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CAPTIONS OF TABLES AND FIGURES
CAPTIONS OF TABLES

TABLE 1

Correspondence between bases and cobases for affigraphy region n° |
(labelled by *) in Fig. 26B. The different stability levels are indicated.
Different sets of bases may be obtained in chemography regions 1 to 7
(Fig. 26A); the bases are rewritten in the corresponding columns 1 to 7
of the table. By reading the columns vertically, the list of bases for each
chemography region is obtained with their stability index; intensive
parameters correspond to region | of affigraphy. The relative positions of
the Gibbs free energy of the phases are represented in Fig. 26C.

TABLE 2

Characteristic numbers for phase diagrams, depending on the value of
k; the numbers are related to points, lines and domains respectively;
numbers of affinity vectors and stability levels are given for each
geometric item.

TABLE 3

Stability « successions » (or sequences) of points along univariant lines
in the case k = 5. The four points follow in successive order along each
univariant line. To each point is attached three affinity vectors whose
positive or negative part is concerned. All the possible sequences are
obtained by geometric transformations from one single sequence; use is
made of the symmetries with respect to the varieties defined by all
possible groups of basic affinity vectors. Sequence number one
corresponds to that on A4, Fig. 39A, and has been chosen as starting
one. The others are obtained by symmetries on affigraphy vectors as
explained in the text. Sequence number 11 is the monotonic sequence
that might also be chosen as the starting one; sequence 6 corresponds
to it in reverse order (so are associated sequences 2 and 4 and so on).
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TABLE 4

Number of affigraphy vectors whose sign changes when a linear variety
of dimension p (horizontal axis) is crossed along a linear variety of
dimension q (vertical axis). The varieties are themselves defined by
groups of affigraphy vectors. The numbers express the generalized
stability level changes of the multi-dimensional domains.

TABLE 5

Correspondence between the different types of diagrams:
chemography, affigraphy, chemical potential saturation diagram, reaction
space. Two operations are responsible for the correspondences:
combinatorial duality (a set of phases is replaced by the supplementary
set with respect to the whole set; vertical axis; the dimension is changed)
and geometric duality (a variety of dimension p is replaced by a variety
of dimension m - p where m is the dimension of the space; horizontal
axis; the dimension is unchanged). The basic diagrams are labelled A, B,
C and D. Additional operations result in composite diagrams: - horizontal
substitution of one intensive / one extensive variable (dimension
unchanged) leads to composite diagrams | (1, x; dim. n) or Il (A, &; dim.
k), - vertical addition of diagrams lead to integrated n + k diagrams, Ill (u,
£), IV (x, A), V (x, £), VI (A, u). The names of the pertinent variables are
indicated in the table so are the constraints for the basic diagrams A to
D. Corresponding algabraic problems are defined in Table 6.

TABLE 6

The different types of linear programming problems corresponding to
the different choices of variables and constraints. Basic problems are
labelled P, and P, and their dual counterparts are P* and P,*
respectively. In order to solve P4 or P1* the knowledge of vector ¢ (dim.
n) and of vector g (n + k) are requested; similarly, in order to solve P, or
P,* the knowledge of x, (n + k) and of a (k) -k stands for the k
independent reactions- is requested. When going from one problem to
its dual form, the minimum condition is replaced by a maximum.
Exclusion relations relating variables in duality are indicated. Problems 1
and 2 may also be expressed with no optimum criterion but with the help
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of all the constraints and the exclusion relations (second column). Refer
to Appendix A4.

TABLE 7

Nature of the different geometrical operations (projections /
intersections) in the n + k dimensional composition and affinity spaces
allowing the definition of chemography, affigraphy, chemical potential
space, reaction space and four other « residual » diagrams.

TABLE 8

Nomenclature of different « solutions » of phase diagrams according to
the nature of information available.
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CAPTIONS OF FIGURES

FIGURE 1

Figure 1A (P, T) diagram for a simple 1 + 2 system of H,O type (one
component, three phases: liquid, solid, vapor). One invariant point, three
univariant lines, three two-dimensional domains. No scale.

Figure 1B Three-dimensional affigraphy for a simple 1 + 3 system, the
sulfur system (S,, Sg, S, S,). One invariant hyperpoint Q, four affinity
phase absent vectors. By intersecting the affinity vectors by a two-
dimensional plane, a (P, T) diagram is obtained: three invariant points
limiting one closed domain and three open ones. No scale.

FIGURE 2

Points and hyperplanes of the chemography; an example on a 3 + 3
system. Positions of points and equations of hyperplanes are given by
composition matrix C as explained in the text. For example, the equation
of hyperplane (here line) BF in basis ABC is A-.5C = 0.

FIGURE 3

Points and hyperplanes of the affigraphy corresponding to the example
of Fig. 2 (3 + 3) system; positions of points and equations of hyperplanes
are given by R matrix as explained in the text. For example the equation
of hyperplane (here plane) (C)(D) in cobasis (D) (E) (F) is A® - 0.54® =
0 also written (E) - 0.5(F) = 0. The intersection of plane (C)(D) with plane
(E)(F) is line A® = 0.547. The origin of the affigraphy is named Q.

FIGURE 4

Figure 4A Affine representation of the affigraphy for the 3 + 3 system of
Fig. 2 and 3; the figure is obtained by cutting the affinity vectors of Fig. 3
by the hyperplane £ Al = 1. The positive part of an affinity vector gives a
black point in the intersecting hyperplane and the negative part a white
point.
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Figure 4B Convex polyhedron corresponding to the affigraphy of Fig. 3;
the polyhedron is formed with the extremities of the affinity vectors as
apices. The important is the direction of the vectors, not their lengths and
these may be changed so that the polyhedron is convex or drawn on a
hypersphere. The construction of a convex hyperpolyhedron is founded
on the affigraphy vectors in the general k-dimensional case. It is a
complicated task not discussed here. The affine representation of Fig.
4A corresponds to the upper horizontal face of the polyhedron.

Figure 4C The polyhedron of Fig. 4B may be deformed so that it has a
cylindrical shape.

Figure 4D Another affine representation of the affigraphy (cf. Fig. 4A). It
corresponds to the cutting of the affigraphy by the hyperplane £ A = -1.
When compared to Fig. 4A, black and white points are permuted.

FIGURE 5
Figure 5A Total modal space for a three phase system (variables x,, X,
and x.); n = 1, k = 2, composition matrix C is

A B C
A |1 1 |1

Variety V (C.x = ¢) is here a two-dimensional plane; perpendicular
variety W,, a line, is also represented. Initial composition x, belongs to V
and may be pointed out on the diagram. Systems with one single phase
among A, B and C correspond to the intersection of V with the co-
ordinate axes.

Figure 5B Vectorial chemography corresponding to the system of Fig.
5A. It is obtained by projecting the basic phase vectors A, B and C of
Fig. 5A onto the variety W,. One independent chemical variable is
needed, for instance x,. The three phases A, B and C project in the same
point. Total content ¢ and initial composition x, project at the same
point; here this point is also the same as projected A, B and C phases.
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Figure 5C Total affinity diagram; variables A%, A®, and A®. Basic co-
ordinate planes represent absent phases (A) (B and C present), (B) (A
and C present) and (C) (A and B present). Variety V', equation RA" = a',
is here a line; initial affinity Ao also belongs to V. Variety W is
perpendicular to V' and contains Q. Here R is

(A) (B) (©)
B) |1 1 o
©) |1 0o |1

Figure 5D Affigraphy of the system, obtained by projecting the basic
vectors (A) (B) and (C) onto plane W',. The projection is independent of
the initial affinity Ao which projects at the same point as a. The three
basic affinity vectors are the column vectors of R matrix.

FIGURE 6
Figure 6A Chemography of a 3 + 2 system. Corresponding C matrix is

A B C D E
A 1 0 0 1 2.5
B 0 1 0 4 1
C 0 0 1 1.5 1.5

Figure 6B Affigraphy related to Fig. 6A. Chemical reaction matrix is:

(A) _(B) (C) (D) (E)
D)|1 -4 -15 1 0
(E) |25 4 -15 0 1

FIGURE 7
The corresponding regions of chemography and affigraphy are
represented together (cf. Fig. 6A and B). In this simple example the list
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of bases and associated cobases and the corresponding regions of
chemography and affigraphy may be decided by mere inspection of the
figure. The general method to find out the associated regions is by
parametrization of the simplex tableau as explained in App. 2. The ten
bases are: ABC, ABD, ABE, ACD, ACE, ADE, BCD, BCE, BDE and CDE;
they are systematically explored. The corresponding cobases (D)(E),
(C)E), (C)D), (BXE), (B)D), (B)(C), (A)E), (A)(D), (A)XC) and (A)(B) are
discovered and represented by corresponding regions of the affigraphy
(Fig. 7A through J).

FIGURE 8
Summary of Fig. 7 in the form of two associate diagrams.

Figure 8A Chemography. Within each domain of the chemography, the
composition of the global system may be generated by several bases.
Each of these bases corresponds to a domain of the affigraphy; by
summing these affigraphy domains, a restricted affigraphy for each
chemography domain is obtained and represented in insert in the
chemography domain; in the insert, the names of the chemography
bases could be gained by the sole knowledge of the affigraphy vectors;
they are written here for clarity.

Figure 8B Affigraphy. Conversely each affigraphy domain corresponds to
several bases of the chemography that are represented as insert.

FIGURE 9

Figure 9 General representation of hyperplanes and vectors of the
affigraphy. Each chemical reaction corresponds to one hyperplane
defined by k - 1 vectors taken among the n + k vectors of the affigraphy.
If AP is the unitary dissociation affinity vector of phase P,,, hyperplane
containing vectors A®M APk corresponds to the chemical reaction that
brings together all the phases but the k - 1 phases P,,...P, ;.

FIGURES 10to 19

Corresponding chemographies and affigraphies for different values of n
and k. The relevant C and R matrices are specified. The affinity vectors
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of the dissociation reactions of the phases are simply iabelled by the
names of the phases, between brackets. For each case of (n, k) values,
chemography is illustrated in Fig. A, vectorial affigraphy in Fig. B, an
arbitrarily chosen affine affigraphy in Fig. C (ruled by =A® = 1), and a
possible affinity polyhedron in Fig. D. It may happen (k = 4) that only an
affine representation of the affigraphy is possible. Conventions on black
and white points is the same as explained in Fig. 4. Arrows are used for
affinity vectors. Unit value for affinity vectors are not indicated; the length
of these vectors matter less than the directions.

Figure 10. n=1,k=2.

Matrix C:
A B C
A 1 1 1
Matrix R:
(A) (B) ©)
(B) (-1 1 0
(C) [A1 0] 1

10A: chemography; 10B: affigraphy; 10C: affine affigraphy

Figure 11.n=1,k=3

C:
A B C D
A 1 1 1 1
R:
(A) (B) (9] (D)
(B) -1 1 0 0
(C) -1 0 1 0
(D) -1 0 0 1
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11A: chemography; 11B: affigraphy; 11C. affine affigfaphy; 11D:
polyhedron. Letters A, C and D refer to tetrahedron faces (B)(C)(D),
(A)(B)(D) and (A)(B)(C) respectively.

Figure 122.n=1,k=4

R:
(A) B) (C) (D) (E)
B) |-11 1 0 0O O
|11 o0 1 0O o
(Dy|1 O 0 1 0
(E) |11 O 0 0 1

12A: chemography; 12B: affine affigraphy.

Figure 13:n=2,k=2
C:
A B C D
A |1 0
B |0 1 2 8

(0]
N

R:

(A) B) (C) (D)
(C) |-8 -2 1 0
(D) |-2 -8 0 1

13A: chemography; 13B: affigraphy; 13C: affine affigraphy
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Figure 14.n=2, k=3
C:
A B C D E
A |1 0 8 5 2
B |0 1 2 5 8

R:

€18 -2 1 o0 o
| 5 0 1 0
Eyl2 -2 0 0 1

14A: chemography; 14B: affigraphy; 14C: affine affigraphy; 14D:
polyhedron.

Figure 15:n=2, k=4

R:

(A) _B) () (D) (E) (F)
C) |4 1 1 0 0 0
|3 -2 0 1 0 0
E)|2 -3 0 0 1 0
F)|-1 4 0 0 0 1

15A: chemography; 15B: affine affigraphy.
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Figure 16:n=3,k=4

C:
A B C D E F G
A 1 0 0 6 3 3 2
B 0 1 0 1 3 6 3
C 0 0 1 3 4 1 5
R:

A B © ® () (F) (G)
o |6 -1 -3
(E) |3 -3 4
F) |3 6 -
G) |2 -3 -5

o =~ O O
-~ O O O

O O O -
o O -~ 0O

16A: chemography; 16B: affine affigraphy

Figure 177.n=4,k=2

C
A B C D E F
A 1 0 0 0 6 3
B 0 1 0 0 2 2
C 0 0 1 0 1 2
D 0 0 0 1 1 3
R:

A B (€ O () (F)
E) |6 2 -1 - 1 0
Fl3 2 2 -3 0 1

17A: chemography; 17B: affigraphy; 17C: affine affigraphy.
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=3

=4,k

Figure 18: n

(B) (C) (@ (B) (F) (G)

(A)

(E)

18D:

18C: affine affigraphy;

18B: affigraphy;

18A: chemography;

polyhedron.

=4

=4,k

Figure 19: n

B) (C) (O (B) (F) (G) (H)

(A)

(E)

19A: chemography; 19B: affine affigraphy
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FIGURE 20

In Fig. 20 to 22, examples are given of associated chemographies and
affigraphies, for three different arrangements of the chemography of a 3
+ 3 system. For each example, the chemography, affigraphy, affine
representation of affigraphy and representative polyhedron are given in
successive order. A first example of a 3 + 3 system has already been
studied in Fig. 4. In Fig. 20, the hexagonal arrangement is chosen. It has
proved convenient in a first step to use chemical elements a, b and ¢ as
references in the composition matrix, and then to take sets of three
phases as new bases; a new C matrix is obtained by pivoting, from which
a R reaction matrix is then constructed.

Figure 20A: chemography

A B C D E F
a 3 1 0 0 1 3
b 1 3 3 1 0 0
c 0 0 1 3 3 1
Let us choose basis ACE; matrix becomes
A B C D E F
A 1 .43 0 -.29 0 .86
C 0 .86 1 43 0 -.29
E 0 -.29 0 .86 1 .43

Figure 20B: affigraphy; from the preceding matrix it is easy to derive a
matrix of chemical reactions

(A) (B) (©) (D) (E) (F)

(B) 43 1 -8 0 29 0
(D) 29 0 -43 1 -8 0
(F) -86 0 29 0 -43 1
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Figure 20C: affine affigraphy

Figure 20D: polyhedron. Indifferent crossing points on line (D)(F) are
represented (see Sect. 6.4). They correspond to intersections of plane
(D)(F) with the planes defined by pairs of vectors among (A), (B), (C) and
(E). The six indifferent crossing points on line (D)(F) (or plane (D)(F)) are
thus (-DF, -A-B)i, (-DF, -AC),, (DF, -A-E)., (D-F, -B-C)i, (DF, B-E),
(DF, -C-E)i.. Each of the vectors in the four vector set of one indifferent
crossing point has a positive or negative sign depending on the
corresponding affinity vector sector. In order to construct the points,
horizontal plane BDF has been used so as its intersections with the
negative vectors (-A), (-C) and (-E). An example is given for point (DF, B-
E). by use of vectors (B) and (-E). Line A (AF, DC), has also been
represented.

FIGURE 21
Pentagonal arrangement for a 3 + 3 system
Figure 21A. chemography

A B C D E F
a 3 1 0 0 1 1
b 1 3 1 0 0 1
D 0 0 1 1 1 1
Basis ABD is chosen and matrix becomes

A B C D E F
A 1 0 -12 0 37 .25
B 0 1 37 0 =12 .25
D 0 0 1 1 1 1

Figure 21B: affigraphy; the matrix of chemical reactions in co-basis (C)
(E) (F) is easily derived from the preceding matrix
Figure 21C: affine representation of the affigraphy
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Figure 21D: representation polyhedron; (A), (B), (C), (D) have all a
negative co-ordinate on (F); line (A) (B) lies between point (D) and line
(C)E) contrary to the chemography where EC is between D and AB; the
polyhedron is a pyramid with pentagonal basis.

FIGURE 22
Quadrilateral arrangement for a 3 + 3 system
Figure 22A: chemography

A B C D E F
a 3 1 0 1 .8 1.6
b 1 3 1 0 1.2 8

0 0 1 1 8 8

Similarly to what is done in the preceding figures a new composition
matrix is computed for basis ABC, from which the chemical reaction
matrix for co-basis (D) (E) (F) is derived but not reported here.

Figure 22B:. affigraphy
Figure 22C: affine representation of the affigraphy
Figure 22D:. representation polyhedron

FIGURE 23

Affigraphy of simple 1 + 2 system; in the region in-between (C) and
negative part of (A) noted (-A), phase A is the most stable; B is less
stable, then C; this is noted A° < B' < C2 In the other region identified by
a star the sequence is B° < C' < A% corresponding co-bases are listed:
(AC), (A-B), (-B-C).

FIGURE 24 4

Affigraphy of a 1 + 3 system; in the region identified by the arrow the
following phases may appear in increasing metastability order: A° < D' <
B? < C°. Affigraphy planes intersect along other vectors than the basic
affinity vectors. These define « indifferent crossing (i.c.) points » as
discussed in Sect. 6.4 below. Such points, for instance (-A-B, CD),. are
represented in plane (B) (C) (D).
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FIGURE 25
Stability sequences for a 2 + 2 system.

Figure 25A: chemography. 25B: affigraphy. The value of overall system
affinity is chosen in the region comprised between (A) and (D). For this
region, the list of the generalized co-bases, i.e. with possible negative
part vectors, is indicated. The correspondence between bases and
cobases for each chemography region, and for the chosen affigraphy
region, is given in the following table. The stability of the bases is
determined by the number of negative vectors of the corresponding co-
basis:

cobases bases
region AB region BC region CD
(AB) cD°
(A-C)) BD' BD'
(AD) BC®
(-B-C) AD? AD? AD?
(-BD) AC’ AC'
(CD) AB°

With the use of this table, sets of bases are written below the
chemographic bar with their stability index. In the composition domain
between B and C two subdomains may be defined, the precise location
of the limit is unknown. Location of point «? » depends on the
thermodynamic values of the phases. On the left side (B side) basis BD'
is more stable than AC'; on the right side (C side) AC' is more stable
than BD'. In Fig. 25A, an example of possible relations between the g's
of the phase associations is represented along the vertical axis. This
allows to locate point « ? » in the BC domain.

Figure 25C Graphical representation of basis stability sequences in each

affigraphy region. Three bars are added to the ordinary stable
chemographic bar. They represent possible phase associations with
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higher free energy. For instance, in the affigraphy region between (-C)
and (D) and for composition between A and B, association of A and C
has metastability level equal to one (dashed lower intermediate bar), and
association of A and D has metastability level equal to two (dotted higher
bar).

FIGURE 26

Stability sequences for a 3 + 2 system (cf. Fig. 6 to 8). The procedure is
the same as for Fig. 25: 1) choice of affigraphy region marked by a star *
(region 1) and list of generalized cobases and associated bases with
their stability index (Table 1). 2) writing of the list of possible bases with
their stability indices for each of the 7 chemography regions (the stability
sequences all fit to the chosen affigraphy region).

Figure 26A: chemography

Figure 26B: affigraphy corresponding to Fig. 26A.

Figure 26C. possible position of the G planes for affigraphy region
number |. This allows to rank the bases with the same intermediate
stability level of 1.

FIGURE 27

Graphical representation of basis stability sequences in each affigraphy
region. For a given composition and a given affigraphy region (from | to
X) the possible bases with their stability level may be determined from
the figure. They are represented in four triangles, one for stable bases
(stab. level 0), one for doubly metastable bases (stab. level 2), and,
because of the relatively large number of singly metastable bases, two
triangles are given in order overlapping stab. level 1 bases are clearly
distinguished. Domains corresponding to stable bases are filled by a
solid line, to singly metastable bases by a dashed line and to doubly
metastable basis by a dotted line. In some cases, two bases with same
stability level one are accessible to the same composition domain. The
hierarchy between them is given by phase thermodynamic data. Bases
with stab. level 0 exchange with bases with stab. level 2 in the regions
that are symmetric to the origin; in that case bases with stab. level 1 are
unchanged.
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FIGURE 28

Construction of (P, T) plane by affigraphy intersection and notation of
points and lines. The illustration is artificial because one is limited by
dimension 3; the purpose is for general understanding. The extremity of
the k-dimensional affinity vector of the system, a, (projection of n + k
dimensional total affinity Ai onto affigraphy space), describes a two-
dimensional surface in the affigraphy described by the two parameters P
and T. This surface can be approximated by a linear variety of two
dimensions: a plane. Some basic affinity vectors are represented; their
intersection with (P, T) plane will give the structure of the (P, T)
diagrams. The (P, T) plane may cut the positive or negative part of each
of the basic affinity vectors. The chemical reactions correspond to
hyperplanes defined by collections of k - 1 affinity vectors of the
affigraphy; the univariant lines of the (P, T) diagram are the intersections
of these hyperplanes with the (P, T) plane. In the collection of k - 1
vectors, the number of negative parts may be zero, one, two, ..., k - 1;
invariant points result from the intersection of k - 2 vectors (among the k
- 1 of the reaction) with the (P, T) plane. Similarly zero to k - 2 vectors
may be negative in the collection. A typographic type of line and point
must be chosen for each of these combinations. In the figure, the two
neighbouring points have stability level p and p - 1 respectively, and
univariant portions have stability level p, p - 1 and p - 2 respectively.

FIGURE 29

Examples of relations of affigraphy with (P, T) plane

Figure 29A In the case k = 2, the (P, T) plane coincides with the
affigraphy, reduced to two dimensions. The example is taken from Fig.
10 (one component, three phase system): the axes of affigraphy are A®
and A9, The affinites A® and A® are function of P and T and
conversely, P and T can be derived from A® and A: arbitrary P and T
axes are drawn in the figure (the location of the axes depend on the
thermodynamic values g@). P and T axes are straight lines in the
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affigraphy because of the linear dependence hypothesis of the g's on P
and T.

Figure 29B Case k = 5. Like in Fig. 28, the representation is artificial and
merely intends to illustrate the notations. Each univariant line is defined
by a set of four affinity vectors; the line contains four points defined each
by three vectors taken in the four vector set. Stability levels are defined
by the number of negative parts of affinity vectors; this number is
indicated and a special type of symbol is chosen for each type of point
and each type of univariant line portion.

FIGURE 30 A through G

Examples of (P, T) diagrams obtained by the intersection of the
affigraphy by a two-dimensional plane in the case k = 3, n = 1 (cf. Fig.
11). Four cases are portrayed according to the position of the plane:
arbitrary of first type (three positive vectors, one negative, Fig. 30A),
parallel to one affinity vector (30B), parallel to two vectors (30C),
arbitrary of second type (three negative negative vectors, one positive,
30D). Points and line portions are labelled according to corresponding
affinity vectors. The portions between the different types of points taken
two by two are stable, singly metastable and doubly metastable
respectively and three types of lines have been chosen.

Thermodynamic degeneracy occurs when the intersecting two-
dimensional plane contains the hyperpoint Q (Fig. 30 E, F, G). The plane
may contain zero vector (30E), but in addition to Q, it may contain one
(30F) or two (30G) affinity vectors.

Figure 30E (P, T) plane contains Q; all univariant lines are present, but
they have but one invariant point, Q itself. Only the semi-infinite parts of
Fig. 30A are present, the parts between the invariant points are reduced
to zero. The stability level of the line portions shifts from the level at one
extremity to the level at the other extremity of the lines of Fig. 30A.

Figure 30F (P, T) plane contains Q and vector (B). Line (B) is at the

same time (AB), (BC) and (BD) that coincide. Other lines are as in Fig.
30E.
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Figure 30G (P, T) plane contains Q and vectors (B) and (D). Line (B)
coincides with all the lines that contain (B): (AB), (BC) and (BD); similarly
line (D) coincides with (AD), (BD) and (CD).

FIGURE 31

Another example of a (P, T) diagram obtained by the intersection of the
affigraphy by a two-dimensional plane; n = 3, k = 3, ¢f. Fig. 20. (P, T)
plane is parallel to the quadrilateral face of Fig. 20D polyhedron.

FIGURE 32

Projection of an hyperpolyhedron (n = 1, k = 5; six phases). The
hyperpolyhedron gathers the affigraphy information and thus that on all
possible phase diagrams. In the example, each apex is connected to the
five others. Invariant points correspond to groups of three phases and
univariant lines groups of four phases. The hyperpolyhedron indicates
how points and lines may be related.

FIGURE 33

Figure 33A An univariant line in a n + 4 system belongs to a three
dimensional hyperplane defined by a set of three affinity vectors, (A) (B)
and (C). The line is obtained by intersecting this three-dimensional
volume by the two-dimensional (P, T) plane. This cannot be represented
in the figure because in general the plane does not belong to the three-
dimensional volume. Examples of lines are given. Notations of
intersecting points and stability levels depend on the plane sector
defined by pairs of vectors (same rules as in previous figures). Two
univariant lines A4 and Ao are represented; A4 yields stability
succession 1 of Fig. 34, Ao succession 3. A and A; define plane (P).

An affine representation of the three-dimensional hyperplane may be -
obtained by cutting it by a two-dimensional plane; affigraphy itself may
be represented in a three-dimensional affine section. By inspection of
the two-dimensional planes, one determines the rules for noting the
intersections of an affine representation of the four-dimensional
affigraphy. Synthesis of the rules is given in Fig. 36 and the construction

174




of a (P, T) diagram with the k = 4 affine affigraphy method is given in Fig.
37.

Figure 33B Other intersections of univariant lines with one chemical
reaction three-plane set in the n + 4 system, yielding other stability
successions. Aq yields succession 2, Ao succession 5 and A3
succession 6 (synthesis in Fig. 34).

FIGURE 34

All univariant. line stability successions for n + 4 systems. The
~ successions may be found by the geometrical method illustrated in
previous figures, or by the operation of all types of symmetries of the
problem on one single succession.

FIGURE 35

Two examples of univariant loops for n + 4 system. The structure of Fig.
33A is cut by a two-dimensional plane containing the origin. Same
notations as in previous figures.

FIGURE 36

Rules for noting the intersections of the affine four-dimensional
affigraphy by two-dimensional planes. The invariant points of n + 4
systems may be obtained in two steps. First cut the affigraphy vectors by
a three-dimensional hyperplane. The resulting points are black or white
depending on the positive or negative part of affigraphy vector. Pairs of
black / white points define lines. Second, cut the preceding lines with a
two-dimensional plane. All types of lines and intersections are
represented in the figure; three types of invariant points come out
(stable, singly metastable, doubly metastable), also recognized by the
number of signs + or - in the letters for the points.

FIGURE 37

Example of the geometric construction of a (P,T) diagram fora 1 + 4
system. An affine tetrahedron in three-dimensional space (four black
points, an inner white point) is first obtained by intersecting the
affigraphy vectors with a three-dimensional hyperplane. Then the edges
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of this tetrahedron intersect a two-dimensional plane and this yields the
diagram. The two-dimensional plane is the horizontal plane
corresponding to the lower part of the figure below line A. The
intersection is determined by two associated two-dimensional
representations by use of descriptive geometry (Monge, 1800): vertical
projection above ground line A, horizontal projection below line A. Types
of invariant points and univariant line portions are determined according
to the rules exposed in the preceding figures.

FIGURE 38

Equivalence classes for k = 4 systems (Usdansky, 1987). The classes
are understood as resulting from the intersection of a polyhedron by a
rotating plane in three-dimensional space. The three-dimensional
polyhedron results from a (first) intersection of the affigraphy by a three-
dimensional hyperplane. By intersecting the plane, pairs of polyhedron
apices of different stability level will give rise to invariant points in the (P,
T) diagram. The rotation of the (P, T) plane does not change the
intermediate stability level whereas the most and least stable level points
are interchanged in correspondence with Usdansky's classes. Point
symbols as in Fig. 34.

FIGURE 39
Figure 39A and B

The affine four-dimensional restriction of the chemical reaction
hyperplane of the n + 5 systems is a tetrahedron. Univariant lines are
obtained by cutting the tetrahedron by one-dimensional lines. Two
examples are given. In Fig. 39A the lines yield stability successions 1
(A1) and 7 (Ap) of Fig. 40, in Fig. 39B successions 10 and 8. Similar rules
as in previous figures; captions for points and lines in Fig. 40.

FIGURE 40
Univariant line stability successions in n + § systems. Succession 1
corresponds to Ay (Fig. 39A). All successions are given in Table 3.

FIGURE 41
Thermodynamic degeneracies for k = 4, 5 systems.
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Figure 41A k = 4 systems; the degeneracy corresponds to the
intersection of a univariant line A with one affinity vector in Fig. 33A.
Next step when A contains Q. In this final situation, there are two types
of univariant lines left.

Figure 41B k = 5 systems; degeneracy when univariant line A cuts an
edge such as (B)(D) in Fig. 39; next step when A contains a point; next
step when A contains Q. All degeneracies may be obtained by skipping
1, 2, ..., k - 2 portions on the univariant lines represented in Fig. 34 and
40. No special symbols are chosen here to represent these particular
invariant points resulting from the merging of two or more ordinary
invariant points. For instance point (B) is here kept as a black point. In
the final case where the univariant line contains Q, there are three cases
of line types left.

FIGURE 42

Rules for univariant line portion and adjoining invariant point symbols
illustrated on a k = 4 system. a) Portion comprised between points AB
and B-C is AB-C. b) After crossing point B-C, next portion is -AB-C; sign
of vector A, not included in the definition of point B-C has been changed.
c¢) Next point on the line may be either -A-C or -AB: vector -A must take
the place either of B or of -C. Brackets omitted.

FIGURE 43

Two-dimensional stability patterns for k = 3. A two-dimensional domain
results from the intersection of three affigraphy (hyper)planes with the
(P, T) plane, giving rise to three lines and three invariant points.
Depending on the stability levels of the points and lines, eight
« patterns » are obtained. The stability levels of the two-dimensional
domains are indicated on two examples. The corresponding bases
(parageneses) are contoured by lines of special type depending on the
stability level.

FIGURE 44

Two-dimensional stability patterns in the case k = 4.

Figure 44A The two-dimensional domains result from the intersection of
four affigraphy hyperplanes with the (P, T) plane, giving rise to four lines.
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Four lines define one closed quadrilateral, two triangles, four open three-
sided sectors, three open two-sided sectors and one open four-sided
sector (the domains are labelled by « 0 » or « ¢ » for open or closed, and
by a number for the number of lines).

Figure 44B Among the several possibilities to start with, the three apices
of one triangle have been chosen to be stable points; each point
corresponds to two affigraphy vectors. The stable paragenesis (ABCD) is
obtained inside the triangle. The same paragenesis is obtained in the
other domains, with other stability levels. The sixteen cases of stability
patterns are indicated. They correspond to the different sets of stability
levels for the six basic points of the four line, four-dimensional,
polyhedric cone. The complete set of absent phase letters with their
positive or negative sign in the two-dimensional domains is indicated
only for cases 1 and 5; in order to distinguish the stability level for each
domain, the letters are surrounded by a frame with a special type of line
for each stability level (see caption at the end of figure). In other figures,
the stability levels of the domains may be found by considering the
stability of the boundering invariant points.

FIGURE 45

Morey-Schreinemakers rule. Assemblage (P, Pi), phases Py and P
lacking, is bounded by curves (Pi;) and (Py). In the k-dimensional case
the n-present (k lacking) phase assemblage (Py, ..., Pi) is the convex
cone bounded by the k affinity vectors (Py)... (P).

FIGURE 46
Overlap rule: in the cone containing, or overlapping, (P;)...(Px) vectors,
corresponding phases P; ,..., Px are not absent since they are not

involved in the definition of the cone, whatever their sign. So they are
present (they are stably present when the negative part of the vector is
overlapped). This may be generalized in the k-dimensional frame.

FIGURE 47

180° rule. The vectorial sum of the affinity vectors is equal to zero. So in
the case k = 2, no angle in the plane is greater than 180° in the k-
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dimensional case, all vectors are not on the same side of any
hyperplane.

FIGURE 48

Univariant scheme. The rule is derived from the properties of R matrix. If
reaction (A) is written B + C = D + E, (B) and (C) are on one side of (A),
and (C) and (D) are on the other. In other words, one does not know
exactly where are vectors (C) and (D) but they are on the (A) > 0 side,
and the same for (D) and (E) on the (A) < 0 side. The univariant scheme
may be generalized to the k-dimensional space. If one chemical reaction
reads A, + A, + ... = By + B, + ..., the absent phases from the reaction
being Cy, C2, ..., Cxq, then vectors (Aq) (Az)... lie on one side of
hyperplane {(C4) (C>) ... (C«1)} and vectors (B4) (B.) ... lie on the other
side. In the case k = 3 of Fig. 20D, reaction (D, F) is written A+ C=E +
B; (A) and (C) are on one side of (D, F) plane and (E) and (B) on the
other.

FIGURE 49
When crossing hyperinvariant point Q all the signs of the affinity
vectors defining the k-dimensional sector (cone) are changed (Table 4).

FIGURE 50

The fundamental axiom is illustrated in the case k = 2. (A) and (B) are
on both sides of (C). On one side of (C), stable sector is (AC) and singly
metastable sector is (C, -B). On the other side, stable sector is (BC) and
metastable sector is (-A, C). In terms of present phases, B is stable on
one side of (C), sector (AC), where A is metastable (the sector also
corresponds to (B, -C)); A is stable on the other side of (C), sector BC,
where B is metastable (the sector also corresponds to (-AC)). See also
Table 4.

FIGURE 51

Figure 51A: Mirror image rule. The (P,T) plane is obtained by
intersecting affigraphy by a two-dimensional plane. The plane may be
observed from one side or the other, so the orientation of the co-ordinate
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axes in the plane is unknown. This leads to the two mirror image
possibilities.

Figure 51B Another « topological » rule in the case k = 2 (Hillert, 1985).
The number of phases in a domain is given by the number of negative
part vectors in the domain. In domain o, zero negative part, n + 2
phases; in domain 1 and B, one negative part, n + 1 phases; in domain
v, two negative parts, n phases.

FIGURE 52

Chemography and affigraphy in the case phase A’ is counted as
negative. A’ = -A of Fig. 6. When compared to Fig. 6, A’ is symmetric to
A with respect to BC in the chemography (Fig. 52A), and (A)) is
symmetric to (A) with respect to Q in the affigraphy (Fig. 52B).

FIGURE 53

Two-dimensional chemography (n = 3) seen as a thermodynamic
diagram. The points representing the phases may be seen as invariant
points (Fig. 53A) and the labelling of the hyperplanes (here lines, k = 2)
emanating from these points is made according to the adjoining phases
(Fig. 53B).
Figure 53B « Reactions » between absent phases (or « co-reactions »)
may be read on the chemography. A is on one side of line CE, B and D
on the other. So co-reaction CE is (A) = (B) + (D). The affigraphy vectors
are reported on both sides of line CE (Fig. 6A). Their position also allows
to write the co-reaction. Organization of ordinary reactions around
an ordinary invariant point is also portrayed to show the duality between
both representations.

FIGURE 54

Stability sequences (or « co-sequences ») for the cobases depending on
the chemography domains for a 2 + 2 system. The origin of the
composition space O is represented. By joining it to the phases A, B, C
and D of the chemographic bar, eight composition domains are defined.
In some of them (IV to Vill) one or two of the phases of the
corresponding paragenesis is in negative amount. For example, in
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region V, the following bases are defined: -A-B, -A-C, -A-D, -BC, -BD, -
CD:; corresponding co-bases are CD?, BD? BC? AD', AC', AB' (brackets
have been omitted for the co-bases). In each composition sector the
possible co-bases are indicated with their stability (or « co-stability »)
index; the figure in duality to Fig. 27 where the stability of the bases were
indicated depending on the affigraphy sector in a 3 + 2 system. For
example in sector V, co-bases (B)(C), (C)(D) and (D)(B) have co-stability
index equal to 2 and co-bases (B)(A), (A)(D) and (A)(C) have co-stability
index equal to 1. The co-stability indices are decided according to the
signs of the phases in the different composition sectors.

FIGURE 55

Degenerate system, n = 2, kK = 2; chemography (55A) and affigraphy
(55B). B and D coincide on the same side of A and C, so (A) and (C)
coincide stable to metastable.

FIGURE 56

Degenerate system, n = 2, k = 2; chemography (56A) and affigraphy
(56B); C and D coincide and A and B are on opposite sides of CD, so (A)
and (B) coincide stable to stable.

FIGURE 57

Degenerate system, n = 2, k = 3; chemography (57A), affigraphy (57B).
A and B coincide. So (C), (D) and (E) are coplanar. In order to represent
a possible phase diagram, an intersection of the affigraphy by a two-
dimensional plane is given (Fig. 57C). C, D and E are on the same side
of A and B, so the sequence of point stability levels (C), (D), (E) on
degenerate univariant line (CDE) is of the alternate type: stable (C) -
metastable (-D) - stable (E).

FIGURE 58

Doubly degenerate system, n = 3, k = 3; chemography (58A), affigraphy
(58B). B, D and E coincide, so (A), (C) and (F) are doubly coplanar, i.e.
colinear. Since indifferent phases A, C, F are on the same side of
degenerate phases, all affinity vectors (A), (C) and (F) have not the
same direction. On the two-dimensional intersection of the affigraphy
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(Fig. 58C), coincident invariant points (A), (C) and (-F) have not the
same stability level.

FIGURE 59

Doubly degenerate system, n = 3, k = 3; chemography (59A), affigraphy
(59B). B and D coincide, so as E and F; (A) and (C) coincide stable to
stable and they belong to the intersection of plane (EF) and plane (BD).
The intersection of the affigraphy by a two-dimensional plane (Fig. 59C)
gives another representation of this situation.

FIGURE 60

Doubly degenerate system, n = 3, k = 2; chemography (60A) and
affigraphy (60B). Phases A, D and C are colinear so as phases C, B and
E. (A) and (D) coincide stable to metastable, so as (B) and (E). In Fig.
60B only the stable portions of the reactions are represented.

FIGURE 61

Chemography and affigraphy in the case with solid solution fora 3 + 2
system; Figure 61A: chemography; D, phase, counted for one, possess
solution from Do to D4 represented by a portion of solid line. Figure 61B:
affigraphy; (A) and (B) vectors are variable according to solution
parameter a; for a = % phases Dy,, C and E are colinear (case of
degeneracy) and so (Aqz) and (Bi,) coincide (« singular » situation).
Because the indifferent phases A and B are on opposite sides of C, Dy,
E, the coincidence of (As2) and (By..) is stable to stable.

FIGURE 62

Chemography and affigraphy in the case with solid solution fora 3 + 3
system. Chemography (62A); solution D is represented by its end
members Dy and Dy and is counted for two phases. This is another
representation of Fig. 61 system. Affigraphy (Fig. 62B) is now three-
dimensional. The projection of affigraphy in the plane (Do) (D4)
perpendicular to (E) (Fig. 62C) better shows the symmetry of the system
with respect to (CE) reduced to (C). Vector (D42) that can be constructed
in intermediate position between (Do) and (D4) will be coplanar to (C) and
(E). In Fig. 62D, relations between neighbouring Fig. 62C invariant
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points are represented when the composition parameter has several
values i-di, i, i + 8i, i + 28i. Additional reactions (A), (B) and (C) are
represented only at the invariant point Pis;. When di goes to zero, these
reaction vanish. The collection of stable invariant points P define the
enveloppe for reaction R (Fig. 62E). Individual reactions for values of a
equal to i and j are straight lines R; and R; tangent to R in P; and P;.
Away from points P; and P;, lines R; and R; have an infinity of stability
levels and an infinity of metastable invariant points that cannot be
represented.

FIGURE 63

Chemography and affigraphy in the case with solid solution for a 2 + 2
system or equivalent (depending on the choice to represent the solution)
2 + 3 system. Chemography (63A). Solution C, may alternatively be
represented as solid line between Cq and C, or by the two end members
Co and C,. Affigraphy (k = 2 representation, Fig. 63B). (A) and (B)
vectors are variable according to solution parameter a. For a = 0 Co
coincides with A; D and B are on the same side of degenerate phases so
the indifferent phase affigraphy vectors (D) and (Bo) coincide stable to
metastable. Figure 63C: affigraphy, k = 3 representation. (D), (B) and
(C4) are coplanar. Figure 63D: intersection of Fig. 63C affigraphy by a
two-dimensional plane. Line (DC4) is singular line common to all
chemical reactions (BC) and (CD). It connects the two singular points (B)
and (D).

FIGURE 64

Synthesis of the different mathematical - thermodynamic spaces of
interest. Orthogonal n- and k- dimensional spaces are artificially
represented by perpendicular two-dimensional planes in order the
relations between the different spaces are clearly understood.

Figure 64A Composition and related spaces

The (n + k)-dimensional composition modal space is generated by the
unit vectors Py, ..., Pn representing each of the n + k phases. Closed
system constraint imposes the total composition x of the system verifies
C.x = C.xo = ¢. This defines k-dimensional variety V; X is the initial
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composition, chosen as the origin in V. Inside V, the initial composition is
fixed and x variable becomes £ = x - xo. The unit composition vectors
taken by groups of n + k - 1 define basic hyperplanes that give
boundaries to the V variety; this defines admissible reaction space,
intersection of positive orthant with V. Constraint C.x = 0 defines V,
containing the origin O. Optimal (equilibrium) x* will be a point at the
border, generally an apex, of reaction space V where k of the co-
ordinates will be zero and n non-zero.

Variety perpendicular to V and containting the origin is named W,. It is
n-dimensional; its equation is R.x = 0. The projection of total composition
x onto W is constant. It is ¢, which is also simply the intersection of W,
and V. The projections of the unit n + k vectors onto W, give the
structure of chemography. Space W is parallel to W, and contains initial
composition Xo; its equation is R.x = R.X,. In the figure, the points X, xo,
x* and ¢ are represented on the same line in order to show they have
the same projection ¢ in Ws. Actually they simply belong to the same
space, all points of which project in ¢ (including the optimal solution x*).
When X, is varied, the optimum composition x* also varies and describes
an n-dimensional space corresponding to the n non-zero coordinates of
the corresponding basis of n-dimensional composition space.

Once a basis is chosen to represent the composition of the system, a
specific writing for composition matrix C is derived, as well as a total
composition ¢, corresponding to a specific xo. This choice fixes the
definition of all spaces used. R is the reaction matrix corresponding to C.

Chemography may be cut by two-dimensional planes to simulate
systems with two inert components, the others being mobile. This kind of
diagram could be represented by a line inside W like (P,T) in affigraphy,
Fig. 64B.

Figure 64B. Total affinity and related spaces.

The n + k dimensional total affinity space is generated by the unit
vectors (P4), ..., (Pns) for each of the n + k phases. The constraint that
the intensive conditions on the system are fixed (k conditions in a),
imposes that the total affinity A of the system verifies RA" = RA, = a';
this defines an n-dimensional variety V’; A, is the initial affinity vector
chosen as the origin in V'. Admissible (stable) potential space is limited
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to the positive orthant; the basic hyperplanes defined by sets of n + k - 1
unit vectors give boundaries on the V' variety; the limit may be called
« saturation surface » (intersection of positive orthant with V). Constraint
R.A" = 0 defines V', containing the origin Q. The optimum equilibrium
affinity A* will be a border, generally an apex, of the saturation potential
surface. For this point k co-ordinates are non-zero and n are zero.

The variety perpendicular to V' and containting the origin Q is named
W,. It is k-dimensional; its equation is C.A" = 0. The projection of total
affinity A onto W'y is constant. it is a, which is also simply the
intersection of Wy and V'. The points A, A, and a are represented on the
same line in order to show they have the same projection @ in W'.
Actually they simply belong to the same space, all points of which project
in a (including the optimal solution A*).

The projections of the unit n + k vectors onto W’y give the structure of
affigraphy. Space W' is parallel to W'y and contains initial affinity Ao; the
equation is C.A" = C.A,. Inside affigraphy, physical a belongs to a two-
dimensional plane (P, T) here represented as a line. Chemical potential
surface belongs to space V' perpendicular to space W’y that contains
(P,T); it thus corresponds to fixed values of P and T. So the affinity
variables become potential in V' thanks to p = g(P, T) - A. When A is
varied, the optimum composition A* also varies and describes a k-
dimensional space corresponding to the k non-zero coordinates of the
corresponding co-basis of k-dimensional affinity space.

Chemical potential grid corresponds to the same situation as the (P, T)
plane and results from the intersection of affigraphy by a plane.

FIGURE 65
Different associated n + k -, n -, and k - dimensional diagrams
illustrated for a n = 1, k = 2 system (three phases A, B and C).

Figure 65A: modal space. The quantities of the three phases in the
system define the three co-ordinate axes. Pure A, B and C phases are
represented as unit vectors on the three axes. The positivity constraints
Xa, Xs, Xc = O limit the permitted modal space to the positive orthant.
Linear variety (plane) V represents the closed system constraint (Cx = 1;
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total quantity is one for simplicity). Vo, is plane parallel to V and
containing the origin (Cx = 0). X, is the initial content of the phases in the
system (Cx = Cx, = ¢ = 1 = constant). W is the linear variety (here a line)
perpendicular to V and containing x,. Wy is parallel to W in O. Line BC
corresponding to the absence of A is labelled (A) and similarly for lines
AC = (B) and AB = (C). W, cuts V in point M limiting a line portion OM
whose length is V3/3; OM corresponds to vector ¢ closed system
composition.

Figure 65B. Reaction space, obtained by the intersection of variety V
with the positive orthant (variable x), or equivalently by the intersection
of Vo with the constraints £ > - x, (variable £). The origin corresponds to
Xo in Fig. 65A and the co-ordinate axes to the extent of independent
reactions &g = Xg - Xos @nd &c = Xc¢ - Xoc. It is bounded by the lines (A), (B)
and (C) representing complete resorption of phases A, B and C. Unit
vectors of modal space perpendicular to basic hyperplanes (here lines)
may also be represented in reaction space; they are perpendicular to the
basic phase resorption lines.

Figure 65C. Chemography, obtained by projecting the basic vectors of
modal space onto W,. One independent chemical parameter is chosen:
Xa. The three unit phases A, B and C project in the same point together
with the initial composition x, and the total content of the independent
chemical component expressed in A content, ¢. The region at the left of
origin O (xa < 0) is forbidden in the stable representation.

Figure 65D. Total affinity space. The basic dissociation affinities A*, A®,
A° of the three phases are represented along the three co-ordinate axes.
Along each basic plane, phases A, B and C are present respectively
since A =0, i.e. u = g. Along each basic vector, two phases are present
and the third, corresponding to the axis A of the same name, is lacking.
Inside the positive orthant, the phases are absent, their dissociation
affinities are strictly positive. The linear variety V' RA" = RA,'= a'
containing vector A, is represented; two independent reaction affinities
are specified and V' is a line; W'y is perpendicular to it and contains the
origin Q. The total affinity of the system remains in V' and the projection
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aon W is constant. W’ is perpendicular to V' and contains A, and V' is
perpendicular to W' and contains Q.

Figure 65E: affigraphy. Projection of the three unit affinity vectors onto
plane W'y, parallel to V'. Total affinity A and initial affinity Ao project in
the same point a in the affigraphy. When the total affinity is in Q three
phases coexist. When it is along the basic affinity vectors, two phases
coexist, one is lacking; when it is in the sectors bounded by pairs of
affinity vectors one phase is present, two lacking.

Figure 65F. chemical potential saturation space. This space is obtained
by intersecting V' with the basic affinity (hyper)planes. At point O (face A
of the cube) saturation in phase A is obtained. Points <A®>, <A®> and
<A©> (unit affinities) project at the same point together with Ao.

Figure 65G: reaction space combined with affigraphy. The admissible
directions of affinity vectors are reported. For instance, along the A
phase missing boundary, vector Ay in the basis A® A® must be
perpendicular to the boundary according to the direction indicated. This
property corresponds to the fact that the basic affinity vectors are
orthogonal to the hyperplanes representing the dissociation of the
phases in reaction space.

FIGURE 66

Different associated (n + k) -, n -, and k - dimensional diagrams
illustrated for a n = 2, k = 1 system (three phases A, B and C). The
definitions of the varieties and of the geometrical operations are virtually
the same as in Fig. 65 to which one may report for more detailed
captions.

Figure 66A: modal space. Space V is here a line (closed system
constraint), space W is a plane. It is limited by the positive orthant.

Figure 66B: reaction space. Intersection of V with the positive orthant.
There is one independent chemical reaction. The dissociation of A has
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been chosen. Space is limited on one side by the complete consumption
of the phase and on the other by its precipitation in quantity xo.

Figure 66C: chemography, vectorial and affine representation. The
projections of the three unitary basic composition vectors onto Wy are
represented. The affine representation is obtained by intersecting the
vectors by a line, yielding three points.

Figure 66D: total chemical potential space. Space W’ is a plane, space
V' is a line. Ay is the initial total affinity vector.

Figure 66E: affigraphy; projection of the three unit affigraphy vectors A®,
A® A© onto line V', parallel to W'. A, is also projected. In the affine
representation the vectors coincide in one point corresponding to two
positive and one negative part (or two negative one positive).

Figure 66F. chemical potential space in affinity and in chemical potential
form. This space is obtained by the intersection of W' with the affinity
orthant.

FIGURE 67

Combined (n + Kk)-dimensional space associating chemography and
affigraphy. Example of a 2 + 2 system. Chemography is represented
along the horizontal axis (four phases A, B, C, D); affine representation
gains one dimension. Three composition domains are defined.
Affigraphy is represented in the vertical plane (four vectors (A), (B), (C),
(D)). Four affinity sectors are defined. By extending the composition
domains and affinity sectors to the whole space,12 cells are defined. 10
are represented (for simplification, the metastable cells are not
represented). The corresponding stable parageneses are indicated
inside each of the ten stable cells.

FIGURE 68

Figure 68A Perspective representation of planes P; and P in the
chemography + affigraphy space of Fig. 67. Resulting intersecting
diagrams are represented in subsequent figures.

188




Figure 68B Intersecting affinity - composition diagram corresponding to
plane P4 in Fig. 68A. Composition is represented along the horizontal
axis (phases A, B, C, D), affinity or chemical potential along the vertical
axis (affinity vectors (-A), (-B), (C), (D)). Three stable cells are defined.
Stable parageneses are represented in the plane. Only phases A and B
are stable in the whole composition range.

Figure 68C

Intersecting affinity - composition diagram corresponding to plane P; in
Fig. 68A. Same caption as in Fig. 68B; stable parageneses are
indicated. In the cell defined by composition range AC and potential
range (-C) (B) the metastable associations are also indicated.

FIGURE 69

Composition - temperature diagram for a solid solution with one two-
phase (liquid + solid) spindle-shaped domain bounded by liquidus and
solidus curves. An understanding of the diagram by use of
pseudocompounds and affigraphy approach may be given. Composition
is fractionnated into several pseudocompounds i, j, k and so on. The
system is degenerate in that each pseudocompound is two phase, solid
and liquid. Temperature axis represents a combination of basic affinities
and is also fractionnated in several domains because of the reactions
between all pseudocompounds. All the cells in the diagram are two
phase domains; corresponding written associations are more stable than
all other possible pairs of phases (pseudocompounds) defining the same
global composition. The horizontal lines represent (n + 2) four-phases
invariant points at fixed temperature; because of the high degree of
degeneracy each horizontal line actually represents a superposition of
many such lines. The different degenerate reactions are of the type solid
= liquid or | = j° and so on for the different pseudocompounds. The
vertical lines are co-reactions defined by one present phase (n - 1 phase
with n = 2); their writing in terms of absent phases would require a very
large number of absent phase vectors. In terms of stable associations of
phases, the co-reactions correspond to the change of an association of
the type i + m' to one of the type m' + n' simply written i° -> n' when the
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composition of the system crosses m pseudocompound composition; co-
reaction equivalently corresponds to the change from a two solid
association to an one solid + one liquid phase association when the
composition of the system crosses the composition of a
pseudocompounds. The same co-reaction may involve other
pseudocompounds in higher metastability level associations.
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TABLE 1

List of bases with their stability indices
for chemography regions whose numbers are:

cobases comrespon- | 1 2 3 4 5 6 7
for affigraphy ding
regionl bases
A-B CDE' CDE
A-C BDE. BDE |BDE
-AD BCE' BCE. BCE' BCE |BCE'
-A-E BCD' BCD
BC C 1 1 1
- ADE ADE ADE
-BD ACE' ACE'

2 2
-B-E ACD___ | AcD’ ACD _|ACD" ACD
-CD ABE' ABE ABE'
-C-E ABD' ABD' ABD"
DE ABC’ ABC® | ABC® [ABC® [ABC® [ABC’ |ABC’® |ABC’




TABLE 2

POINTS LINES DOMAINS
number number number number number| number | number
of invariant | of affinity | ofinv. of affinity | of univ. | of affinity| of
value | points vectors point vectors line vectors domain
of per univar. | perinv. stability per univ. | stability | per stability
k line point levels line levels domain levels
Kk k-1 k-2 k-1 k-1 k k k + 1
2 1 0 1 1 2 2 3
3 2 1 2 2 3 3 4
4 3 2 3 3 4 4 5
5 4 3 4 4 5 5 6




TABLE 3

succession affinity affinity affinity affinity
number vectors for vectors for vectors for vectors for
( = number of point 1 point 2 point 3 point 4
univariant line)
1 AB-C ABD BCD -ACD
2 -AB-C -ABD BCD ACD
3 A-B-C A-BD -BCD -ACD
4 ABC ABD B-CD -A-CD
5 AB-C AB-D BC-D -AC-D
6 -A-B-C -A-BD -BCD ACD
7 -ABC -ABD B-CD A-CD
8 -AB-C -AB-D BC-D AC-D
9 A-BC A-BD -B-CD -A-CD
10 A-B-C A-B-D -BC-D -AC-D
11 ABC AB-D B-C-D -A-C-D
12 -A-BC -A-BD -B-CD A-CD
13 -A-B-C -A-B-D -BC-D AC-D
14 A-BC A-B-D -B-C-D -A-C-D
15 -ABC -AB-D B-C-D A-C-D
16 -A-BC -A-B-D -B-C-D A-C-D




TABLE 4

Dimension of the intersected variety

0 1 2 k-2 k-1
(point) (vector) (hyperplane)
1 1 vector 2 vectors| 3 vectors k-1 k vector
(vector) changes..| change...| change change...
dimension| 2 2 1 2 k-2 k-1
of
the
intersec- | k-2 k-2 k-3 k-4 2 3
ting
variety k-1 k-1 k-2 k-3 1 2
(hyperpl.)
k kvectors| k-1vect] k-2vect 2 1 vector
(domain) change change change changes




combina-
torial
duality

TABLE 5

geometric duality

A 1 B

substitution of some Chemical
Chemography Xj to some u potential saturation
dim. n composite (x, 1) diagram | space
¢ X dim.n dim. n
Cx= (4 ng

uC<g

v Vv n
dim.n+k dim.n+k dim.n+k

or less (proj. / sections)

x+ E (or&/ x: total adv./
total comp.

or less (proj. / sections)

integrated x + A (modal) space) integrated p + £
(or ¢ + a)diagram Vi diagram
A+ p (or A/ p: total aff./
total chem. pot. space)
Cc ] D
Affigraphy substitution of some Reaction
A to some § space
dim. k dim. k
aA composite (A, £) diagram | & Xo :
RA =a dim. k £ .R2-x




TABLE 6

P1 P1*

Find x (n + K): Find x (n + k) Find p (k) exclusion
and p (k): relations

Min gx Max pc

Cx=¢ Cx=c¢ puC<g (g-pC)x=0

x>0 uC=<g ()
(@-uC)x=0

c(nandg (n+k) | x>0 c()andg (n+kK)

are known W are known

P2 p2*

Find A (n+k) Find A (n + k) Find & (k): exclusion
and & (k) relations

Min A.xy Max a.t

RA'=a RA'=ga' ELR=-xo A(xo+R'.H=0

A=0 A=0 ©®
§T.R =- XoT

a(k)and xo (n+k) | A.(xo+R".E)=0 a (k) and x, (n + k)

are known ©® are known




nature of varieties

TABLE 7

Nature of geometrical operation
in (n + k)-dimensional space

projection of basic
vectors

intersection of varieties
with basic co-ordinate
hyperplanes

dimension k

v vectors L to hyperplanes | reaction space
of reaction space
W affigraphy « complementary »
chemical potential space
dimension n
Wy chemography « complementary »
reaction space
4 vectors L to hyperplanes | chemical potential

of chemical potential
saturation space

saturation space




TABLE 8

Nomenclature of different « solutions » of phase diagrams

symbol name nature of informations
available
dimension of space
ol combinatorially possible number of components and
affigraphy n° i phases;
dimension k
0 combinatorially possibie number of components and
solution n° i for affigraphy n° j | phases;
dimension 2
Q) total number of combinatorially | number of components and
possible solutions for all phases;
combinatorially possible dimension 2
affigraphies
5 mathematically possible number of components and
affigraphy n°j phases; thermo-mathematical
structure; dimension k
i mathematically possible number of components and
solution n° i for affigraphy n°j | phases; thermo-mathematical
structure; dimension 2
I number of mathematically number of components and
possible solutions for all phases; thermo-mathematical
chemographic arangements | structure; dimension 2
8o unique affigraphy for specified | number of components and
composition 0 phases; thermo-mathematical
structure; composition;
So* affigraphy in case of dimension k
generalized composition (with
negative phases...)
Mo potential solution n° i for number of components and
affigraphy 8 phases; thermo-mathematical
structure; composition;
dimension 2
Tio* in case of generalized
composition
Il number of potential solutions | number of components and
for composition 0 phases; thermo-mathematical
structure; composition;
dimension 2
Vio isoclinal variant n° | for number of components and
potential solution n° i phases, composition, molar
corresponding to composition 0 | volumes and entropies;
dimension 2
Yo unique physical solution for all informations: number of

composition 0

components and phases,
composition, free energies;
dimension 2
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