closure.

The concept of reaction may itself be generalized to the chemographic
space. « Ordinary » chemical reactions are defined by sets of n + 1
chemography phases, and define hyperplanes in the affigraphy whose
equations are defined by k - 1 absent phases. Similarly, « reactions » (or
« co-reactions ») may be defined by sets of kK + 1 affigraphy absent
phases, allowing the writing of the equations for (n - 1)-dimensional
hyperplanes limiting the different composition domains of the
chemography. Pursuing the example of Fig. 53, one may say that CE line
in the chemography corresponds to the « reaction » (A) = (B) + (D)
where C and E are present (absent (C) and (E) are absent, so phases
are present; Fig. 53B). The equation of the line (n = 3), or hyperplane in
the general case, in the chemography is given by appropriate row of C
matrix, in the same way chemical reactions are given by R rows,
following the procedure given in section 3.4. « Backward »
Schreinemakers rules may hold for these reactions between absent
phases. For instance, if one considers «invariant point» E of the
chemography, phase A is on one side of «co- reaction » C, i.e. on one
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side of line CE, and B and D are on the other; the corresponding
equation written in terms of absent phases is thus (A) = (B) + (D). Other
rules may be derived following the same token. As usual, a reaction in
the affigraphy (or P, T diagram) indicates a possible (depending on the
composition) change in mineralogy one may observe by crossing the
reaction and changing the intensive conditions. Conversely, a « co-
reaction » in chemography indicates a change in mineralogy that may
occur by varying the composition of the system; the change is expressed
via absent phases and depends on the conditions also expressed by
absent phases (Fig. 53B).

In composition space, « exchange components» (or « exchange vectors» or
« exchange operators », Thompson, 1982A and B; Burt, 1974, 1991) have some of
their chemical composition co-ordinates negative. They are constructed by subtraction
of ordinary phases. It may indeed prove convenient (in the case of solid solutions'? for
instance) to replace one set of phases, by an equivalent set of other phases, in same
number, so that the all the original phases may be defined. For instance phases A and
B may be replaced by phases A and A - B. In the vocabulary, one may distinguish the
phases where no negative proportion appear (they define the so-called additive
components, Thompson op. cit.) and those where negative proportions appear, called
exchange vector. If several chemical substitutions are of interest, several exchange
vectors may be defined from a given solid solution end-member!8 . As a generalization
to this practice, one may define phases with no positive component at all (the
corresponding exchange would be that with a vacancy). If the same chemical
substitution exists in several minerais, the same exchange vector will appear several
times if the corresponding phases are replaced by associations of additive and
exchange components, and we are in a situation of degeneracy. Two types of reactions
(exchange or net transfer) may be distinguished depending if the exchange
components do appear or not. Exchange reactions may merely correspond to the
degenerate equilibria of the type E; = E, (where exchange components E; and E, have
the same composition) among the degenerate exchange vectors. Depending on the
values of n and k and of the number of such exchange vectors, it may appear
interesting opportunities to express some reaction as combinations of exchange
reactions only. Thompson, Laird and Thompson, 1982, derive some of these
consequences on reaction space (the use of reaction space is a priori independent on
the existence or not of exchange components, see below).

17 The description of solid solutions by such practice (see also Sect. 12 below) is
straightforward. The definition of a solid solution is of thermodynamic and not
mathematical nature: any association of phases may correspond to a solid solution
between these phases taken as end-members provided that, thermodynamicaly, the
free energy of this « solution » is lower than the sum of the corresponding free energies
of the phases. In both cases the composition of the system will be described
mathematicaly in the same way.

18 These linear operations on the phases lead to mathematical items of the same
dimension as the phases, that do not ordinarily correspond to the «reactions » or
hyperplanes of the chemography. So the labelling of the exchange components may be
done by the phases they connect to the chosen additive end-member cf. Fig. 54B, and
is of different nature from the labelling of the hyperpianes of chemography.
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Some remarks on the vocabulary on exchange components are necessary. In the
literature on the subject, the matter is presented as of possible negative
components, or of a change in the origin of the chemographic space (and a
correlative change from an affine representation to a vectorial one). Actually,
exchange components are often graphically represented as « vecfors» by the
authors whereas the other phases remain « points », However in the calculations,
exchange vectors are still on an equal footing as the other phases. All are points. If
they are different from the other phases in that they have negative proportions of
some of the chemical components, they may deserve a special iabel or name. But
the words vectors or operators are misleading because they are mathematical words
and lead one to think that exchange vectors have a different mathematical nature
from the other phases. They are not special vectors nor operators and these words
should be avoided; they may be replaced for instance by « generalized phases » or
« exchange phases ». One should also make a distinction between exchange
components and exchange phases in the same way chemical components and
phases are characterized (each of them has negative coefficients). The practice of
such components in the literature rather corresponds to exchange phases than
exchange components.

So forth, we have examined the case when some of the starting phases
may have their co-ordinates negative in the basis (« negative phase
composition »). Although it is linked to the previous one, one must
distinguish the case when we accept that the composition of the overall
system may be built by negative proportions of some of the phases
(« negative system composition »). In that second generalized frame
metastabilities may be envisaged both in the affigraphy side and in the
chemography side. The stability level of an association of (present or
absent) phases is a property of the dual or supplementary association of
phases with respect to the whole set. So the stability level of a present
phase association is given by the number of negative vectors in the
corresponding co-basis; this holds for a range of physico-chemical
conditions, i.e. for a specified position in the affigraphy. By reciprocity,
one can define a stability level for a co-basis, by the number of negative
vectors (or phases) of the corresponding basis. By extension, when
transported to a two-dimensional diagram where P and T are
combinations of absent phase affinities, one is led to speak of
« unstable » temperature or pressure. When dissociation affinity of
phase P; is such that A < 0, phase j would be more stable to enter the
basis, i.e. to appear in the list of the present phases. Conversely, when
the quantity of phase P; is such that x; < 0, negative phase j, computed in
the list of the present phases would be more stable to enter the co-basis,
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i.e. to appear in the list of the absent phases. In the first case,
metastable fields correspond to portions of space limited by one or
several negative parts of affinity vectors (k + 1 stability levels); in the
second case, metastable fields are defined in the chemography by
negative proportions of some or all of the phases in the paragenesis (n +
1 stability levels). Following the preceding ways of generalization,
stability sequences may be defined in chemography space for the co-
bases. Figures in duality to Fig. 24 through 27 might be drawn. In the
direct case, possible bases are listed for a given region of chemography,
and classified according to corresponding co-bases for a given
affigraphy region. In the reverse case, possible co-bases are listed for a
given region of affigraphy and classified by corresponding bases for a
given chemography region, according to the number of negative phases
in the paragenesis. A Table in duality to Table 1 might be written. The
lists of bases and of co-bases are known a priori. For each chemography
region -and each affigraphy region, the two lists may be examined and
signs are given to each phase in the basis and each absent phase in the
co-basis. On the whole, the list of corresponding bases and co-bases
may be given, together with two stability indices, one for the basis and
the second for the co-basis. For instance, in the case of Fig. 25,
chemography region between phases A and B and affigraphy region
between (A) and (D) are considered. The inspection of all the six pairs of
associated bases and co-bases give the following stabilities: {AB°,
(CXD)°}, {AC"(-B)(D)’}, {AD? (-B)(-C)’}, {B-C", (A}D)' }, {B-D, (A)-
C)'}, {C-D°, (A)(B)'} with stability signatures (0, 0), (1, 0), (2, 0), (0, 1),
(1, 1) and (0, 1) respectively. The number of negative vectors in one
association gives the stability level of the other part. In this example no
basis shows both phases negative because the cutting of composition
space is done by the positive closure Zx; = 1, or equivalently because no
phase is negative or has negative components at the beginning (all
vector phases are in the positive two-dimensional orthant). The unstable
extension of chemography « univariant lines » in Fig. 53A and 3
corresponds to system with negative amounts of phases. An example of
such representation of stability levels for co-bases is given in Fig. 54 for
a2+ 2 system.
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In the case a phase is replaced by the corresponding negative phase,
one would expect some direct link between the change in stability
signatures of bases and co-bases and the change in the signs of the
phases and absent phases. Isn’'t a negative amount of a phase with
negative co-ordinates equivalent to the positive amount? For a given
system composition however, when the composition of possible phases
changes, the structure of the chemography is also changed. There is a
change in the algebraic composition of the system. If phase A is
changed into -A, the cobases without (A) are not affected. So the bases
with A do not change their stability. But the others change and the
stability signatures of pairs of bases and co-bases computed for
associated chemography and affigraphy regions change selectively. This
may be seen in the example of Fig. 52 changed from Fig. 25.

When negative phases are considered as possible and distinct from the
positive ones, e.g. -A added to A, new reactions may be written, e.g. A -
C =D - B as distinct from A + B = C + D. Because the negative phases
are in a situation of degeneracy with respect to the positive ones, the
new chemical reactions will coincide with the ordinary ones. In that case,
the univariant lines must associate different types of lettering
corresponding to the different reactions for systems that may not be
compatible from the composition point of view. Conversely, if negative
absent phases are also considered in addition to the ordinary positive
absent phases, the chemography co-reactions will be augmented by new
reaction coincident with the basic ones. In that case also, different types
of letterings should co-exist for the possible lines for these co-reactions
(if a two-dimensional section is envisaged) because the affigraphy
negative absent phases are degenerate with respect to the positive
ones. In the standard cases one may choose that no negative phase is
possible on the chemography, whereas negative absent phases are
accepted on the affigraphy side; these express the different stability
levels of phase associations in the ordinary thermodynamic sense.

If the preceding generalizations are mathematically self-coherent, it
should be emphasized that the graphical representations derived from
them may not fulfill all the orthodox Schreinemakers laws. Some of the
laws are based on the positivity of all the coefficients of C matrix and on
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the consequences on the R matrix. For example the 180° rule is not
verified in the chemography for the external phases, Fig. 53A. As
another example, the chemical reactions written in such approach may
have all positive coefficients and thus one side only! On another hand,
no thermodynamic data are directly available for components with
negative coefficients such as exchange components. Affigraphy may
however still be constructed, and chemical potential diagrams and so on
may be drawn. By extension, two-dimensional sections of corresponding
affigraphies may be obtained, simulating (P, T) diagrams for systems
with components of arbitrary types. In this operation, thermodynamic
data are thus ascribed to the components. If we take the example of the
exchange component FeMg_4, a deviation from the linear equality gremg-1
= Ore - Omg Will allow to shift from the position of thermodynamic
degeneracy to that giving a possible diagram.

11. DEGENERATE SYSTEMS

The degeneracy in the chemography may correspond to a coincidence
of two or more phases for n > 2 | to the colinearity of three or more
phases for n > 3, and, more generally, to the belonging to one
hyperplane, i.e. an n - 1 dimensional linear variety, of n or more phases
in a n-dimensional chemical system. The non-degenerate phases are
called indifferent phases. With increasing values of n, and if the value of
k permits it, the several types of degeneracies for all the dimensions
from 1 to n may coexist. For n = 1 all the systems are degenerate. A
systematic discussion of degeneracies for systems withn =1, 2, 3 and k
< 3 has been done by Zen in his papers (1966a, 1966b, 1967, Zen and
Roseboom, 1972). All the types of degeneracies for arbitrary values of n
and k cannot be examined here. Some principles may however be given
on how a degeneracy on the chemography is transported to the
affigraphy and finally to the (P,T) diagram, thanks to the correspondence
between the underlying C and R matrices. This will be best explained by
examining a few examples.
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11.1. Example 1
n =2, k=2, Fig. 55. Matrices C and R for this system are respectively:
C:
A B 9] D
A 1 0 1 0
B 0 1 1 1
R:
A B © O
© -1 -1 1 0
D) 0 -1 0 1

Phases B and D coincide; as a consequence, affinity vectors (A) and (C) are colinear in
opposite directions, i.e. coincide stable to metastable, by construction of the R matrix
from the C matrix.

11.2. Example 2
n=2, k= 2; Fig. 56. Matrices C and R are
C:
A B C D
A 1 0 1 1
B 0 1 1 1
R:
A) B __© ©
©) -1 -1 1 0
D) -1 -1 0 1

In this case, phases C and D coincide; on the affigraphy, (A) and (B) coincide, stable to
stable.

11.3. Example 3
n =2, k= 3; Fig. 57. Matrices C and R are respectively:
C:
A B C D E
A 1 1 2 1 0
E 0 0 1 2 1
R:
A) B _© O (3]
B) -1 1 0 0 0
©) -2 0 1 0 -1
D) -1 0 0 1 -2

Phases A and B coincide. As a consequence, phases (C) (D) and (E) belong to the
same plane, since their first coordinate on (B) is the same and equal to 0 for each of
them. A similar example is discussed by a different method by Mohr and Stout (1980,
p. 157) with the same conclusions.
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11. 4. Example 4
n = 3, k = 3, Fig. 58. Current chemical composition and reaction matrices are

C:
A B C D E F
A 1 0 0 0 0 1
B 0 1 0 1 1 1
C 0 0 1 0 0 1
R:
A) ® (© ()] B ()]
D) 0 -1 0 1 0 0
(3] 0 -1 0 0 1 0
(@] -1 -1 -1 0 0 1

Phases B, D and E coincide so there are two associate degeneracies. The remaining
phases (A) (C) and (F) belong to the same two planes (D) = 0 and (E) = 0 (iwo
degeneracies) or other said are colinear. (A) and (C) coincide stable to stable and (F)
coincide with the metastable part of (A) and (C).

11.5. Example 5
n =3, k=3, Fig. 59
C and R matrix read respectively

A B c D E F
A 1 0 0 0 1 1
B 0 1 0 1 1 1
c 0 0 1 0 1 1

(A) (B) © ()] (3] ()
o [0 -1 0 1 0 0
E | -1 -1 -1 0 1 0
® | -1 -1 -1 0 0 1

Two degeneracies are observed in the chemography: E and F coincide, so as B and
D. In consequence (A) and (C) coincide and (A), (C), (E) and (F) are coplanar.

11.6. Example 6

n=3, k=3, Fig. 60

Two associate degeneracies are obtained: phase D is colinear with A and C and phase
E is colinear with C and B; the C and R matrices are:

o - olm

C
0
0
1

- 2 olm

A D
A 1 1
B 0 0
c 0 2

(A) ®) © (%)} B)
©®) [ -1 0 -2 1 0
€ | o -1 -1 0 1

In the affigraphy (Fig. 60B) (A) is colinear to (D) and in opposite direction, and (B) is
colinear to (E) and in opposite direction.
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On a general point of view, if there is a degeneracy on p phases in the
chemography that belong to a p - 1 dimensional subspace, there will be
a degeneracy on the remaining n + k - p absent phase vectors of the
affigraphy. These will belong to a (n + k - p - 1)-dimensional affigraphy
subspace; this can be looked as a generalization, on the affigraphy, of
the laws bearing on the univariant curves in two-dimensional diagrams
for kK = 2. For k = 3 for instance, affigraphy approach allows to
understand the degeneracy of reactions as a coincidence of two or more
different planes as illustrated above. In degenerate systems invariant
points or univariant lines may have more phase labels than ordinary
ones. However, the nomenclature of invariant points and univariant lines
need not special modification with respect‘to the non-degenerate case
(contrary to the case of thermodynamic degeneracy), because the matter
is simply of a superposition of ordinary points or lines with possible
different stability levels. It seems appropriate to represent all these
coincident points or lines, in the same way as for instance coincident
degenerate phases are represented together in the chemography. As an
example, if an additional affigraphy vector belongs to a k - 2 dimensional
variety of affigraphy vectors, it will be involved in the same invariant
points of a (P, T) diagram as the others. Actually this invariant point
represents k - 1 ordinary invariant points defined by all k - 2 subsets of
vectors taken in the k - 1 set altogether. Degenerate univariant lines may
also be considered as the case when an indifferent crossing point
between two different univariant lines degenerates into the same line
because the two corresponding affigraphy hyperplanes coincide. In this
way, it is easy to see that the different coexisting portions of degenerate
univariant lines correspond to different bases, and so to systems of
different chemical composition, that are generally non compatible. This is
a reason to keep the coexistence of the different letterings for the line
portions. If however a system of particular composition is considered, for
which the degenerate univariant lines are compositionally compatible,
the numbers of useful independent components and accessible phases
are lowered. The number of reactions and thus of stability levels may be
lowered on the univariant lines. For example, if the system composition
in Fig. 57A lies in A, the sole possible reaction in the system is A = B;
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the (P, T) diagram of Fig. 657C is composed of one single line (C)(D)(E)
dividing the plane in two domains.

11.7. Coincidence rule

This rule applies to a k = 2 restriction of a system and has been
illustrated in previous examples (Fig. 55 and 56 for examples 1 and 2). It
states that, if the indifferent phases in the chemography are on one and
same side of the variety of the degenerate phases, the corresponding
degenerate reactions will be on opposite sides of the invariant point on
the phase diagram, i.e. will coincide stable to metastable; conversely, if
the indifferent phases are on both sides on the degenerate chemography
variety, the vectors of the reaction will coincide stable to stable (see also
Schreinemakers, 1915-1925, and Morey and Williamson, 1918). This
rule may easily be demonstrated from the correspondence between C
and R matrices or between chemography and affigraphy.

Let us consider an n + 2 system (or the corresponding restriction of a n
+ k system) composed of the phases A, B, ..., M, X, Y; let the basis be
the n-phase set B, C, ..., X. Let us consider the case of degeneracy
where the n phases A, B, C, ..., M belong to the same hyperplane and
have the same coordinate 0 on X. The two indifferent remaining phases
X and Y have a non zero coordinate on X ,1 and a for X and Y
respectively. If a is positive, indifferent phases X and Y are on the same
side of the degenerate phase hyperplane; if a is negative the indifferent
phases are on opposite sides of the hyperplane. This is summarized by
matrix C:

A B C M X Y
B Ag 1 0 0 0 Ye
M Ay 0 1 0 Yu
X 0 0 0 0 1 a

The corresponding R matrix is easily constructed:
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A 1 -Ag -Ac -Am 0 0
Y 0 -YB -Yc -YM -a 1

One can easily see that if parameter a is positive the two vectors (X) and
(Y) are now on opposite direction around the invariant point, that is to
say coincide stable to metastable, whereas if a is negative (X) and (Y)
coincide stable to stable.

The generalization of this rule for k > 2 is interested in the orientation of the indifferent
phase affinity vectors in their subspace of the affigraphy. Because of the degeneracy,
they are at least one more than the dimension of their subspace q, i.e. @ + 1 in number.
If q of them define the basis in the subspace, the q + 1% left phase may have a variable
position with respect to this basis, i.e. zero to q coordinates negative. This position is
dependent on the position of the degenerate phases with respect to the indifferent ones
in the chemography, and is transported from C to R matrix.

Take as an example the case k = 3, Fig. 57A, where indifferent phases C, D, E are on
the same side of the degenerate phases A and B; vectors (C), (D) and (E) in Fig. 57B
belong to the same plane and no angle between them is greater than 180°. On a two-
dimensional intersection, the orientation of the invariant points (C), (D), (E) on the
corresponding univariant line is the alternate orientation stable - metastable - stable or
metastable - stable - metastable (black - white - black or white - black - white). On the
contrary, the reader may check that in this example if the indifferent phases were
located on both sides of the degenerate phases, the corresponding co-planar affigraphy
vectors would be oriented in a different way: the third vector would be in the positive
sector defined by the two first ones and, in the (P, T) intersection the invariant points
would be all stable (black) or unstable (white).

12. AFFIGRAPHY AND (P, T) DIAGRAMS IN THE CASE WITH
SOLUTION

If the phases possess solid solution, the obtention of possible (P,T)
diagrams by the affigraphy method is no longer easily practicable, since
the (P,T) planes depend on composition parameters, as it may be
demonstrated. However the affigraphy may still be constructed and
provide some local and global structural informations. All the problems
relevant to solutions are not studied. Three methods are presented.

12.1 Parametrization of the solid-solution vectors

The case of one phase with solid solution only will be considered; the
case with several phases having solution may easily be treated by
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appropriate extension. In the phase composition matrix C, the solid
solution may be parametrized between s end-members, so s coordinates
of one column vector depend on s - 1 parameters. After constructing
matrix R of chemical reactions, s affinity vectors will depend on s - 1
variable parameters for one and the same of their coordinates. The
affigraphy will show what is similar to solid solution for s affinity vectors;
these « solutions » have the particularity not to be independent. As an
example, a simple 3 + 2 system is described by the following C
composition matrix

A B C D E
A 1 0 0 1+a 1
B 0 1 0 2-a 1
C 0 0 1 3 1

where the two first components of D phase composition may vary when
parameter a is varied between 0 and 1. The corresponding chemography
is represented in Fig. 61A. The correlated matrix R of chemical reactions
is

A B (€) D (k)
)| 1-a a2 -3 1 0
E)| 41 -1 1 0 1

and the corresponding affigraphy is represented in Fig. 61B; two vectors
(A) and (B) have one variable coordinate on (D) axis. Their projection on
(E) axis is fixed. All the chemical reactions in the affigraphy that exclude
phases A and B, that is to say that contain vectors (A) and (B), will thus
be variable. In the general k-dimensional case, some hyperplanes of the
affigraphy will thus be variable when there is solid solution. These
results are independent of any thermodynamic data.
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The operation of intersection of affigraphy by (P, T) planes is more
complex task. The free energies of the phases are now dependent on
composition parameters by laws of the type

d =ad'(P,T) + (1-a)gd°(P,T) + RTf(a)

for a solid solution in phase P;, with two end-members 0 and 1, and with
composition parameter a; f(0)= f(1) = 0. g° and g’ may be linearized in T
and P as done before, but due to the new internal composition parameter
a, also present in the additional factor RTf(a), the planes cutting the
affigraphy will be parametrized by a. By analogy with the cutting of the
affigraphy by two-dimensional (P, T) planes, one can say here that the
total affinity belongs to a three-dimensional variety that can be
parametrized by (P, T, a); this variety is not linear since the development
of the g(P, T, a) has terms in aP, aT and so on. It is convex since the g's
are convex, and mathematical programming methods may still be utilized
(Dantzig, Johnson and White,1958). Intersection for a = constant may be
computed vyielding ordinary (P, T) diagrams. All the successive
intersections may be projected on the same (P, T) plane; families of
straight lines will correspond to the reactions involving solid solutions, or
the univariant lines will be variable on the solid solution composition as
already known. These families may define envelopes (Sect. 12.3),
corresponding to the successive stable equilibra of neighboring
reactions for progressively variable a parameter. The invariant point Q in
Fig. 61B actually represents a continuous collection of invariant points
when the composition parameter a is varied; it represents the local
relations resulting from the intersection of five reactions for given values
of the parameter, for the two of them (A) and (B) that are variable on the
parameter.

12.2 Representation of end-members

It is also possible to represent the solid solution by distinct end
members, together with the definition of the linear variety depicting the
possible compositions between these end-members. In the preceding
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example, D may be represented by the two end-members D, (for a = 0)
and D, (for a = 1) in a composition matrix as

A B C Do D4 E
A1 0 0 1 2 1
B| O 1 0 2 1 1
CLO 0 1 3 3 1

The corresponding affigraphy is constructed after the reaction matrix

(A) (B) (C) (Do) (D1) (E)
Dy | 1 -2 -3 1 0 0
Oyl =2 -1 3 0 1 0
€& [1 1 -1 0 0 1

In this approach, the affigraphy vectors may be seen as variable
between (D¢) and (D,) when a is varied from O to 1; this variation will be
linear and thus the linear variety constructed on (Do) and (D) will be
obtained. In this representation, the (P, T) plane will apparently be
independent of the intermediate compositions, provided the
thermodynamic data for the end-members are known, and a (P, T)
diagram seems to be at reach with a single intersection; but it is not so,
since any intermediate composition will need a specific (P, T) plane
depending on the composition parameter; this would increase the
dimension of affigraphy. The method may provide a first approximation to
the diagram with uncomplete variation of the composition solution.
Chemography and affigraphy corresponding to this second method are
illustrated in Fig. 62A and B. In Fig. 62C, projection has been made in
the Do, D¢ plane. The representations in Fig. 61B (first method, variable
vectors) and 62B and C (second method, representation of end
members) do not give exactly the same relations. The invariant point on
Fig. 61B allows to represent the intersections between all reactions (A)
and (B). The two collections (A) and (B;) may separately define
enveloppes as will be indicated below. The coincidence of (Az2) and
(B112) defines a singular line (Sect. 12.4). On the contrary in Fig. 62, only
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one reaction is variable; the relations between neighboring reactions on
the same continuous reaction may be more easily seen. The
correspondence between the two methods may be retrieved by
coordinate changes. Vectors (A) and (B) may be taken as defining the
basis in Fig. 61B, in which case vector (D) will be variable as in Fig. 62B
and C since the variable coordinate of (A) and (B) is the one on the (D)
axis; vector (C) is not concerned since phase D has a constant
composition in component C, nor (E) is concerned for it is not involved in
the representation bases

Another method for discussing the diagrams with solid solution is that
of using exchange components; it is equivalent to the method of end-
members but with possible negative coordinates in phase space.

12.3. Pseudocompounds

As a third method, the composition of the solid solution phase may be
approximated by a finite set of phases of differing compositions (or
pseudocompounds, Connolly and Kerrick, 1987), along the variation of
the solid solution. This is an extension of the previous method. The
number of the phases may be increased when one wants to be closer to
the solution. Basically, this procedure increases the number k. For each
pseudocompound, one can compute the possible chemical reactions in
the system. When k increases, the number of reactions also increases,
together with the number of invariant points and stability levels of all
types of possible phase associations. When k goes to infinity the
complete solution is obtained; in that case the number of reactions,
points and of stability levels is also infinite. Envelopes may be defined as
gathering neighboring stable invariant points and replace the infinite
collections of reactions by one single curve.

In order to understand the relations between individual reactions and
envelopes, it is convenient to consider first the case of a finite set of
pseudocompounds and then discuss what happens when this number
goes to infinity. Let again consider the example of Fig. 62A where
solution paraméter is a for phase D; different pseudocompounds D;, Dis;,
Di2si ... are considered when composition parameter equals i, i + &i, i +
23i... The limit of the solution will be obtained when &i goes to zero. Let
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us restrict to the five reactions (A), (B), (C), (Dis), (D:) at the invariant
point Pig,; for a 3 + 2 system. The different reactions read:

(A) Ds=Di+B+C

(B) Di=Disi+A+C
(C) Di+B=Dis+A
(Disi) D=A+B+C

(Dy) Disi=A+B+C

The coefficients are not computed. The reaction (D)) is also called R;,
and the reactions (A), (B) and (C) R'isi;, R"isii @and R, The writing of
reactions R’, R” and R’ may be obtained when that of adjacent reactions
R’s are known. The five reactions are represented in Fig. 62D. At
invariant point P.s; neighboring reaction R; and Ris meet corresponding
to neighboring compositions of the pseudocompound. The set of
additional reactions (A), (B and (C) meet at the invariant point and
respect the Schreinemakers laws. When the difference between the
neighboring compositions goes to zero (when the number of
pseudocompounds is increased) di goes to zero; the line portions joining
the P;; (where i goes to j) in the figure diminish their size and define the
seached envelope. Reactions R, R” and R’ vanish because the
coefficients of phases A, B and C go to zero; these reactions reduce to
the tautology D; = D; . In this operation the envelope may thus be
understood as an infinite collection of stable invariant points (Fig. 62E);
each represents the point of contact of individual reactions R; with the
envelope. Paradoxically, at the limit, the invariant points concern only
one reaction whereas several would be expected to fulfill
Schreinemakers laws. The paradox that other reactions are lacking at
these « invariant points » is solved by the above conclusion that other
reactions vanish. Each individual reaction R; is tangent to the envelope
and, away from it, changes its stability degree an infinite number of
times. The metastable invariant points such as all the P;; (with i= j) in Fig.
62D define an infinite number of points and stability levels. This infinite
number of stability levels cannot be represented and in Fig. 62E the
lining of the reaction tangent to the envelope is unique; but it is
continuously changing its stability. Contrary to an ordinary reaction the
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envelope has an additional degree of freedom in the variation of the
composition of the solution phase along it; the choice has been done to
keep only one stability degree (e.g. most stable: it is equivalent to say
that two different compositions of the solid solution cannot be
associated) contrary to an ordinary reaction which by itself does not take
care of the stability levels and contains all possible stability degrees. The
reaction defining the envelope is unique. The mathematical equation of
the envelope is obtained by derivating the chemical equation with
respect to the solution parameter, this is equivalent to finding the
intersection of two neighboring reactions. Each reaction for each specific
composition is represented by a straight line; the envelope is a curve
obtained by joining the adjacent stable portions as represented in Fig.
62E and going to the limit when the size of the portions goes to zero. If
we restrict the word reaction to the writing with specific coefficients, the
continuous reaction is not ordinary but generalized reaction. In the
literature on the subject, the envelope for one continuous reaction is
sometimes represented by a straight line and the individual reactions by
curved lines; this representation does not fit the straight line hypothesis
for individual reactions (cf. Sect. 12.4). Similarly to what is done for the
stable invariant portions and points, one may also join the portions of
lower stability levels and there is thus an infinity of envelopes with
differing stability levels. The complete application to solid solution
phases needs to consider the generalization of the affigraphy approach
for k— o and Hilbert spaces.

12.4. Singular lines and singular points

The structure of diagrams involving phases with solid solution and the
variation of composition along reactions involving solution is studied by
such authors as Rumble (1974), Hensen (1987), Guiraud, Holland and
Powell, (1990) among many others. The singular point analysis of Abart,
Connolly and Trommsdorff. (1992) may be understood in the affigraphy
frame. In the case of solid solutions, degenerate reactions may obtain for
some specific compositions of the solid solution. The specific
hyperplanes related to two such degenerate reactions locally coincide;,
this corresponds to the situation of so-called singular lines in the two-
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dimensional diagrams. In the general case when entropy and volume
data for the phases are considered as slowly variable, the singular lines,
which correspond to reactions among fixed composition phases are best
represented by straight lines, as said above. This is in general
conformity with the « straight line analog » hypothesis of the literature;
the singular (straight) lines are in tangency with the reactions with
variable composition phases. These last reactions are represented by
curves, obtained by enveloping families of straight lines (Sect. 12.3).
This is not the choice of Abart, Connolly and Trommsdorff (op. cit.), nor
of other authors treating this matter, where singular curves are not
straight lines, while reactions with solution phases are; this last
representation is problematic. The laws ruling the structure of invariant
points, singular points, reactions and singular curves may be understood
by considering the structure of the corresponding vectors and
hyperplanes of the affigraphy. Let us consider the previous example
where the solution is parametrated (Sect. 12.1, Fig. 61). The degenerate
reaction reads E + C = Dy, for a = 1/2 where phases A and B are absent;
this reaction is degenerate romE+C =D + A (fora<1/2)andE + C =
D + B (for a = 1/2). The other possible continuous reactions are not
considered here; they fall out of the composition range of the solid
solution. In the affigraphy, vectors (As2) and (B4,2) are colinear and with
the same direction (A and B are on opposite sides of line ED¢,C of the
chemography). The line (Ai2) = (Bir) represents in the same time the
singular curve and the singular points. The curve for the continuous
reaction is not visible because no (P, T) plane is considered. in Fig. 62
these degeneracies are not visible: because of the representation, there
is only one variable reaction at the invariant point whereas there are two
in the Fig. 61 representation.

Another example can be considered; let C matrix be:

A B C D
A 1 0 2-a 1
B 0 1 a 2

In association with R matrix:
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(A) (B) © (D)
(C) a-2 -a 1 0
(D) -1 -2 0 1

The second method of representing solid solution corresponds to C
written as :

A B Co Cq D
A 1 0 2 1 1
B 0 1 0 1 2
andRis
(A) (B) (Co) (C1) (D)
(Co) -2 0 1 0 0
(C1) -1 -1 0 1 0
(D) -1 -2 0 0 1

and the corresponding chemography and affigraphies are given in Fig.
63 A, B and C. In this example the degenerate reaction reads (A) = (C)
when composition parameter a = 0. It corresponds to absent phases B
and D: in Fig. 63B affigraphy vectors (B) and (D) are colinear for a = 0;
the degenerate reaction is common to the reactions A + B = C (D absent)
and A + D = C (B absent). The degeneracy is also visible in the second
representation (Fig. 63C) where C, is coincident with A; the three vectors
(B) (C4) and (D) are coplanar. One may cut the structure of Fig. 63C by a
two-dimensional plane and obtain Fig. 63D. The set of the lines
connecting (D) and (B) to the points of (Co)(C+) have the line (D)(B)(C1)
in common; it represents the singular line, whereas points (B) and (D)
represent the singular points.

The stability levels of singular lines needs be discussed. By itself, a singular line
has the same meaning as any other reaction in a k-infinite dimensional system; it
thus has an infinity of stability levels. In addition, it corresponds to a situation of
degeneracy in the composition of the phases of the system, and the line is common
to two reaction systems; two straight lines, each tangent to a curve, coincide in a
singular line. In this operation each of the lines still has an infinite number of
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stability degree; it may also be viewed as the degeneracy of an indifferent crossing
point (section 6.4.) into a line: in general the two lines can have less than n phases
in common, the two coincident lines are not compatible from a composition point of
view and the infinite stability levels of the lines must be considered separately. In
the literature on singular lines (e.g. Schreinemakers, 1915-1925, Connolly and
Trommsdorff, 1991, Abart, Connolly and Trommsdorff, 1992) the number of stability
levels of singular lines is not in agreement with the announced number k. For
instance the last authors indicate three stability levels for the singular line, but k is
announced to be two and there should be only two stability levels.

Actually, finite portions of the singular line can be stable only for a specific
composition of the system, as a part of a « pseudosection» (Sect. 6.5.). For
instance if the composition of the system lies in Dy, in Fig. 62A, the accessible
reaction is Dy + Dg = E + C; or if the system is in Cq (Fig. 63A), the only accessible
reaction is A = Co. In that case the whole singular line is stable; it is the only reaction
of the diagram that divides (P, T) plane into two parts. In summary, the association
of a singular line for a specific system composition and the rest of the diagram for
all compositions may be misleading.

Another application of the affigraphy approach to problems with
solution may consider the case where a new component is added in
limited amount to a system. One wishes to know how the invariant points
and univariant lines are marginally modified. In the case where solution
is possible, some of the coefficients of the composition matrix will have
lower values than in the case without solution; it is not needed to add
new components (and new lines in the matrix); the consequences of the
variation of the coefficients in the composition matrix on the variation of
the reaction matrix may easily be computed. Without changing the (P, T)
intersection, the movement of the intersecting points and lines will thus
be visible. The sense of variation of the solution composition along a
given reaction may similarly be found by considering the relations of the
different composition vectors around the running invariant points; for
example, Fig. 62C, the continuous reaction curve will be tangent to
vectors Do and D as represented in Fig. 62E. We conclude that the
solution composition increases from right to left on the reaction curve.

13. DIFFERENT TYPES OF PHASE DIAGRAMS
It is not in the scope of the paper to discuss all the possible types of

phase diagrams. In the following, some types of diagrams are briefly
reviewed in relation with the concepts developed so far.
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13.1. Four basic types of phase diagrams

Two basic types of thermodynamic variables, namely concentrations
and potentials have been recognized (e.g. Connolly, 1990). Two basic
types of diagrams are associated to these variables. The chemography
is associated to the chemical concentrations (or mole numbers); n + k
phases are located as points (or vectors) in an n - 1 (or n) dimensional
space, read as the n + k column vectors of matrix C. For each value of P
and T, a chemical potential picture may be associated to chemography;
in the n-dimensional space of the potentials p of the chemical
components, each of the n + k phases is represented by one hyperplane
whose equation is u.C = g. Each column of C gives one hyperplane, and
vector g is known because P and T are chosen; the system is restricted
to the inequality u.C < g and only parts of the hyperplanes are taken; a
convex polyhedron is defined; this limits a saturation chemical potential
hypersurface (the word « surface » or « hypersurface » is used by
extension to name the convex set defined by hyperplane portions in
preceding equation). These classical chemography and chemical
potential representations are in geometric duality: points or vectors of
the chemography are replaced by hyperplanes in the chemical potential
diagram. Another type of diagram may be constructed with chemical
potential variables; we will name it chemical potential grid (see below) in
order to distinguish it from the chemical potential saturation surface.

In the preceding sections, a new duality has been discussed; in what
was named combinatorial duality, a phase or collection of absent phases
is considered in the place of another set of present phases, in
complement to the whole set of the phases; the correspondence
between chemography and affigraphy involves that type of
complementarity. Chemical reactions or hyperplanes in the affigraphy
are defined by collections of absent phases. The so-called unitary
absent phase vectors are given by the n + k columns of matrix R; they
may be represented in the k-dimensional space of affinities, called the
affigraphy; Kk is supplementary to n with respect to n + k.

At this stage, the number of listed diagrams amounts to three:
chemography, chemical potential diagrams and affigraphy. Because of
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the above double, both geometric and combinatorial, duality, the two
basic types of variables actually give rise to four basic types of diagrams.
The fourth type of diagram is in geometric duality with affigraphy and
combinatorial duality with the chemical potential diagram. For this
diagram the columns of matrix R are expected to give equations of
hyperplanes. Such diagram is described in the literature, although its
matrix structure has not been considered: « reaction space » (e.g.
Prigogine and Defay, 1946; Thompson, 1982b), whose axes are the
progresses s of k independent reactions in a k-dimensional space. The
hyperplanes are given by the equations gT.R = - xoT defined by the
columns of matrix R; X, are the initial quantities of the n + k phases; a
limiting polyhedron bounding reaction space is defined because ¢'R > -
X, - Because of x = xg+ & = g + R'.E, relation £T.R = - xo' corresponds
to x = 0 and the hyperplanes refer to absent or completely consumed
phases. Reaction space is also considered in Ferry (1983), Fisher
(1989), Spear (1988) and Thompson, Laird and Thompson (1982); Chen
(1994) discusses the use of reaction progress for an experimental open
system where the quantity of total pervasive water is taken into account
in the calculation. In Thompson (1982b) the chemical reaction
considered are not the basic phase dissociation reactions examined in
the present paper but other independent reactions; this is equivalent
representation through coordinate changes.

It is useful to use n + k dimensional spaces to precise the geometrical
connections between all these representations (Fig. 64). Vector x with n
+ k components may be represented in an n + k dimensional space (Fig.
64A); it defines the modal space (e.g. Thompson, 1991) where the
quantities of all the possible phases are represented. Variety V defined
by C.x = C.x, = ¢ is the intersection of n hyperplanes in an n + k
dimensional space; it is k-dimensional; it is parallel to the variety V,,, C.§
= 0 containing the origin. V and V, define the null space or reaction
space; the admissible parts of this subspaces are limited by x >0 or by
£ 2 -x, with & = x - x,. Point x, is chosen as the origin in V. Limits of
reaction space are obtained by the intersection of V and the basic
coordinates hyperplanes of the modal space, or of V, with hyperplanes of
equations £ = - Xo; k independent reaction advances may be chosen as a

89




Reaction space is supplementary to the n-dimensional composition
space W (chemography) with respect to the whoie (n + k)-dimensional
composition diagram; with the appropriate definition of a scalar product,
the two spaces may be defined as orthogonal. The origin on W is x,. The
variety parallel to W and containing the origin O is W,. The projection of
the n + k unitary vectors of the whole n + k space onto W, and parallel to
V or V, yields the chemography. The projection ¢ of x on W is ruled by
C.x = ¢. The unitary vectors in n + k space are projected along the
column vectors of C representing phases in the chemography. The
projection of vector x onto the chemography is ¢ constant; vector ¢ is
also the intersection of Wy with V.

Let us consider now the n + k space of the affinities A® of all the
phases; the origin is Q (Fig. 64B). In a similar manner to what is done on
the modal space, n-dimensional variety RAT = aT is considered where k
independent affinities a are « mathematically » fixed; physically it
corresponds in fine to the choice of both parameters P and T. It is V'
(dim. n), parallel to V', RAT = 0. The supplementary orthogonal variety to
V' and containing A, is called W' (dim. k). Ao is the initial affinity vector
for the values of affinities at the beginning of the equilibrium process.
W', is parallel to W and contains origin Q. Because of the properties of
C and R matrices, variety Ry = constant and C.y = constant are
perpendicular. The admissible field of the n + k dimensional affinity
space is limited by A > 0 or equivalently p = n.C < g bounding the
subspace V' and this defines chemical potential saturation space.
Affigraphy is obtained by projecting the n + k unitary affinity vectors of
total affinity space onto W'y subspace parallel to V'. The unit vectors in
the n + k affinity space are projected along the column vectors of R
representing absent phases of affigraphy.

As a synthesis, the structural aspects alone may be considered without
taking into account the values of the coordinates. Chemography may be
considered as the projection of the apex of an n + k dimensional
hypercube and its radiating unit vectors (edges) onto an n-dimensional
variety, whereas affigraphy is the projection of such an apex onto an
orthogonal k-dimensional variety. Reaction space results from the
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intersection of the positive orthant of the n + k dimensional space with a
k-dimensional variety, whereas chemical potential hypersurface resuits
from the intersection with an n-dimensional variety. Chemical potential
hypersurface corresponds to reaction space. For each initial composition
in modal space, one reaction space is constructed containing the initial
condition point; chemography is perpendicular. Similarly, in total affinity
space, chemical potential saturation hypersurface is perpendicular to
affigraphy and contain the « initial affinity » A, (for a generalized given
set of P and T). In order to construct reaction space, one needs to know
the initial concentrations x5 which are in mathematical correspondence
with the Ay of the phases in the affinity diagram.

Total composition space may be interpreted in terms of disequilibrium:
a given chemical system is constructed by the mixture of n + k phases
before they react to reach thermodynamical equilibrium. The total affinity
space may be interpreted in a similar way thanks to some generalization;
the n + k phases are mixed together at different temperatures and
pressures so that their energies are not in thermodynamical coherence;
their chemical potential are also supposed to be fixed independently.
Remind that in the present approach at equilibrium k independent
affinities are fixed (and eventually two of them will have a physical
correspondence with P and T).

it is convenient to represent the relationships between the four basic
types of diagrams in Table 5 where the two types of duality define four
cells. The different phase diagrams and corresponding variables may
also be considered embodied in different algebraic problems discussed
in Appendix 4 and summarized in Table 6; chemography and affigraphy
are associated together in one type of problem where the global
composition of the system (vector ¢, dim. n) and the free energies of the
phases (vector g, dim. n + k; P and T are given) are known. Similarly,
chemical potential diagram and reaction space appear together as
complementary diagrams when the probiem is set in a different way; in
this case k affinities are known (vector a, dim. k) so is the complete initial
composition (vector xo, dim. n + k).
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At last, the preceding projection and intersection operations allow the
definition of other « residual » diagrams: basic vectors of the (n + k)-
dimensional composition space may be projected onto V (the projected
vectors are perpendicular to the reaction space hyperplanes) and basic
(n + k)-dimensional affinity vectors may be projected onto V' (projected
vectors are perpendicular to the chemical potential hyperplanes);
conversely, space W may be intersected with the basic (n + k)-
dimensional basic affinity hyperplanes, yielding a complementary
chemical potential surface, and variety W may be intersected with the
basic (n + k)-dimensional basic composition hyperplanes, yielding a
complementary reaction space (Table 7).

As was shown by Korzhinskii (1959), the line connecting two phases in a two-
dimensional composition diagram is perpendicular to the line that separates the two
same phases in the comresponding two-dimensional chemical potential saturation
diagram. This property may be understood more generally in higher-dimensional
representations. Let us consider an n-dimensional space where we represent in the
same time the concentrations and the potentials. Each of the n + k phase vectors given
by the columns of the composition matrix is perpendicular to the hyperplane of the
same phase in potential representation. The hyperplane Hg that contains n - 1 phase
vectors B, C and so on will simulate a joint in the chemography connecting phases B, C
and so on; it will be perpendicular to all the potential hyperplanes Hg, Hc... for each of
the phases and so also to the intersecting of any number of these hyperplanes. If they
are n - 1 in number, the intersection of potential hyperplanes will be a vector. This
vector will be perpendicular to the hyperplane Ho. In the case n = 3, in the orthogonal
affine representation, the variety connecting two phases in the chemography will be a
line; it will be perpendicular to the intersection of the two potential planes for the
corresponding two phases.

This may also be seen at the level of the equations of the varieties. In the two-
dimensional composition diagram of Fig. 6, the equation of the line connecting phases
B and C in base A, B, C is A = 0 (this equation is a restriction of the complete equation
given by one line of matrix C in the (n + k)-dimensional composition x space). In the
chemical potential saturation diagram, the line that separates phases B and C
corresponds to the equation B = C; phase A is absent (so are other phases...) and the
equation of this reaction read in matrix R shows a null coefficient for phase A. The two
lines are perpendicular.

13.2. Examples

Example 1
The foregoing (n + k)-dimensional diagrams can be represented for 3 =
1+2o0r3 =2+ 1 systems; let us discuss completely thecase n=1, k =
2 already discussed in part. The modal space is represented in Fig.
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B5A; so as variety V containing initial composition x,, and variety W
orthogonal to V at x,. The equation of V is taken here C.x = ¢ = 1
where C is

A B C
A 1 1 1

with xo arbitrarily chosen equal to (.6, .1, .3)". Due to the choice of basis
in C matrix, the global composition of the system is expressed in terms of
A phase. The whole modal space is splitted into the two orthogonal
supplementary spaces of reaction space and chemography represented
in Fig. 65B and C. The boundaries of reaction space V are the three
planes of basic coordinates; these represent the disappearance of
phases A, B and C, portrayed by lines (A), (B) and (C); in V, & = x - x,, for
B and C is considered as new co-ordinates. The chemography is here
reduced to one point, where the three unitary vectors A, B and C are
projected together with the overall composition ¢.

The affinity space is represented in Fig. 65D. When phase B is present
(and phases A and C are absent), total affinity vector lies in plane B and
its position may be variable between (A) and (C) vectors. When phases
B and C are present together, the affinity vector is along vector (A). And
so on for the other domains. Variety V' is given by RAT = RAT, = a
where R is

(A) (B) ©)
(B) -1 1 0
(C) -1 0 1

and a is (0, -.2). W' is perpendicular to V' in arbitrarily chosen A, (.5, .3,
.2). The affigraphy is represented in Fig. 65E and the intersection of V'
with the constraints A > O gives the chemical potential saturation space
in Fig. 65F.

In Fig. 65G the affinity vectors are represented in the reaction space. They represent
the admissible thermodynamic movement of the system when one specific assemblage
is considered. Let us examine how the free energy G may be increased while the
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system remains at a given point of the modal space of Fig. 65A. The gradient p is
represented with respect to the current point g so that g - p = A is represented; A is
equivalently recovered by A = 8G/6t where & is the pertinent variable in reaction
space.The gradients are also projected in a k dimensional space, such as in Fig. 65E. If
the point stays in the plane of Fig. 65A where the three phases A, B and C co-exist, the
gradient must be perpendicular to the plane if the three-phase assemblage is to be
preserved; this defines one point in the projection of Fig. 65E. If the point stays along a
line where two phases are present, the movement must be perpendicular to the line;
this defines one vector in the projection. At last, when the point coincides with one
phase, the projected admissible movement is restricted to an angular sector, limited by
the vectors corresponding to the pairs of phases that include the cumrent phase. The
admissible directions are given by the vectors of R matrix. This is another way to find
back the affigraphy from the modal space.

Example 2

Let us consider now the case n = 2, k = 1 (Fig. 66 A through F, with
same captions and operations as in Fig. 65). The matrices are not given.
The orientation of the planes and lines of interest are different from the
preceding case and lead to the different diagrams shown in the figures.
The affigraphy is limited to one point; it is the superposition of the three
affinity vectors, two positive and one negative parts are concerned; in
the section two points are represented as black, and one as white. In
Fig. 65 and 66 the total affinity vector a may be located outside the
potential saturation surface, or its co-ordinate in one basic affinity is
negative although the corresponding phase is absent. This merely
results from the choice of basic vectors for the matrices; similarly, the
system may be represented in chemography by negative co-ordinates of
the basic phases although in that case it will be physically defined by
positive amounts of other phases.

For each pair of P and T values, a change may be defined from the affinity variable to
the chemical potential variable inside the corresponding n-dimensional chemical
potential surface, taking into account a mere change in the origin defined by A=g(P, T)
- p. Prior to the cutting by (P, T) planes, each point of the affigraphy has definite values
for the k affinities of the basic reactions chosen for the representation; thanks to basis
changes, the affinities of all the reactions can be computed. For a given composition of
the system, a single basis is obtained in each domain of the affinity diagram, and the
values of affinities are determined univocally. Provided a change of the coordinates is
operated, P and T themselves may be considered as two affinities among the k of the
affigraphy space. From a vectorial point of view they should not be added to the list of
the intensive variables but rather be considered as combinations of some of them. The
knowing of P and T also allows to know the values of the chemical potentials at each
point of the (P, T) diagram thanks to the relations u = g(P, T) - A. So the (P, T) diagram
may be tabulated in affinities and/or chemical potentials for any given composition of
the system.
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13.3. Combinations of the basic type diagrams

The four basic types of diagrams or spaces may be combined in
several ways (Tables 5§ and 6; corresponding algebraic problems are
discussed in Appendix 4). Horizontal combination | associates
chemography and chemical potential diagram that both have the
dimension n; some of the chemical elements may be specified by their
quantity as in the chemography, i in number, and the others by their
chemical potential at equilibrium, m in number; the mixed type diagram (
L, €) is obtained; the dimension of the diagram remains equal to n. Such
diagrams are examined by Korzhinskii (1959; see also Meunier and
Velde, 1986). To construct them, the values of P and T must be specified
so that the g’'s are known. Horizontal combination Il is parallel to the
preceding one in Table 5; it is associated to it in the sense affigraphy is
associated to chemography. It defines a new type of diagram where
affinities and advances of reactions are associated in a k-dimensional
diagram; combination Il is in combinatorial duality with combination |.
The initial composition x, must be specified.

Other combinations of diagrams at different horizontal levels along the vertical axis of
Table 5 may be defined; the combinations cannot be of the above exchange type
because of the change in the dimension; so (n + k)-dimensional diagrams are
constructed. Combination lil: chemical potential diagram and reaction space may be
associated in an (n + k)-dimensional diagram where vector p (dim. n) and £ (dim. k) are
represented as a single vector (the 2(n + k) components of vectors g and xo must be
known). Combination 1V. similarly the association of chemography and affigraphy may
be envisaged, where composition and affinity are represented in the same diagram.
Starting with these two types of combinations, other diagrams with lower dimensionality
may be constructed by appropriate projections or intersections with (linear) varieties.
Other types of (n + k)-dimensional diagrams may be defined such as modal space
(total x is represented; this is equivalent to total £ with a shift in the origin; or also
equivalent to representing x (dim. n) + £ (dim. K)); one can imagine other combinations
depending on the origins chosen for the spaces, for instance combination x + p
equivalent to combination IV.

Vectors x and p may be both represented in the same 2(n + k) diagram like position
and velocity in mechanics. The diagrams with higher dimension than n or k may be
used to represent out of equilibrium situations and evolutions which cannot be pictured
on the projected diagrams such as chemography and affigraphy.

13.4. Affinity - composition diagrams
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In above combination number IV, an (n + k)-dimensional space is
constructed by the addition of chemography (dim. n) and affigraphy (dim.
K). The limits of the chemography regions are open out in the (n + k)-
dimensional space parallel to the k-dimensional affigraphy subspace.
Similarly, the limits between affigraphy domains are extended parallel to
the n-dimensional chemography subspace. Cells in the (n + Kk)-
dimensional space are defined. Several types of linear varieties of
dimension p + q may intersect the n + k dimensional structure; p is the
dimension of the restriction of the variety to the n-dimensional subspace,
and q to the k-dimensional subspace. Intersection by a (1 + 2)-
dimensional variety will simulate (x, P, T) or (x, A?, A?) diagrams,
intersection by a (1 + 1)-dimensional variety will simulate (x, A") or (x, p")
or (x, T) diagrams and so on. This procedure may equivalently be
understood as the operation of two separate intersections of
chemography and affigraphy hyperplanes by one univariant line. Each
intersection gives rise to a number of invariant points corresponding to
the intersection of the line with the chemography or affigraphy
hyperplanes. So invariant points along the composition axis correspond
each to n - 1 or (concentration representation) n - 2 phases, and along
the temperature (or any combination of affinities) axis to k - 1 absent
phases. These points correspond in the same time to reactions (change
of mineralogy due to change of conditions) along the composition axis
and to co-reactions (change of mineralogy due to change of chemistry)
along the temperature axis. The stability level of the reactions and co-
reactions is given once, by the intersection operation of affigraphy and
chemography defining the two co-ordinate axes. The intersection by a
monodimensional line of affine chemography and of affigraphy give rise
to n - 2 stability levels for the invariant points of the horizontal axis and k
- 1 stability levels for the invariant points of the vertical axis. So there are
a priori (n - 2)(k - 1) stability levels for the « invariant points » of the
whole affinity-composition diagram. By expanding in the two-
dimensional diagram the limits defined by the points, cells are defined. If
two neighbouring vertical or horizontal cells have the same bases (and
thus cobases), it is not useful to represent the reaction or co-reaction
limit between them; so the lines will stop at the previous neighboring
intersection point. Taking into account the possible interruption of lines
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the number of different points in the diagram then amounts to 6(n - 2)(k -
1). '

The list of all the bases and all corresponding cobases may be written
for each cell together with the stability signatures. Each base is followed
by the associated cobase, between brackets; the number of negative
vectors in the base or cobase give the stability level of the cobase or
base. The full understanding of co-reactions needs to adopt the
generalized case when negative amounts of phases may obtain in
composition space. When comparing the list of signed bases and co-
bases in two neighbouring cells, reactions and coreactions are
evidenced. A reaction induces an exchange in the stability of two bases;
a co-reaction induces the exchange of stability of two co-bases. If we
decide that negative amounts of phases are forbidden, only stable co-
bases will be envisaged and co-reactions do not appear. Degeneracies
may occur when the one-dimensional axes intersect chemography and
affigraphy along degenerate hyperplanes or intersections of
hyperplanes. Several varieties will coincide at the same point; this will
give rise to several types of lines, that will coincide, for the cell limits in
the two-dimensional diagram. Depending on the composition or
temperature range, one type of line may or may not be valid. This
problem will not be discussed here on a general standpoint.

The simplest example that can be represented in the three dimensional
space is the case of a 2 + 2 system, where composition is counted for
one dimension (affine representation). The association of chemography
and affigraphy is given in Fig. 67. The 2 + 2 dimensional cells are
represented. For an overall composition located for instance between
phases C and D, the possible bases are AC, AB, CD and BD, associated
to cobases (B)(D), (C)D), (A)(B) and (A)(C) respectively. By cutting the
structure by a two- dimensional plane (one dimension for affigraphy, +
one dimension for chemography) parallel to the chemography, planar
diagrams are arrived at. They may simulate the structure of the system at
P or T fixed. Two examples are given; intersecting planes P, and P, are
shown in Fig. 68A. The two diagrams of Fig. 68B and C are obtained. In
Fig. 68B, phases A and B are the only stable phases for all
compositions. The limits between the different cells are kept however
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because metastable associations differ. As announced above when
metastable associations of neighbouring cells are the same, the
corresponding limiting line is not represented. The list of signed bases
and cobases helps discuss the meaning of reactions and co-reactions.
As an example, one may easily write the list of bases and cobases with
their stability levels in cell 1 of Fig. 68B : {AB°, (CD)%, {AC', (-BD)?,
{AD?, (-B-C)%, {-BC', (-AD)"}, {-BD? (-A-C)"}, {-CD", (-AB)'"}. In cell 4, it is
{AB", (CD)’, {AC', (-BD)%, {-AD?, (-B-C)'}, {-BC', (-AD)'}, {BD?, (-A-C)%,
{CD', (-AB)}. In Fig. 68B the co-reaction called « D » (D present)
limiting cells 1 and 4 governs the exchange between cobases (-B-C)’, (-
A-C)’, (-AB)’in 1 and (-B-C)°, (-A-C)', (-AB)" in 4.

Fig. 68C corresponds to intersection with plane P,; phase association
is variable depending on the composition range and depending on the
magnitude of the intensive parameter along the vertical axis. The
domains are separated in several sub-domains corresponding to several
stability sequences as in Fig. 68B.

This type of approach pictures the connection between all the (u, x)
diagrams of a given system when the temperature is varied. The stability
sequences for all sub-regions of the diagram are understood in the same
frame. Intersections of the (n + k)-dimensional space by varieties that
are not paraliel to the chemography may also be envisaged, simulating
variations of the potentials with the composition (which is the case when
there is solid solution). The projection of the complete n + k dimensional
structure along several directions may also be envisaged.

Diagrams with solidus and liquidus curves for solutions

The depiction of temperature composition diagrams with solid solutions
may also be envisaged by use of pseudocompounds in the sense of
Sect. 12; number k increases, co-reactions are more difficult to write as
they involve more and more absent phases. The representation with
pseudocompounds helps understand the structure of the diagram when k
goes to infinity and then simulates the complete solution. Composition-
temperature diagrams with liquidus and solidus for a solid solution are of
that type, Fig. 69. The composition is restricted to n = 2 and the solid
solution is described by a finite set of pseudocompounds h, i, j .,k and so
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on. Each of the pseudocompounds is degenerate into two phases, the
liquid and the solid, e.g. i' and i° for compound i. Different cells are
represented in the figure. Temperature is quantified in the vertical axis
because of the different possible reactions. In that approach, all the cells
are two-phase domains. This is not the case for that type of diagram in
the literature where usually two types of domains, one-phase (solid or
liquid) and two-phase (solid + liquid) domains are considered. Here we
see that the domains usually considered as one-phase (solid or liquid)
may be considered on an equal footing as the other two-phase solid +
liquid parts. They merely represent the stable association of two infinitely
neighbouring compositions for liquid or solid, whereas an infinity of other
more metastable associations could be considered in the same time. In
the ordinarily called two-phase region the stable associations gather
phases more distant in the composition axis. One phase is liquid on one
side and solid on the other side. For example, in the cell between j and k
of the (i* + m')° domain (Fig. 69) the association of i + m' is more stable
than any combination of two solids or two liquids or a solid and a liquid
with indices lower or equal to j and greater or equal to k. Similarly in the
liquid cell (m' + n)°, this association is more stable than any other
association of liquid or solid pseudocoumpounds different from that one.
In the limit, when k goes to infinity and the number of pseudocompounds
increases, the staired curve of the diagram becomes an oblic line. This is
a limit of horizontal and vertical line segments; it is a composite line
representing in the same time a reaction (change of temperature) and a
co-reaction (change of composition).

13.5. Applications to the study of metamorphic and metasomatic
assemblages. Chemical potential grids

Depending on the problems, changes may be operated in matrices C
and R, in correspondence with geometric transformations in the
chemography and affigraphy. It may be convenient to view these
operations as changing the status of some components, in the sense of
Korzhinskii (1959) (see also Rumble, 1982). In matrix C, the total number
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of lines corresponding to independent chemical components is n. This
number may be divided into two subgroups i and m; i refers to the
number of inert components whose quantity is maintained constant, and
m refers to the number of mobile components for which no conservation
constraint holds; in that last case, constraints may be written that bear on
chemical potentials or affinities imposed by an external template. The
representation of the chemical composition of the system in the inert
frame may be obtained by the use of the reduced matrix C* obtained by
suppressing the m lines of the mobiles elements. The corresponding
geometric operation is a projection of the chemography onto the inert
component subspace and parallel to the mobile component axes. These
last elements will necessarily be computed as increasing the k
dimensions of affigraphy. This is becausen+k=i+m+k=i+Kk, and
the decrease from n to i implies an increase from k to k' where k' = m + k.
R matrix may be constructed on reduced C* matrix; it will have k' = m + k
lines and n + k columns. We can similarly suppress k lines in matrix R,
when it is constructed on the reduced C* matrix; the geometric operation
is a projection of the affigraphy onto the mobile component subspace,
parallel to the k inert components; the remaining affigraphy concerns the
m mobiles elements. These operations allow to construct several types
of diagrams. The projections of the chemography from one phase as
defined in Thompson (1982a) are similar operations (the corresponding
phase is present in all mineral associations). One can also define a
projection of affigraphy from one absent phase (the corresponding phase
will be absent in all mineral associations considered). The several types
of phase diagrams depicted in previous sections can also be viewed as
concerning different status of the components. The affinities are
considered for the mobile components, and the reaction advances for
the inert components.

In the study of metamorphic assemblages, it is often convenient to consider parts of
the whole chemical system where one of the phases and/or one of the chemical
components is suppressed; the use of corresponding modified affigraphy as just

" discussed may help to quickly visualize the effect of these operations on the
thermodynamic phase diagrams.

The study of metasomatic assemblages may benefit from the affigraphy approach. By
itself the concept of dissociation affinity A = g(P,T) - u combines the possible effect of
the variation of physical parameters P and T in a closed system (first term g(P, T)) and
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the possible variations in the chemical potentials of elements or phases in an open
system (second term p). One may thus combine the effect of the variation of physical
and chemical parameters in a single representation. In a metasomatic zoning (e.g.
Fonteilles, 1980, Guy, 1988, 1993), it is in effect more appropriate to infer that the
metasomatic fluid in the extreme zones is close to the saturation with a mineral or a
group of minerals, as given by the value of the affinities, than to specify pressure,
temperature and chemical potentials separately. Physical conditions may change
during the formation of metasomatic assemblages, but the system may still be
constrained by the presence of some specific minerals. The path followed by the
system along the zoning pattern may then be easily visualized in an affinity diagram;
parts of it obtained by projection, or intersections if some additional hypotheses are
taken as valid, may aiso be used. Metasomatism in a temperature gradient is easily
represented by this way; this is also a manner to depict chemical and thermal diffusion
together. In these representations, both stable and metastable zoning patterns may be
given. The degrees of freedom of such zoned systems is bracketed by the « phase rule
generalized to systems of zones » (Guy, 1988).

Chemical potential grids are distinct from the potential saturation
diagrams. They are obtained when one is interested to discuss the role
of the chemical potential of two mobile elements, the other elements
being inert. Temperature and pressure are fixed and their role on phase
assemblages is not taken into consideration. The composition of the
system is depicted in matrix C, where the first i lines refer to inert
components and the two last lines to the mobile components here called
D and E; for simplicity in the following, the components are directly
computed as phases and named equally by components or phases. An
affigraphy is constructed from the restriction of C to inert components.
The affinities of the reactions in the affigraphy write, for instance for
phase M,

A = g"(P. T)- ' = g"(P, T) - E 1P, T) - o®-

where the sommation is done on the n - 2 phases of the chemography
basis restricted to the inert elements (phases); in the representation
basis the p's are equal to the g's. The two additional terms refer to
mobile elements (phases) D and E. Coefficient c?" is the content of phase
j in one mole of phase M, read in composition matrix. P and T are now
fixed. K independent relations as such may be written. The elimination of
u® and pf among the k affinities gives a two-dimensional plane for the
chemical potential grid. This corresponds to an intersection of the
affigraphy, constructed on inert elements only, by a two dimensional
plane; this is similar to the obtention of (P, T) diagrams. The co-ordinates

101




-2 .
of the origin of such grids are g"(P, T) - % M g(P, T) for the k
j=1

independent absent phases; the two basic vectors of the potential grid
are the vectors ¢/5 and ¢ for the k phases j for the co-ordinates on D
and on E. Inside the different domains of the chemical potential grid, one
may represent the composition of the phases and of the system in the
inert frame, for instance by triangles for three inert components;
depending on the values of the potentials, different phase assemblages
may obtain. Such grids are used in the metasomatic literature (e.g.
Salim, 1993; Salemink, 1987 a and b, Van Marcke, 1983).

One can also combine the chemical potential of a component and P or
T to construct a (u, P) or (i, T) grid by the same method. The parameters
that are fixed are involved in the computation of the origin of the diagram
and the « mobile » ones are extracted and define the vectors of the
intersecting two-dimensional plane. Three-dimensional representations
may also be constructed for (u,u,u) diagrams or (p,u, T) or (u, P, T) or
(P1, P2, T) -two different pressures, lithostatic and hydrostatic for
example are considered- and so on: the affigraphy restricted to the inert
components is intersected by a three-dimensional volume. If k = 3, the
diagram will have one invariant point with n + 3 phases in the three
dimensional space. If k = 4 the intersection by a three-dimensional
volume will give rise to n + 4 invariant points with each n + 3 phases and
SO on.

Inert component grids. The previous method may be used to construct
dual type grids of a new kind. We have considered so forth the case of
two (or even three) mobile components, the others being inert.
Conversely, two elements may be considered as inert, and the others
mobile. Phase assemblages were represented in inert frame as
dependent on the potentials of mobile components. Conversely, one may
want to represent the phase assemblages obtained for a given range of
potentials of mobile elements A, B ... when the inert elements are varied.
The content x; for n basic phases in chemography is given by
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k=2 .
X=X +E& =X+ T D + A+ 08
=1

where Xg; is the initial content in i, §; is the advance of reaction j. The
summation is taken only on k - 2 independent chemical reactions
corresponding each to a mobile component; the two reactions
corresponding to the inert elements A and B are extracted. The
coefficients r'; are the coefficient of phase i in reaction j. The chemical
reaction matrix R is constructed (and so the corresponding
chemography) on the mobile elements; the two inert elements A and B
are involved in two additional lines of the matrix. In the composition
representation basis chosen, the x’s in the co-basis are taken zero and
the corresponding &; are equal to -x;. The above relation may be written
for the n phases in the basis. By eliminating &x and &g between the n
relations, a two-dimensional plane is obtained. The searched two-
dimensional diagram has its origin defined by Xg + £ rji&,- = Xgi - Z Mg and
the basic vectors of the (€4, £5) plane are given by the n co-ordinates r’
and r® for the n basic phases i. Equivalently, the representation may be
done in (Xa, Xs) plane where xa = - £a and xg = -g are the contents in
inert components, the unit vectors are then - ', and - r®. Such diagrams
are obtained by intersecting the chemography constructed on mobile
components by a two-dimensional plane. The interest of such diagram is
~ when the number of non inert components is higher than two or three.
Otherwise the searched phase assemblages may be read on the
ordinary chemography, with adding the information on the affinities in the
different domains such as in Fig. 8A. In the more general case when
there are at least four components, the intersecting of the chemography
by a two-dimensional plane will provide diagrams of special type. The
invariant points will have n - 2 phases; the reactions corresponding to
change in the global chemical composition of the system, the co-
reactions, will have n - 1 phases. These reactions are different from the
ordinary reactions. Inside the composition domains in inert frame, one
may represent the phase assemblages obtained for different ranges in
the values of the potentials of the mobile elements.

The interest of such diagrams may be found again in the study of
metasomatic rocks. Instead of studying the influence of the potential
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conditions on the mineralogy, for a given composition in inert elements,
one may study the influence of the inert composition on the mineralogy
for a given range in potentials. In a given geographic field, several
starting materials may co-exist, because of heterogeneities in the rocks,
enclaves and so on; at a given locality within an open system, all
materials may suffer the same intensive conditions defined by potentials
of mobile elements and thus give rise to different assemblages. This
situation may be depicted by the previously defined (inert, inert) diagram.
This point of view is dual to the study of different zones developped on
the same starting material when intensive conditions are varied. When
using the potential grid, the potentials of two phases are fixed, and their
quantities are supposed to adjust themselves; the other quantities are
fixed, the corresponding potentials adjust. In the dual representation, the
quantities of two inert components are fixed, their potentials follow; the
other potentials are fixed, the quantities of corresponding phases adjust.
The dual equivalent of the pseudo-sections is here « co-pseudo-
section » for a given set of potentials for the mobile elements.

Other types of chemical potential grids may be obtained by intermediate projections
or intersections (by p' = constant = ¢' for instance) of the (modified) affigraphy, in the
same way several composition diagrams may be obtained from a complete
chemography; the intersection of affigraphy by different hyperplanes may be used to
predict the influence of intensive parameter on the structure of phase diagrams; Powell
& Sandiford (1988; see also Hensen, 1986) study the influence of a0, on the topology
of (P, T) phase diagrams; the effect can be understood by cutting the affigraphy at
variable a0, values before cutting by (P, T) or (u,n) planes, showing how the structure
of the resulting (P, T) diagram effectively depends on a0.,. The links discussed so forth
between different diagrams show why the chemical potential diagrams may have the
same structure as (P, T) diagrams as noted by several authors (e.g. Burt, 1972).

13. 6. (G, P, T) space

The relations between reactions in (P, T) diagrams has often been
studied for one component systems as reflecting the relations between
Gibbs Free Energy planes in (G, P, T) space. This is so-called Gibbs
method (Gibbs, 1876, 1878). When the system possesses several
components, the method is no longer directly practicable because the
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free energies of the phase associations are variable with the composition
of the system and the proportions of the phases. Families of planes may
be defined by all the possible linear combinations of the g's of the
individual phases of the system, when the complete range of chemical
composition of the system is explored. The correspondence between the
two approaches, (G, P, T) space and affigraphy, is based on the fact that
in the (G, P, T) space, the projections onto the (P, T) plane, of the
intersections of the composition dependent G surfaces, are invariant. Let
us prove this statement.

Along each univariant line in (P, T) space, n + 1 phases are stable. So
there are Ch,1= n + 1 possible n-phase associations in contact with one
another along the line. For a given composition of the system, all these
associations have the same g. The n relations thus hold:

g1 = Q2
g2=0s3
gn = gn+1

where these g's are written for all the possible phase associations (and
not for the individual phases); this is understood in a general sense
where the associations may have negative proportions of some of the
phases. Each association may be defined by n - 1 composition
parameters; provided one representation basis is chosen, several linear
combinations of the same parameters may be used for all the
associations. Because of the dependence of the type g(P, T) for the
individual phases, the preceding relations connect the n - 1 composition
parameters to P and T. By eliminating the n - 1 parameters among the n
relations, one obtains one single relation f(P, T) = O independent of the
composition. This is the equation of the univariant line in the (P, T)
space. This ends the proof.

In the affigraphy approach, relations are immediately found that are
independent of the composition of the system, and the use of affigraphy
is thus more convenient than that of (G, P, T) space when the system
has more components than one. The Gibbs method is restricted to
composition fixed systems. Thanks to the higher dimensional affigraphy
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space, positions of the affigraphy hyperplanes reflect those of families of
G planes of the (G, P, T) space.

14.  POTENTIAL  SOLUTIONS. FROM QUALITATIVE TO
QUANTITATIVE CONSTRUCTION OF PHASE DIAGRAMS

The mathematical similarity between the chemography structures and
the affigraphy ones was demonstrated in the last section. The number of
possible affigraphies is the number of imaginable projections of one
hypercube apex onto a k-dimensional variety of equation C.A” = const.
the number of possible chemographies is the number of projections of
the apex onto a n-dimensional variety perpendicular to the preceding
one, of equation Rx = const. The projection operations yielding
chemography and affigraphy are thus symmetrical, so are the
intersection operations yielding reaction space and chemical potential
saturation space. The correlation between the symmetry properties of
the different spaces may be discussed through the preceding
geometrical operations. The boundaries of reaction space and chemical
potential saturation space are perpendicular to the conic varieties of
chemography and affigraphy (geometric duality). If one restricts to the
stable assemblages of present or absent phases, the different spaces
are bounded by x >0 and A > 0. As a whole, a (P, T) diagram results
from two operations; first a projection of the apex of a (n + k) -
dimensional hypercube onto a k-dimensional variety, second an
intersection by a two-dimensional plane. Chemography results from the
projection of the hypercube apex onto an n-dimensional variety, then, in
order to have concentrations in affine representation, by the intersection
by the hyperplane Xx = 1.

14.1 Potential solutions

For a given chemical system, several structures (or « fopologies ») of
(P, T) phase diagrams are a priori conceivable, depending on the nature
of data available. Each of the structures will be called a « solution » and
we  will  distinguish  between  « combinatorially  possible »,
« mathematically possible » and « potential », solutions (Table 8). The
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thorough discussion on the numbering and enumeration of the solutions
needs the use of matroid theory and will be given elsewhere; only the
structure of corresponding problems is presented here. « Combinatorially
possible solutions » are those that would be possible from a mere
combinatorial point of view, for a given number of components and
phases, with no information on the composition of the phases, nor on the
complete thermodynamic and so mathematical structure of the problem.
In order to predict this number, let n + k vectors be disposed around one
point in a k-dimensional space; o; designates one such arrangement,
that may be called by extension a « combinatorially possible (c.p.)
affigraphy ». Each such affigraphy will be intersected by a two
dimensional plane; this is the way to obtain the right number of invariant
points, univariant lines and so on, together with their combinatorial
definition. The intersection will be called a combinatorially possible
solution,; let 8; be the c. p. solution number i for c.p. affigraphy o;. So the

total number of such solutions will be ® = % 6;. One can also define

total number of c.p. affigraphies a, and the number of c.p. solutions for a

given affigraphy j, ®; = ? ;.

Actually, the mathematical structure of the thermodynamic problem
allows a first reduction of this number; affigraphy obtention was
described as a projection operation. Let §; be one possible way to project
the apex and related edges of one (n + k)-dimensional hypercube onto a
k-dimensional variety; this will yield a « mathematically possible
affigraphy ». A « mathematically possible (m.p.) solution » will be a way
to intersect one mathematically possible affigraphy by a two dimensional
plane when the composition parameters are still unknown (n and k only

are given). Let m; be way number i to cut affigraphy §;. The total number
of mathematically possible solutions is IT = E ny for all chemographic

arrangements. We have II < 0, since the number of combinatorially
possible affigraphies contains many degenerate situations not allowed
by the projection operation of the apex in the mathematically possible
occurrences, such as for instance the case where all n + k vectors are
colinear. The orientation of the k-dimensional linear variety with respect
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to the hypercube apex is not completely arbitrary, even when
composition is unknown, nor that of the orthogonal n-dimensional
variety, yielding the projected chemography; it depends on the general
structure of C and R matrices. For instance, the apical vectors are all
projected in the positive orthant for the chemography, whereas, in the
affigraphy, some are in the positive orthant, but others in the negative or
partly negative orthants. The particular orientation of the k-dimensional
variety may reduce number IT in a way we will not debate. If generalized
C and R matrices are considered, in the sense of Sect. 10, then number
IT is that gained by the general approach, and the obtaining of affigraphy
and chemography are purely on the same level.

When the composition of the phases is known thanks to their C
composition matrix, there is one single affigraphy that will be called 6.
We can distinguish &o* when generalized compositions, i.e. with negative
proportions, are admitted. As defined in the literature, « potential
solutions » are mathematically admissible solutions for phase diagrams,
when the compositions of the phases are known, but not their
thermodynamic data. The Fundamental Theorem (Sect. 6) easily allows
to discuss their number. The number of potential solutions is that of the
possible manners to cut the affigraphy by two-dimensional linear
varieties. Let wjp way number i to cut affigraphy &,. The total number of

potential solutions for affigraphy O will be Il = >|3 Tio-

By itself, the obtention of potentials solutions is already a reduction in
the number of diagrams that would be possible for a given number of
phases not knowing their composition. The gain obtained by using the
thermodynamic-algebraic approach is in the proportion I,/ IT; when
only the combinatorial aspects are considered the balance is I, / ©.
Numbers IT and © are functions of n and k; number I, is also function of
the particular disposition 0 of the affinity vectors in correspondence to
the chemography of the system. « Isoclinal variant » vy number | of
potential solution number i for composition 0 may also be distinguished
(Provost, Lépine and Vielzeuf, 1992), when the molar volumes and
entropies of the phases are known; at last unique « physical diagram » is
Yo When all the information on free energies are available. Discussion of

108




the number of chemographic arrangements and potential solutions may
be found in Usdansky and White (1983), Fujii (1977), Mohr and Stout
(1980) among others.

The next step in the discussion on potential solutions is to find one of
them. In the case k = 3, the use of so-called polyhedra and closed nets
allows to find some or all. By appropriate transformations of one solution,
others may be found. Mohr and Stout (1980) discussed the number and
obtaining of potential solutions in the case k = 3. The different potential
solutions may be connected by an operation called transposition. This
operation may be understood in the present frame as related to the
change of the position of the (P, T) two-dimensional plane with respect to
the affigraphy. When the plane parallelizes one vector of the affigraphy,
the corresponding intersection yielding one invariant point shifts from
one side of the diagram to the opposite and changes its stability. The
different cases of Fig. 30 illustrate these changes in the position of the
cutting plane. This is valid for exterior invariant points. In the context of
the k = 3 affigraphy, the transposition may be monitored by an angle by
which the plane is defined with respect to affigraphy.

The obtaining of potential solutions by the above method is however
valid only for k = 3 systems. The definition of this procedure is not
systematic; outside the present approach, there is so far no general way
to exhibit a potential solution. The important here is that the affigraphy
approach and Fundamental Theorem easily allow one to exhibit potential
solutions for arbitrary values of n and k; the intersection of the affigraphy
by any two-dimensional variety gives one. When k is arbitrary,
generalizations of the transposition operations may be proposed for
three dimensional sub-sets of the affigraphy.

The last step is to select one potential solution by use of paragenetic
information. From the observation of natural phase assemblages, four
types of qualitative information may in principle be obtained:

1) a paragenetic information telling that a specific group of phases may
co-exist; in affigraphy language, this may refer to a k-dimensional
domain of the affigraphy; depending on the number of phases in the
paragenesis, which may be lower than n, singular situations may be

109




envisaged (indifferent crossing situations); the collection of absent
phases may be pointed in an hyperpolyhedron (Sect. 7).

2) a reaction information according to which a specific group of phases
react together and may co-exist along univariant lines or at invariant
points; in the general case, this refers to (k - 1)- or (k - 2)-dimensional
varieties of the affigraphy.

3) an information on incompatible phases where collections of up to n
phases are not encountered together; this also corresponds to a k-
dimensional domain of the affigraphy but a metastable one. Some of the
defining vectors will be negative; the number and names of negative
vectors can be decided only when the metastable association can be
compared with other possible associations, including that of type 1); it
may not be easy to decide whether such assemblage belongs to type 1)
or 3); this is also a function of the composition of the system.

4) some associations may never be encountered neither stable nor
metastable. If any, the corresponding points in affigraphy are rejected at
infinite.

These four types of information may tentatively be pointed on the
affigraphy through the complementary sets of phases: then, the
intersecting (P, T) plane will be chosen in the affigraphy so as to contain
the possible paragenetic or reactional association, including the
metastable association, but to avoid the variety of the absent
associations (it will be parallel to the corresponding variety); if the
information is sufficient, a plane for the (P, T) section of the affigraphy
may be constructed and provides a possible phase diagram. In principle
three points are needed to define a two-dimensional plane; but more
than three qualitative pieces of information are needed; for instance for a
paragenesis the representing point will be in a sector limited by k
vectors, or for a reactional association in one hyperplane; but the exact
location is unknown. The number of qualitative pieces of information to
define the qualitative localization of a two-dimensional plane in a k-
dimensional space will be discussed in the paper of matroid theory. The
illustration of the method is unambiguous for k = 3; the polyhedron of a 1
+ 3 system is given in Fig. 11D and the corresponding two-dimensional
sections in Fig. 30. One could imagine that phases A, B and D may
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coexist, so that the searched two - dimensional (P, T) plane will cut
vector (C); if phases A, B and C never co-exist, the two dimensional-
plane will not cut the positive part of (D); this will be the case of Fig. 30A
or 30B; if phases D, B, C coexist, we are in the case of Fig. 30A; in Fig.
30B, A and B are never together, nor A, B and D: in that case (P, T) is
parallel to (C).

As suggested in the literature (e.g. Guo, 1984), a way to define and select appropriate
potential solutions for systems with large n and k values is to construct them by steps
by progressive increase of n and k numbers from more simple diagrams corresponding
to already known subsystems. The complete diagram will result from combining the
sub-diagrams. We can distinguish simple cases. When n is increased to n + 1 (An = +1)
while k remains constant (Ak = 0), one vector will be added to the affigraphy and this
will add new invariant points and reactions; the additional number of invariant points
will be Ai (An = + 1, Ak = 0) = (n+k)! / (n+3)!(k-3)!; for k = 3 one invariant point is
added, for k = 4 Ai = n + 4 and the same number of invariant point as the number of
starting phases is added. The location of the (P, T) plane is unchanged and, apparently
the composition of the new phase suffices to locate the new invariant points. If, in the
An = +1 increase, the new independant component is not present in the older phases
but only in the new phase, the new affigraphy vector will be the null vector (0, 0, ...)T.
This is generaly the case when an independant component is but contained in a single
phase. Then the corresponding affigraphy vector is reduced to Q and the corresponding
phase is present everywhere.

When k is increased to k + 1 with n constant, this is an unfolding of the new affigraphy
with respect to the former one, i.e. its immersing inside a higher dimensional space.
The location of the intersecting two-dimensional variety is in a situation of
thermodynamic degeneracy in the first case with respect to the second. One can
compute that Ai (An= 0, Ak = +1) = (n+K)! / (n+DHlk-1). Forn=1and k=2, Ai=n+ 2
= 3 and one shifts from one invariant point to 4. A new look at Fig. 30A compared to
Fig. 30E illustrates this situation, where the roles of phases A and D must be
exchanged. The first position of the (P, T) plane (Fig. 30E) contains Q and is
perpendicular to one basic affinity vector; this vector corresponds to phase A not
involved in the system. Then the (P, T) plane is raised away from Q. The three
univariant lines (B), (C) and (D) are developped in (AB), (AC) and (AD); so invariant
point Q corresponding at first to the presence (or absence) of three phases B, C and D
must split into four points where each of the four phases of the system is absent.
Univariant lines of type (BC), (BD) and (CD) must also appear.

Other Ai (An, AK) may be computed; one may also solve the equation Ai(An, Ak) = 0
for associated values of An and Ak. Natural observational data may help to define a
potential diagram in which an additional invariant point will be located when n is
increased, or to define how a thermodynamic degeneracy will be unfolded when k is
increased from a known diagram. The general case An > 0, Ak > 0 will combine the
above cases.

The dual networks of O'Hanley (1987) already discussed by Roseboom and Zen
(1982), Kujawa, Dunning and Eugster (1965) are also used to exhibit potential solutions
but only in the case of unary systems (in these papers the duality is understood in a
restricted meaning with respect to the present paper).

At last, the reciprocal or inverse problem may aiso be studied where the phase

relations of the chemography are inferred from the phase relations at different P and T
values in the thermodynamic diagram and associated affigraphy. If a complete
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affigraphy is known, a chemography may be constructed by duality. Numbers n and k
may be determined by the observation of the different phase assembiages in the
system. The problem is to construct an affigraphy from a two-dimensional (P, T)
section. The method may be to try placing a two dimensional plane inside a k
dimensional space; by connecting the origin Q of the k-dimensional space to the
different reactions and points of the section, hyperplanes and vectors may be defined
and thus an affigraphy may be proposed; the matter is to find a location of Q
compatible with the definitions of the varieties, otherwise another attempt must be
done; the solution is not unique. The ny = 3k coordinates of the origin and basic vectors
of (P, T) plane in affigraphy are seeked. The coordinates of the invariant points in the

(P, T) diagram are supposed to be known, their number is n, = 2.C+2. One must have
n, > nq and apparently, enough pieces of information are available.

14.2 Quantitative construction of (P,T) diagrams

The quantitative construction of a (P,T) diagram for an (n + k)-phase
multisystem may be operated by the affigraphy approach when the
linearization hypothesis of the g functions is taken for granted. The
following algebraic procedure may be taken. Let M be a point of the
affigraphy described by the vectorial relation

OM = xA" + ... + x A"

where the x; are the coordinates along k unit basic affinity vectors A' and
Q is the origin of the affigraphy space'®. If M also belongs to a two-
dimensional (P, T) diagram, its coordinates in the corresponding plane,
oy and oy, (they represent P and T), verify

OM= (7,1V1 + a2V2
where O is the origin on the (P, T) plane and V' and V? are the basic unit

vectors of the (P, T) plane?. The correspondence between the
coordinates in both systems is given by the k equations in vectorial form

OM=QM - QO

19 The variables x in this section have not the phase composition meaning of the rest of
the paper. Affinity vectors A” are written A' for simplicity.

2The (P, T) plane can equivalently be defined by a set of k - 2 hyperplanes, see
below.
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If M is an invariant point, it belongs to a subset of k - 2 vectors A’ ... A*?
taken in the whole n + k set of affigraphy vectors, and the preceding
equations may be solved for the k unknowns Xx;... X2, 04, 02, provided
vectors A and V' and O point are known. The names of the indices in the
collection x4 to x> give the name of the invariant point and the signs of
the coordinates give the stability level of the point. For an arbitrary point
(ou, a2) in the diagram, one can also compute its coordinate on the k
basic affinity vectors by a backward reading of the preceding relation QM
= OM + QO and so define the corresponding paragenesis; by changing
the bases in the affigraphy, other sets of k vectors may be chosen; the
new coordinates x on the new basis will indicate another possible
paragenesis and the CK,, possible bases may be explored in this way.
One may restrict to the positive coordinates for the stable bases.

Related problems are that of determining O, V' and V* when the set of
hyperplane equations A(P,T) is known. If k equations of the type A' = aP
+ b'T + ¢ are known, equations P = 0 and T = 0 will give the coordinates
of the origin O; equation P = 0 in the k equations give, by elimination of
T, k - 1 equations defining unit vector V' and the same for T = 0 defining
vector V? (see also Appendix 3). This procedure is a new way for
determining (P, T) diagrams when (averaged) thermodynamic data are
known. 3k data are needed to determine O, V' and V? if one knows the
linear relations of the type g' = aP + b'T + ¢, there are at first sight 3(n +
k) pieces of information. Actually, they are not independent since there
are k independent reactions whose affinities give 3k linear relations in P
and T. Many other algorithms to construct phase diagrams are found in
the literature, such as by Usdansky (1989), Vielzeuf and Boivin (1984),
Connolly and Kerrick (1987), Cheng and Greenwood (1990).

If all the parameters allowing a quantitative construction of the diagram
are not known, the method described may still allow to predict possible
structures of n + k diagrams for arbitrary values of n and k, taking the 3k
lacking data as parameters. Part of the data may be known; in that case
the diagrams may be parametrized by the lacking numbers, and trials
may be done by « reasonable » values for these unknown parameters;
the knowledge of natural compatibilities or uncompatibilities may help
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then to restrict the choice of the diagram. This gives an alternative semi-
quantitative method for the above search of potential solutions21.

When one wants to construct a (4, M) grid, the orientation of the two
vectors V' and V? is known; the preceding approach may be readily
used, the different possible types of diagrams are dependent on the O
position which is a function of thermodynamical parameters. This is the
same for the isoclinal variants of (P, T) diagrams in the case where only
the molar volumes and entropies of the phases are known, but not the
complete free energies; the orientation of the two-dimensional
intersecting plane is then known, so are the slopes of the univariant
lines; isoclinal variants may then be readily constructed and
parametrated on the position of the origin, dependent on k unknown
independent free energy parameters. The volumic and entropic data are
generally better known than the free energies and so this method may
provide a quick way to draw candidates for (P, T) diagrams.

15. CONCLUSIONS

15.1. The meaning of chemical affinity

A unique algebraic framework allows to bring together the different
concepts of chemical component, chemical reaction, chemical content,
affinity, and the properties of stability, metastability and so on. What is
called « affigraphy », constructed on the column vectors of chemical
reaction matrix, is the foundation of this frame. The algebraic duality
between chemography and affigraphy is general and does not depend
on the linearity of the G « cost function ». The important is the linearity of
the transformations to change the bases of the system. Through this
duality, one is able to give an algebraic definition of affinity, as the
« pricing vector » of the mathematical programming problem. This may
be defined for a large class of problems and constraints and is largely
independent of its thermodynamic definition. A dual representation of the

21 Preliminary Pacal computer program has been written to solve the problem
discussed in the present section (Scheberova, 1994).
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chemography may be derived with the sole composition of the phases.
The coordinates of the affigraphy are dual to the chemical content axes
of the chemography; the affinity axes express the unity to measure
absent phases. Absent phases are involved in the sense they are the
possible end or target of an evolution; the preliminary inventory of all the
system in the matrix C is thus compulsory. At this step a « mathematical
thermodynamics » with k parameters may be defined; it is known from
physics that two parameters only are independent, T and P related in
fine to energy and momentum. When the quantities of the chemical
component are added, n + 2 parameters define the system. In Appendix
3, the reciprocal and generalized point of view is exposed where a
temperature is ascribed to the points of affigraphy space. Relations T =
st:A® for temperature as a function of the basic affinities may be written.
« Partial temperatures » are computed dependent on the thermodynamic
parameters of the system.

Affinity naturally appears as an algebraic tool to monitor the state of a
thermodynamic system. In order to understand the physical meaning of
affinity, it is needed from thermodynamics to know that a scalar function
G exists, that it is an additive function of the corresponding g functions of
the phases, and that this function has a minimum at equilibrium.
Affigraphy concept gives a thermodynamic meaning to the use of absent
phases to designate the reactions. It is not merely a matter of being more
practical (for k > n the collection of absent phases is longer than that of
the present ones) but is connected to the duality between the bases and
co-bases. The vectorial orientation of the univariant lines allowing the
distinction of the stable and metastable parts is understood in the same
frame by the sign of chemical affinities. Historical remarks on the
concept of affinity may be found in Goupil (1991). In the exposed frame,
P and T may be seen as mere combinations of affinities, and
temperature and pressure scales be expressed in energetic units. The
« affinity tables » of the old chemists in the eighteenth century were first
attempts to class compounds according to the preference for reacting
with one of them (e.g. Goupil, 1991); it can easily be demonstrated that
this ordering is equivalent to finding stability sequences in the sense of
the present paper. Oxydo-reduction, electronegativity scales and so on
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may be understood in the same way. The different arrangements are
connected to each other inside the algebraic frame and depend on the
conditions in P and T. The historical meaning of affinity intends to
express the tendency phases have to react together. The longer the
distance between phase associations in the affigraphy (or the more
numerous the hyperplanes between them), the greater the tendency they
have to react together.

15.2 Further research

So forth, conservation of chemical components has been written at
fixed T and P, in which case use was made of the Gibbs Free Energy
function G. Problems may be considered where the volume, the total
energy, the entropy etc. is conserved, in which case other types of
functions and of variables will be relevant. For each type of problem,
sets of diagrams analogous to the A-, B-, C- and D- type diagrams of
Table 5 above and their combinations may be drawn. Corresponding
two-dimensional phase diagrams may also be derived by proper
intersections of the composition or affinity spaces by two-dimensional
varieties. For some particular systems, more than two physical
parameters, or others than P and T, could be considered e.g. three or
more for osmotic systems, for systems dependent on magnetic field
(supraconductors) and so on. Similarly, for rock systems suffering
pressure induced dissolution, two pressures (solid and fluid) or more
may be defined (Albee, 1965); the Gibbs free energies of some phases
may depend on one of these pressures or the other (or both); a phase
may also be counted twice at different pressures depending on its
location in the rock; by extension of the methods of the present paper, it
is easy to obtain the structure of phase diagrams where the phase
associations depend on such appropriate generalized parameters.

In summary, we believe affigraphy concept may help discuss stuctural
aspects in all types of phase diagrams. The applications of the approach
are many; only the general frame has been given. Knowing the n + k
vectors of the affigraphy one is able to predict the organization of the
ch+l univariant lines of the chemical reactions of the system. In order to

derive the possible (P, T) diagrams, one must infer that linear relations
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between g and P and T are obtained. New types of diagrams may be
defined. The resolution of all the exposed problems may be automated
with computers; the different structures that one may expect for the
phase diagrams of a given system can thus be displayed (partial
attempts are found in Pla, 1991 and Scheberova, 1994). The knowledge
of natural compatibilities or incompatibilities may help to restrict the
number of solutions.

To end this paper, it should be stressed that, in the discussions so far,
the magnitude of the compositional or thermodynamic parameters
studied do not matter as such; the important are qualitative parameters
such as the position of a phase with respect to other phases in the
composition space, the list of phases in a paragenesis, the side on
which a phase appears in a reaction, the stability level of an association
and so on. These different parameters may simply be described by sets

+...of signs .+ or -, or sets of -1 or-0 for:the presence or absence of a: -

character. Refinements of the qualitative structure described in this
paper will find in Matroid theory a suitable abstract frame, lying on a
generalization of linear algebra and of the linear dependency.

This work was initiated by discussions with J.M. Pla, mathematician, whom |
" “sincerely thank here. The problems that may appear in the mathematical formulations -
are my sole responsability, however. Thanks are also addressed to M. A. Lallemand for
his careful work on the drawings, MM. W. Bienia, J. Salemink, D. Garcia, F. Gruy, M.
Guiraud for valuable discussions, M. Fonteilles for providing copies of the original
" Schreinemakers papers and L. Raimbault for translating Zharikov paper from Russian.
Pascal computer programs written by J.M. Pla and K. Scheberova may be obtained on
request. Many directions for research have not been exploited due to lack of time; -
propositions for collaborative work on application and development of the concepts in
the paper will be examined with attention.
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SYMBOLS

a row vector (dim. k); for specified P and T, values of the k basic independent
phase dissociation affinities in the system. It is also the constant projection
of the total (n + k)-dimensional affinity A onto affigraphy (in mathematical
correspondence with projected global composition onto chemography). We
have RA" = a The value of a is dependent on the chosen affinity co-basis,
M - lo, used to construct chemical reaction matrix R; (s refers to a chosen
representation basis for composition space).

A row vector (dim. n + K): values of the affinities of all the elementary phase
dissociation reactions. Vector A may be restricted to the k dimensional

progected vector a.

Al or AV affi inity of the dissociation of phase P; in a specified phase basis; the

dissociation reaction reads Pj = EC}Pi where Pj is basic phase i (i = 1...n),

then Al = gl - = clgi or Al = g - i = - - gl); the g’s are the molar Gibbs
free energies and the p’s are the chemical potentials of the phases. The unit
used to measure the affinity is the same as for free energy G or ¢l

<A> fth unit affinity vector such that its | co-ordinate <A>i = gl - W = 1
for j=f and 0 otherwise. Unit vectors may be defined by brackets < > for
the different vectors of interest; when there is no confusion, the brackets are
omitted

B restriction of matrix C' (see below) to the columns that do not belong to the
basis

¢ column vector (dim. n). quantities, in number of moles, of the chemical
components in the systern expressed in a specified phase composition basis

¢j quantity of independent component i, or independent phase i in the system (i

)

C matrix of the chemical compositions (n rows, n + k columns)

ci‘ number of moles of chemical component or phase i in one mole of phase j (i
=1,..,n;j=1,..,n+Kk)

C! restriction of C to a set of independent columns defining a basis of the phase
space; indices belong to set I. In general Cl is a n x n matrix; in the new
basis |, C becomes C' = (Ch-1.C = (Up, (C))-1.cM-l) = (U, B); M is the set
of all column indices and U a unit matrix. In the paper C is often of the form
C', and C and C' are not distinguished; in that case the basis used to
describe C is called Iy; this method is used to change the bases in the
general case

C“m number of possible arrangements of n objects chosen among m; it equals
m!/ni(m-n)!;it may also be written (',I') ch=cm-n,

g row vector (dim. n + k): Gibbs molar free energies of the phases
g Gibbs molar free energy of phase j (j = 1, ..., n + K); the unit for g is not
specified (joules for instance)
n+k
G =¢gx= X ngJ' Gibbs free energy of the total system; also called cost or
=1
objective function
| set of phase indices defining a basis of the phase space
lp particular basis chosen for the representation of the phases in the
chemography
k difference between the total number of possible species or phases (n + k) and
the number of independent chemical components (n)
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M in matrix C, set of (column) indices of all the phases

M-I set of indices of the phases that do not belong to the basis; the set M- |y is a
natural representation basis (or « co-basis») for the affinities in the
affigraphy

n number of independent chemical components

e number of indifferent crossing points per univariant line

Pj phase j (with no solution in general); phase vectors in composition space and
phases may be designated by the same upper case letters A, B, C and so
on. Total number of phases is n + k

(Pj) between brackets: absent phase Pj; on the affigraphy symbol (Pj) may be
attributed to the « unitary absent phase » equivalent to unit affigraphy
vectors <A’>

(P)the primal linear programming problem

(P") the dual programming problem

P pressure _

R a matrix of chemical reactions (k lines, n + k columns);

rfJ coefficient of phase j in reaction f. In the text R is written in correspondence

with matrix C' after a unit matrix corresponding to base | = I; has been
exhibited in C. R verifies C'R’ = 0 where R’ is the transposed of R; the

coefficients r_f(l), i.e. for base 1, behave like the homogeneous solutions r(f)

ry’ =¥ column vector (dim. n + Kk): homogeneous solutions of the primal
programming problem. Columns of R' are homogeneous solutions; when a
basis | is chosen y(f)j(l) = r‘,; f is the index for the homogeneous solution
(corresponds to reaction f) and j is the index for its components. Following
ralations are verified: y(Os() = 1, yO,() = -ch-1cO) and yOps140) = 0,
where f belongs to M-I. rry may also be noted It where a point stands for
the mute indices

molar entropy of phase j

temperature

the primal simplex tableau

unit matrix; Up unit matrix of rank n

internal energy of phase j

molar volume of phase j

linear variety C.x = ¢

linear variety RA' = R.A = a'

Vp linear variety C.x =0

V' linear variety R.A" = 0

W linear variety R.x = R.xg

W' linear variety C.A" = C.A'

Wlinear variety Rx=0

W, linear variety defined by C.A" = 0

T* the dual simplex tableau

X column vector (dim. n + k): quantity (number of moles) of the phases in the
system; x is restricted to the projected n dimensional vector in basis Iy of
matrix C through Cx = ¢

x* value of x at equilibrium (« optimum »)

x{' quantity of phase j in the system (j=1, ..., n + k)

xI(l) when a basis | is chosen the principal unknowns are the components of x on
the basis and are written x!(l); the non principal unknowns xM-I(l) are the
other components of x

Xp variable associated to the economic function G: xp = gx

Xp is also the initial quantity of the phases in a given problem (no confusion is
possible)

<<<sCH-Aw
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Y matrix of homogeneous solutions corresponding to representation basis |y in
C. In general R and Y are identified.

number of combinatorialy possible solutions

row vector (dim. n + k): chemical potential of the phases

chemical potential of phase j (j=1, ..., n + k)

row vector (dim. n): chemical potential of the chemical components or basic

_ phases, that may be expressed in an n-dimensional phase basis

u! chemical potential of component or basic phase i (i = 1, ..., n); we have E=Rp
(o3

&j column vector, advance of reaction j; following the notation on affinities
should also be written &

IT number of mathematically possible solutions

ITo number of potential solutions for composition 0

The complete list of symbols for different types of affigraphies and of potential
solutions for phase diagrams, depending on the information available, is
given in Table 8.

xi chemical component i; chemical components may be designated by lower

case letters a, b, ¢ and so on; the total number of independent chemical

components is n

FETF @

Principal vector and matrix relations

Vectors and matrices are noted in bold letters, scalars in normal letters, so as the
points on the diagrams. When there is no ambiguity bold lettering may be
omitted. -A designates the negative part of vector A and (-B) the negative
part of vector (B).

Elements (vectors, points and so on) are usually noted between brackets in the
affigraphy, and with no brackets in the chemography. When there is no
ambiguity, a group of absent phases in the affigraphy may be noted (A, B,
C) rather than {(A), (B), (C)}.

When sum index is not indicated, the sum is done on the repeated index at
different levels

Through the action of C and R matrices, n + k dimensional vectors may be
projected onto lower n- or k-dimensional vectors; these may be underlined
in order to avoid confusion. Projection relations are

Cx=Cxy=c
RA'=RA,=a"
ET'c g

ER=¢

The dimensionality of the projected vectors is more usually n for x and u, and k
for& and A.
Other relations: pn.C < g, E'R > - xo', C.R" = 0, and A.x = 0 (complementarity
relations).
If ¢ is a coefficient of matrix C, c{;)=c; is the line vector of line index i and

i) =cl is the column vector of column index j, where the points replace the
different co-ordinates of the vector. Points and brackets may be omitted.
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APPENDICES

APPENDIX  A1: SOME RESULTS OF MATHEMATICAL
PROGRAMMING

A1.1. Principal and non-principal unknowns, homogeneous solutions; the
general solution

Equation C.x = ¢ can be described by the following tableau; column ¢
is written besides matrix C:

If D is a non-singular (n, n) matrix, mathematical programming theory
shows that the solution of C.x = ¢ and of D.C.x = D.¢ are the same; the
corresponding systems of equations are equivalent. Let consider a set |
of independent column vectors of C defining non singular (n, n) matrix C'.
The remaining matrix is called C*' : M is the set of all column indices:

Let us choose for matrix D the inverse of C: D = (C")". The
multiplication is represented as:
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c’ U, (€)'c | (C)'e

Un B (N

A unit (n, n) matrix called U, appears. The remaining matrix (C')'C is
called B; C has been written for C*'. « Principal unknowns » X\(I) are the
co-ordinates of x on the basis; « non principal unknowns » are the other
co-ordinates x™!(1). The last tableau suggests a possible solution of the
starting problem. One may choose for X(l) the values of the second
member (C')'c and for xX*(I) the value x*'(I) = 0. This solution will be
called a basic solution; the optimal solution generally belongs to the set
of the basic solutions. Different bases may be envisaged for other sets |
of independent column vectors of C; the corresponding solutions may be
derived by the operations described above through the action of the
corresponding C' matrices.

The solutions of C.x = 0 will be called the homogeneous solutions and
called y; so Cly = 0. It is useful to consider the « fundamental
homogeneous solutions » corresponding to a given basis. Let us start
then with C' = (U, B) (in the case a unit matrix is present in C from the
beginning, the notation of C' and U,, and of C"' and B are equivalent); k
is the cardinal, i.e. the number of elements of the M - set: k=n + k- n.
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Let us add a unit matrix U below matrix -B to build what we call matrix
Y, (superscript " indicates the transposition of a matrix):

M-I y(f)
B | -(C)'c
Y = 0
Ux M-I f 1
M-I|-f 0]

So Y = (-B", Uy); Y is a matrix of chemical reactions (see below). One
checks that C.Y" = (U, B).(-B, U)" = 0; the columns of Y verify C.y = 0
and are homogeneous solutions. The set of the k fundamental
homogeneous solutions define matrix Y; its generic element is y,f. The
fundamental homogeneous solutions y® may be named according to the
index f of the corresponding row of matrix Ux where y{(l) = 1. The other
components of y® are y((l) = (CY".C®and y{ ,_(1) = 0.

A specified basis is defined by n phases; the formula of each of the k
remaining phases may be written in that basis and thus define k
chemical reactions. The chemical reactions may be defined in matrix R
(k rows, n + k columns) where the coefficient rl is the number of moles of
phase j that participates in reaction f. We will identify here rl and y? (or
R and Y") although the definition of r! is more general than that of v
y'; is defined after a basis has been chosen. When matrices are written

with corresponding unit sub-matrices, relation C.R" = 0 hold.

Convex sets

A convex combination is a linear combination where the factors are
positive and their sum equal to one; this is the case for x as a
combination of the phases and when concentrations are considered. In
the case of a conic combination, the requirement is simply that the
coefficients of the combination are positive. Theory shows that the
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general feasible solution of C.x = ¢ is a convex combination of the basic
solutions to which can be added a conic convex combination of the
corresponding fundamental homogeneous solutions. In the combination,
the factors of the homogeneous solutions, corresponding to reactions,
are the advance &g of the reactions.

Korzhinskii (1959) proposed a method with determinants to balance
chemical reactions once the composition of the phases is known and to
write all the reactions once a basis of k of them is known; this is
equivalent to basis changes and algebraic manipulations in the k-
dimensional space of reactions. Other ways to write reactions are given
in Fisher (1989, 1993).

A1.2. The dual programming problem
Program (P) is equivalent to (P*): find row vector u of n components
such that:

Max p.c = Max Zy'c;
(u)
uC<g

where (u) means that the sign of p is unconstrained. (P*) is a linear
programming problem in canonical form called the « dual programming
problem ». There is a duality between the constraints of the primal
problem and the variables of the dual problem. One speaks of dual
feasibility when the last condition uC < g is verified. This condition does
not involve the initial composition ¢. The p may be interpreted as the
chemical potentials of the chemical components. The interpretation
appears clearly at optimum where

nuec=gx=G
According to this last equation, the partial derivatives with respect to the

guantities ¢, of the total energy G, are
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oGloc =

This is the definition of the chemical potentials. In (P*) the solution is
approached by lower values (search of a maximum) and in (P), the
solution is approached by higher values (search of a minimum). Through

p=ul

we can also define the chemical potentials of the phases, p! (j=1,..., n +
K), in row vector . If optimum is verified for basis | for which X\(l) =
(€Y'e(l) and xX*!(I) = 0, the chemical potentials of the phases p'(l) are
g'(C')"C (they are equal to g' for the phases in the basis).

A1.3. The primal simplex tableau

The objective function may be considered as defining a new variable x,
= -g.x; one must then add the constraint xo + g.x = 0; in the primal
problem, one has to maximise x,. All the information on the constraints
and the economic function is gathered in the following simplex tableau T:

1 g 0

0 c

[ [1]

The first column has been added and corresponds to variable x,. It will
be omitted in the following. Following the same notation as above, ¢' is
the restriction of g to the basis |. Similarly one can consider the matrix
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and one multiplies tableau T by its inverse according to

gl gM-I 0

CI CM-I 2
-g'(c)" 0 g-d(C)'c | -g'C)'c
(c)’ U, (c)'c C©)'¢c

The quantities g - g'(C')"'C are the affinities of the dissociation of the
phases that do not belong to the basis I; the chemical reaction are
expressed in terms of the phases in the basis. When including the first n
quantities of the additional line that are equal to zero, the total affinity
row vector may also be expressed as A = g - uC, equal to g - u where
the chemical potential appear. A is called the reduced cost of the cost, or
objective, function. The factors g'(C')" are the Lagrange multipliers; they
define the so-called pricing vector, here noted p. In summary the simplex
tableau T may be written as

0 a -g'(CY'e

U, B (C)'e

when the system is in one basis; a is the k-dimensional affinity when
optimum basis is |. Optimum solution is one basic solution that verifies,
in the same time, two groups of conditions read on the simplex tableau;
the first group expresses the so-called primal feasibility and reads
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x; >0 forjin the set |

The values of the x;in the basis are given by the rightmost column of the
simplex tableau, x = (C')"c; and

x;=0forjinthe setM- |.

The second group of conditions expresses dual feasibility and reads
Al>0forjinthe set M- |

and
A= 0 forjin the set |

These conditions are given by the additional upper line of the simplex
tableau. The affinities a are ruled by the matrix of chemical reactions in
a=g(Uy (C)'C)=gR".

Thanks to the preceding results (P) and (P*) are shown to be
equivalent to:
Find x (column, n + k) and p (row, k) such that

Cx=c¢

x>0

uC<g
(9-uC)x=0
()

where no extremum condition is required ((un) expresses that the sign of
M is unconstrained). The last two relations may equivalently be
expressed in terms of total affinity Aby A>0and Ax =0.Is it a
complementary slackness or linear complementarity problem.
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A1.4. Parametrisation of the simplex tableau

The n + k molar free energies g of the phases are supposed to be
unknowns. The preceding results may be parametrated. Let us first
choose a representation basis |, to compute the phase compositions and
to construct the reaction matrix; in matrix R the corresponding
representation co-basis will be M-l,. Representation basis I must be
distinguished from the other possible bases among which the particular
optimal basis will be. Among the n + k affinities defined above, k are
independent. One can thus decompose line 0 for the cost function into k
linearly independent lines; the coefficients of the cost function will be
obtained by different possible linear combination of these lines. The
factors of the combination will be the k affinites A = a =g - p
corresponding to the choice of the co-basis M - Iy and taken as
parameters. They are

a=g-p=g-g'oCl)'c*h

The underlined values correspond to the projected k dimensional values
with indices belonging to set M - |. In the same manner, the initial
composition ¢, which is also supposed to be unknown, may be
decomposed into n independent columns. We will suppose that we start
with the simplicial table corresponding to basis Iy

where the first n components apply to the chemography representation
basis and the k remaining apply to the other phases.

The parametrization is then represented by the following tableau; two
matrices have been added: the first is composed of a unit matrix Uy and
of a zero matrix for the parametrization of the k-dimensional affinity; the
second is a unit matrix U, for the parametrization of the total chemical
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composition (this matrix U, already appears in the starting tableau; for
clarity, we add it to the right hand side of the tableau).

All the chemographic bases can be systematically explored. For each
of them, two groups of conditions are expressed that the basis is an
optimum basis. For this, by means of pivoting, algebraic combinations of
the x define the corresponding admissible chemography regions;
combinations of the Al define admissible relations among the affinities for
the phases that do not belong to corresponding chemographic basis. For
instance, after a first algebraic operation, suppose another
chemographic basis is obtained and the new integrated tableau is

B" B' E

We will call F the square restriction of matrix G, to the k columns of the
phases that do not belong to the current chosen basis (these k columns
define the co-basis); F is not composed of neighbouring columns.
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Matrices E and F give the following equations expressing the basis is
optimum:

x and A describe two spaces of parameters, respectively n- and k-
dimensional, in the starting representation basis and co-basis
respectively. Matrix F is read in columns (A is a row vector) and matrix E
" is read in lines (X is a column vector). In other words, one starts with n-
and k- dimensional vector restrictions x and A in the representation
basis and co-basis respectively; the combinations of x and A obtained
by means of F and E give the values in the new basis.

The same method may be used to predict the domains of metastable
associations; one to k of the constraints bearing on the affinities can be
negative instead of positive (k + 1 stability levels). For one metastable
basis

Ex=>0
with, for some of the A,
AF<0 or FFA" <0,

instead of AF > 0 or F'A" > 0. The procedure is illustrated on an
example in Appendix 2. It can be automated (program « LINEAR », Pla,
1989b).

Matrix F behaves like corresponding square part of -R' where R is
chemical composition matrix; had we written - Uy instead of Uy above B
in the starting tableau, the whole R matrix would have been perceptible.
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APPENDIX A2: PROPERTIES OF CHEMOGRAPHY, AFFIGRAPHY
AND MATRICES

A2.1. Properties of lines of C matrix.

For each chemography basis one can compute the limits of the
corresponding domains in the chemography. The consideration of these
limits is useful to the general understanding of the paper. Let us discuss
the example of Fig. 2 of the main text. Six phases A, B, C, D, E, F are
considered whose chemography was given in Fig. 2; the composition of
the phases is expressed, for instance in the basis (A, B, C) by the
following C composition-matrix:

D E F

0.4 04 0.2
0.2 0.4 0.4
0.4 0.2 0.4

o~ |olw
- oo o

olo|=|>»

Column vectors for phases A, B and C are unit vectors since {A, B, C}
is chosen as the basis; D, E and F are represented by their coordinates in
this basis; vectorial relations of the following type are thus verified:

A=1A+0B+0C
D=4A+.2B+.4C

and so on; the phases are represented by vectors or, more usually by
points (affine representation) in the chemography. The equations of the
lines (or hyperplanes) connecting the points of the chemography are given
by the lines of the matrix as in a chemical matrix (read in lines), in the
general case hyperplanes i.e. n - 1 dimensional varieties connect sets of
n - 1 phase vectors. The equation of line BC is

A=0
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where this time A designates the first coordinate of any vector in the {A, B,
C} basis. Such relation represents the compositions of the system where
A is absent and B and C are present; actually D, E and F are also absent
but they do not appear in the restriction of the equation in the A, B, C
basis; the complete equation given by the first line of the matrix would be:

1A+ 4D+ 4E+.2F=0

In other words, the equation is projected onto the (A, B, C) basis in A =
0. In the same basis, the equations of lines AC and of ABareB=0and C
= 0 respectively, as given by the two next lines of matrix C. If one wants to
know the equation of the other hyperplanes (here lines) of the
chemography, a change of basis is necessary; for example, by pivoting to
make the new basis ABF appear, matrix C is transformed in the following

A B C D E F
A 1 0 -0.5f 02| 03 0
B 0] 1 -1 -0.2| 0.2 0
F 0] O 2.5 1 0.5 1

This new matrix gives the composition of the phases in basis ABF and
also gives the equations of the lines AB, BF and FA: the first line of the
matrix gives the equation of BF for which B and F are present and A, C, D
and E absent; in the starting representation basis (A, B, C) this equation
reads:

1.A-5C=0

This is a valid projection in the sense of Sect. 3.4 from an n + k
dimensional composition space onto n-dimensional chemography; the
useless co-ordinates are forgotten. The second line of the matrix gives the
equation of AF, for which A and F are present and B, C, D, E absent:
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B-C=0
And similarly for AB, (A and B present, C, D, E, F absent):

25C=00orC=0

A2.2. Link between lines and columns of R matrix

The organization of the vectors and hyperplanes defining the structure
of affigraphy is given by R matrix in the same way as vectors (or points)
and hyperplanes are organized in chemography by consideration of C
matrix. Depending on the cases, equations of varieties contain phases
that may or may not directly correspond to the present or absent phases
in the geometrical varieties themselves. Let us study an example. A
corresponding R reaction matrix to matrix C discussed in section 3.1. is
the following

A B € @ (| (F)
| 04 02 -0 1 0 O
(E) -04 04 -0 0O 1 O
(F) 02 -04 -0 0O 0 1

The corresponding affigraphy was represented in Fig. 3. The three
lines of the R matrix give the writing of three independent chemical
reactions between the phases, or, geometrically, hyperplanes, as usual.
In the co-basis of affinities AP, A®, AP or more simply (D), (E), (F) the
equation of the plane containing vectors A® and A® (or E and F absent,
noted as (E), (F), and A, B, C, D present) is given by the first line of the
matrix:

-4APN 248 4494+ 1AP =0

restricted to A® = 0 in the (D), (E), (F) space (D present)
corresponding to reaction
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-4A-2B-4C+1D =0

Accordingly, the two other lines of the matrix give the equations of:
A® =0 (E present as well as A, B, C; D and F absent)
A® =0 (F present, D and E absent)

In composition C matrix, the zeroes of the lines gave the names of the
phases present in the corresponding hyperplanes; conversely in R matrix,
the zeroes give the absent phases. In a similar way to what obtained in C
matrix, the columns of the R matrix give the intersections of the
hyperplanes defining the chemical reactions -in the present example the
planes are taken two by two- and define the basic affinity vectors; for
instance, in the basis A®, A®. A® the vectorial relations hold:

AP =1 AP +04® + 047
(fourth column of reaction matrix) or
AP =4 A0 _ 45 . 240

(first column). The plane containing vectors A® and A® represents the
reaction where E and F are absent. After having chosen as independent
affinities (D), (E) and (F) these three affinity vectors must simultaneously
be combined in the proportion given above to have affinity vector (A). For
the equations of the other planes one must change the basis and, by
pivoting on R matrix, we have, for instance for basis (D), (E) and (C):

A B (€ DO (E) (F)
| 0. 02 0 1 0 -
B -0 0. 0 0 1 0.5
c| 05 1 1 0 0 -25
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Plane (C), (E) or ABDF ( A, B, D, F present; C and E absent) is given by
A® = A® or more simply (D) = (F) (first line of matrix); we also have A® =
.5.A® for (C)(D) plane (A, B, E, F present) containing both vectors A©
and A®.

Another way to understand the above relations is as follows. A
chemical reaction may be written as

(1) aA+bB+..=cC+dD+...

where n + 1 phases are present; at equilibrium the following relation is
verified:

(2) agt+bg®+ =cg®+dg”+...

where the g's depend on P and T, the dependence is univariant and
allows to define a relation f(P, T) = 0. When written in terms of chemical
potentials relation (2) gives

3) apt+bp®+ =cuC+dp+ ...

among n + 1 chemical potentials; (3) is valid whatever the presence or
absence of the phases. By an extension of thermodynamic equilibrium, we
will consider in (3) to have n degrees of freedom and not 2 and will allow n
potentials to vary independently; the phases are considered as virtually in
equilibrium even if not present, i.e. even if the ' are strictly lower than the
d. Relation (2) is a particular case of (3). By combining (2) and (3) one
obtains

(4) aA*+bAP+ =cA®+dA°+ ..

where the affinities are A = g - p. In (4) A” stands for A®. Like(3), relation
(4) is an extended condition verified for all the phases in « equilibrium ».
Under this meaning, (4) gives the equations of the reactions in the
affigraphy. If all the phases are present (4) is a tautology since all the A
are equal to zero.
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A2.3. An example of systematic investigation of the corresponding
regions of chemography and affigraphy

The determination of the corresponding regions (optimum bases /
optimum co-bases) of the chemography and the affigraphy may be done
by direct inspection of the convex and conic convex domains in the
figures; this is possible for values of n and k not exceeding 4. For greater
values, it is necessary to have a general method. This has been exposed
in Appendix A1.4. Here, the method is presented on a simple example.
The chemography of a 3 + 2 system was represented in Fig. 6 and the
corresponding composition matrix is

A B C D E
Al 1 0 0 1 2.5
B| O 1 0 4 1
CLO 0 1 1.5 1.5

The parametrization of the cost function and of the overall composition
of the system is operated by adding two matrices as indicated in
previous Appendix:

A B c D E
@) | o 0 0 1 0
(E) | o 0 0 0 1 A B C
A 1 0 0 1 25 | 1 0 0
B 0 1 0 4 1 0 1 0
C 0 0 1 15 |15 | 0 0 1

The three stars indicate the phases in the starting basis. Starting basis
ABC is optimum when:

A>0,B>0, C>0and
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(D)=0and (E) >0

which are the expression of the general relations E.x >0 and A.F >0 in
this particular case. The relations are thus provided by the additional
side composition matrix and upper affinity matrix respectively. Above
relations define permitted regions in the associated spaces of the
chemography (A, B, C parameters) and of the affigraphy ((D) (E)
parameters) as represented in Fig. 7A. The ¢ = 10 bases in the system
are: ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE, CDE; they can
be enumerated automatically (Program « MATROIDO », Pla, 1990). By
appropriate pivoting, a new tableau is computed for basis ABD:

A B C D E
(D) 0 0 -067{ O -1
(E) 0 0 0 0 1 A B C
A 1 0 -067]| O 1.5 1 0 -0.67
B 0 1 -267| 0 -3 0 1 -2.67
D 0 0 067 | 1 1 0 0 0.67

Equations of the searched limits in chemography are given automatically
by

A-067C=0
B-267C=>0
C=0

corresponding to the hatched region in Fig. 7B for basis ABD; limits in
affigraphy are

-0.67(D) 20 or (D) <0
-(D) + (E) > 0 or (E) > (D)

corresponding to the hatched affigraphy region in Fig. 7B for cobasis
(C)E). As noticed above, matrix F is then composed of the two non
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neighbouring columns (C) and (E) of the co-basis; rows of E and
columns of F are used. As an additional example, basis BCD gives the

tableau:

A B C D E
D) | -1 0 0 0 2.5
E) | o0 0 0 0 1 A B C
D 1 0 0 1 25 | 1 0 0
B 4 1 0 0 9 |4 1 0
C 15 |0 1 0 225| -15 | 0 1

the corresponding regions are respectively

A>0
4A+B=0
-1.5A+C=0

for the chemography and

-(D)=0o0r(D)<0
-2.5(D)+(E)=0

for the affigraphy (Fig. 7G). The complete set of bases can be explored in
this way. All the corresponding regions of the chemography and the
affigraphy were represented in Fig. 7A through J. A synthesis was given
in Fig. 8A and 8B. The procedure described may be used to draw the
restriction of the affigraphy for a chemical system with specified
composition for which a limited number of chemography bases is
considered: only a limited number of co-bases will exist in the affigraphy;
transported in the (P, T) diagrams, this will give so-called pseudo-sections
(e.g. Guiraud, Holland and Powell, 1990).

148




APPENDIX A3: CO-ORDINATES OF THE ORIGINS OF (P, T)
DIAGRAM AND AFFIGRAPHY IN THE DIFFERENT SYSTEMS

Q is the origin of k-dimensional affigraphy and O the origin of two-
dimensional (P, T) plane; k phases have been chosen to define the
affigraphy co-basis. Let us first calculate the co-ordinates of O in the
affigraphy. The K affinities of a point in affigraphy are given by

. R R . n ., .
A=g-p=g(P T)- j§1c'ng(P, T)
= (U +PV-Ts) - Zd(U+PV-Ts)
=u- Zdu'+ (V- ZdVIP- (s - 2T
where the U', v' and s' are the molar internal energy, volume and entropy
of phase i, and the coefficients ¢/ are given by the composition matrix C

for a chosen n-phase basis. The origin O is defined by P = T = 0. The
above relations give the co-ordinates of O in the affigraphy system:

Ai = ui - lgcﬁu‘
The pressure axis is given by T = 0, so by:
. . n o, . . n . .
A=U- j§1c',-uJ + (V' - j§1c',~v‘)P
The k co-ordinates depend on one parameter, P. By eliminating P among
the k equations, k - 1 equations among the A', or k - 1 hyperplanes, are
obtained and this defines one basic vector P. By subtracting the origin

contribution in the last equation, P vector is paraliel to the vector whose
co-ordinates are:

P =V- J%C'JVj

This vector may be normalized to one, defining vector <P>. Similarly, the
temperature axis is given by P = 0, so by:
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A=u- lgc}u’ -(s'- jgcgsj)T

By eliminating T among the k equations, k - 1 hyperplanes are obtained
and this defines one basic vector T. By subtracting the co-ordinates of
the origin, it is parallel to the vector whose coordinates are

. . n .
- - 1 - "
T=-(s j§1c',s‘)
This vector may also be normed to one in vector <T>.

Reciprocally, the affigraphy origin and basic affinity vectors may be
projected onto the (P, T) plane. The co-ordinates Po and T, of the
affigraphy origin are the scalar products of OQ = - QO with <P> and
<T>. Similarly, the basic vectors <A™ may be projected onto (P, T) plane
by use of scalar products with basic vectors <P> and <T>. Some
particular interest may be found to asigning a temperature and a
pressure to any point in the affigraphy frame by projecting the current
point onto the (P, T) plane. The hyperplane containing an affigraphy
point of co-ordinates A' and perpendicular to vector <P> has the
equation:

OM.<P>=P
(0Q + QM).<P> =P
(QO0 +A).<P>=P
or
P-Po=A<P>= é A .<P>'

and a « unit affinity pressure content » may be defined; it is given by the
co-ordinates of vector <P>. Similarly, temperature T may verify an
equation of the type:
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and a « unit affinity temperature content » may be defined. It is given by
the co-ordinates of vector <T>. The above relations may be defined for
each choice of co-basis, i.e. for a set of k absent phases.

Vectors <P> and <T> may be added as new columns to the reaction
matrix and represented in the basis of the k unit affinity vectors; R matrix
will then be k x (n + k + 2). By writing a composition matrix C from the
new reaction matrix R, one gets a (n + 2) x (n + k + 2) matrix. In affinity
space, vectors are defined by the absence of a phase. It is natural to
define <P> and <T> vectors as « absent volume » and « - absent
entropy » « phases ». In the new composition matrix, a new n + 2
dimensional basis will be composed of n phases plus two « phases »
representing « pure volume » and « pure entropy », pure in the sense
these volume and entropy are not associated to matter. Notice
conversely that the basic phases have no volume nor entropy. The
remaining k phases will be defined by their composition and also now by
their volume and entropy. Actually, the corresponding volumes (or
entropies) are not their own volume (or entropy) but that corresponding
to the reactions that synthesise them from the basic phases. It gathers
all volumic (entropic) data from all the phases.

In another approach, vectors <P> and <T> may be chosen as part of
the co-basis of the k-dimensional space; there will be n + 2 remaining
phases. In the new composition matrix, volume and entropy will be
outside the basis and will be defined by their n + 2 components along the
basic phases, n + 2 in number.

Vectors <P> and <T> in affigraphy may also replace two affinity vectors
either among the unit vectors of the co-basis either among the remaining
n vectors. Two phases will be omitted. Similarly, composition matrices
will be written and in that case n-dimensional (not n + 2) composition
spaces will be defined. In that case, volume and entropy will be
represented by the phases themselves.

By changing the origin of temperature and pressure scales, one could
choose Tq = Pg = 0; in that case all affinities are zero with P and T. In
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the generalized composition space (composition + volume + entropy),
the volume and entropy of a system are zero when the composition
variables X's are also zero. Conversely, the origin for V and S couild differ
from the origin of composition variables; in that case, (V, S) diagrams
could be drawn by a similar method as for (P, T) diagrams, by cutting the
structure given by the composition vectors by two-dimensional plane.

In affinity coordinates, the orientation of hyperplanes with respect to the
basic affinity vectors are merely function of the stoichiometric
coefficients. If a two-dimensional restricted co-basis {A®, A%} is chosen,
the orientation of a univariant line (corresponding to one hyperplane) will
also be a function of the composition coefficients. Generalization of
Clapeyron relations may thus be written. If now vectors <P> and <T> are
added to the vectors in the affinity space, the orientation of the
hyperplanes with respect to them will give the ordinary Clapeyron
relations; they will involve the volume and entropy variations of the
corresponding reaction as may be read in the generalized reaction
matrix where <P> and <T> are treated on a equal footing as other
(absent) phases. '

APPENDIX A4: ALGEBRAIC PROBLEMS ASSOCIATED TO SEVERAL
TYPES OF PHASE DIAGRAMS

The different sets of variables and corresponding phase diagrams are
embodied in different algebraic problems (Table 6). The equations of the
regions of chemography directly appear in problem (P) defined in Sect. 2
of the main text; here (P) will be called (P4). The equations of the
hyperplanes of the chemical potential diagram appear in the dual
formulation (P4*) of (P4), see Appendix A1. Similarly affigraphy and
reaction space, and corresponding variables A and &, respectively
appear in two another problems (P2) and its dual (P.*). In (P2) one must
find row vector A (n + K) fulfilling

Min A.x,
RA =3
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A>0

where column vector x, (n + k) is fixed. For a specified choice of P and
T, the n + k values of the g"s are known, k of them are independent,
allowing the assigning of k independent chemical affinities in constant
vector QT; from there appears the structure of affigraphy. In dual problem
(P2*) one looks for £ (k) such that

Max a.&
ETR>-xo"
(&)

(€) means that no sign constraint holds; A = g - p is supposed to be
known for k components like in (P,); similarly, x, is given. The last
problem gives the structure of reaction space. For (P;) and (P.*)
exclusion relations hold:

A(X+RE)=0
which is the same as
(@-n)x=0
for the first group of problems. Similarly to what was done for (P4) and

(P4%), (P2) and (P,*) may be combined in the following problem with no
extremum condition: find A and § such that

T T

RA =a

A>0

T T
g.RZ-Xo
A(x,+R.£)=0
(€)

The relations between the different problems (P,), (P,*), (P,) and (P,*)
may be described in terms of the status of the components. In (P¢) n
constraints on n inert phases are given first (by the c's); the n + k
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specified values for the g's at T and P refer to k independent conditions
on the mobile phases (the use of phases is equivalent here to that of
components that are represented by phases in the bases). Both
constraints are needed to completely characterize the state of
equilibrium. (P,) is associated to the case where the role of the previous
constraints is exchanged in the matrices; k constraints on affinities for
mobile phases are given first (by the a’s); n + k values are specified for
the initial composition, from which n are independent (Table 6 in the
main text).

Combined type diagram (p, X) is in correspondence with the
mathematical programming problem written in Appendix 1; at given P
and T, m « mobile » and i « inert » phases are defined (m g's and i ¢s
are given); one must find x and p such that

Cx=c¢
x>0
uC=<g
(@-uC)x=0
(B

the dimensions of vectors x and g and of matrix C are i, m and (i, i + m)
respectively. The dimensions of the matrices operating on x and on p
may be changed to simulate various cases of inert and mobile
components; the different boundaries between domains in (x, p) space
may be projected onto lower-dimensional spaces. The different problems
discussed in the present Appendix may also be derived by means of
Legendre transform (Connolly, 1990).
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