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Abstract

We consider a class of production-investment models in discrete time with propor-

tional transaction costs. For linear production functions, we study a natural extension

of the no-arbitrage of the second kind condition introduced by M. Rásonyi [13]. We

show that this condition implies the closedness of the set of attainable claims and is

equivalent to the existence of a strictly consistent price system under which the eval-

uation of future production profits are strictly negative. This allows to discuss the

closedness of the set of terminal wealth in models with non-linear production func-

tions which may admit arbitrages of the second kind for low production regimes but

not marginally for high production regimes.
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1 Introduction

This paper is motivated by applications in optimal hedging of electricity derivatives for elec-

tricity producers. Electricity producers sell derivative contracts that allow to buy electricity

at different periods and at a price fixed in advance. In practice, the producer can deliver the

required quantities of electricity either by producing it or by buying it on the spot market.

He can also try to cover itself through future contracts, but the granularity of the maturities

available on the market is in general not sufficient.

It is a typical situation where a financial agent can manage a portfolio by either trading on

a financial market or by producing itself a good. Such models have already been studied

in the literature, in particular by Bouchard and Pham [1] who discussed the questions of

no-arbitrage, super-hedging and expected utility maximization in a discrete time model with

proportional transaction costs, see also Kabanov and Kijima [6] and the references therein.

In the above paper, the assets are divided in two classes. The first class corresponds to pure

financial assets, e.g. bonds, stocks, options, etc... The second class corresponds to industrial

assets, e.g. plants or buildings. Contrary to pure financial assets, industrial assets can not

be short-sold. Moreover, they produce at each period a (random) return, labeled in terms

of pure financial assets, which depend on the current inventory in industrial assets.

This model is well-adapted to industrial investment problems but not to production issues,

since the production regime does not appear as a control.

In this paper, we consider another approach. As in [1], we work in a discrete time model

with proportional transaction costs. Although it does not need to be explicit in the model,

we have in mind that the assets are divided in two classes: the pure financial assets and the

ones that are used for production purposes. Both can be traded on the market but some of

them can be consumed in order to produce other assets. For instance, coal can be traded

on the market but is also used to produce electricity that can then be sold so as to provide

currencies. The quantity used for production on the time period [t, t + 1] is chosen at time

t. It gets out of the portfolio and enters a production process. Depending on the quantity

used, a (random) return enters the portfolio at time t + 1. Therefore, the main difference

with [1] is that we explicitly decide at each time what should be the regime of production,

rather than letting it be determined just by inventories.

Obviously, both approaches could be combined. We refrain from doing this in this paper

in order to isolate the effect of our production model and to avoid too many unnecessary

complexities.

As in [1], we first discuss the absence of arbitrage opportunity and its dual characterization.

In [1], the authors adapt the notion of robust no-arbitrage introduced by Schachermayer
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[14]. It essentially means that there is still no-arbitrage even if transaction costs are slightly

reduced and production returns are slightly increased. It should be noted that the arguments

used in [1] could be easily adapted to our context. However, we prefer to adopt the (more

natural) notion of no-arbitrage of the second kind, which was recently introduced in the

context of financial markets with transactions costs by Rásonyi [13] under the name of no-

sure gain in liquidation value, see also [4] for a continuous time version. It says that we can

not turn a position which is not solvent at time t into a position which is a.s. solvent at a

later time T by trading on the market. In models without transaction costs, this corresponds

to the usual notion of no-arbitrage.

Another difference with Bouchard and Pham [1] is that we allow for reasonable arbitrages

due to the production possibilities. Here, reasonable means that it may be possible to have

a.s. positive net returns for low production regimes. However, they should be limited.

Otherwise stated marginal arbitrages for high production regimes are not possible. The

way we model this consists in assuming that the production function β → R(β), which is

typically concave, admits an affine upper bound β → c + Lβ, and that the linear model in

which R is replaced by L admits no arbitrage of the second kind. We have in mind that it

should hold for L defined by limα→∞ R(αβ)/α = Lβ, i.e. no-arbitrage holds in a marginal

way for large regimes β. From the economic point of view, this means that gains can be

made from the production in reasonable situations, but that it becomes (marginally) risky

when the regime of production is pushed too high.

From the mathematical point of view, it allows to reduce at first to a linear model for which

a nice dual formulation of the no-arbitrage condition is available, in the sense that the set

of dual variables can be fully described in terms of martingales evolving in appropriate

sets. This is not the case for non-linear models, compare with [1]. They are constructed by

following the arguments of Rásonyi [13] which do not require to prove the closure of the set

of attainable claims a-priori. Once they are constructed, one can then easily show that the

set of attainable claims is indeed closed in probability (more precisely, Fatou-closed) in the

linear and in the original models. As usual this leads to a dual formulation of these sets,

and can also be used to prove existence for expected utility maximization problems, which,

in particular, opens the door to the study of indifference prices.

We refer to [9] for a wide overview of models with proportional transaction costs. See also

[11] and [12] for some more recent results in discrete time, and [5] for the continuous time

setting.

The rest of the paper is organized as follows. We first describe our model, state the dual

characterization of our no-arbitrage condition and important closure properties in Section 2.

Section 3 discusses applications to super-hedging and utility maximization problems. The
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proofs are collected in Section 4.

Notations: If nothing else is specified, any element x ∈ Rd will be viewed as a column

vector with entries xi, i ≤ d, and transposition is denoted by x′ so that x′y stands for the

natural scalar product. We write Md to denote the set of square matrices M of dimension

d with entries M ij, i, j ≤ d. The identity matrix is denoted by Id. The unit ball of Rd

is denoted by B1. As usual, Rd
+ and Rd

− stand for [0,∞)d and (−∞, 0]d. The closure of

a set Θ ⊂ Rn is denoted by Θ̄, n ≥ 1. We write cone(Θ) (resp. conv(Θ)) to denote the

cone (resp. convex cone) generated by Θ. Given a filtrations F on a probability space

(Ω,F , P) and a set-valued F -measurable family A = (At)t≤T , we denote by L0(A, F) the set

of adapted processes X = (Xt)t≤T such that Xt ∈ At P − a.s. for all t ≤ T . For a σ-algebra

G and a G-measurable random set A, we write L0(A,G) for the collection of G-measurable

random variables that take values in A P − a.s. We similarly define the notations Lp(A,G)

for p ∈ N ∪∞, and simply write Lp if A and G are clearly given by the context. If nothing

else is specified, inequalities between random variables or inclusion between random sets

have to be understood in the a.s. sense.

2 Definitions and main results

2.1 Model description

From now on we denote by T ∈ N\ {0} a fixed time horizon and set T := {0, 1, . . . , T}.

The complete filtration of the investor, F = (Ft)t∈T, is supported by a probability space

(Ω,F , P). We assume that FT = F and that F0 is trivial.

As in [14], we model exchange prices by an adapted process π = (πt)t∈T taking values in the

set Md of square d-dimensional matrices, for some d ≥ 1, satisfying the following conditions

for all t ≤ T and i, j, k ≤ d:

(i) πij
t > 0, (ii) πii

t = 1, (iii) πij
t πjk

t ≥ πik
t .

Here, πij
t should be interpreted as the number of units of asset i required to obtain one unit

of asset j at time t. The conditions (i) and (ii) need no comment. The third condition is

also natural, it means that it is always cheaper to buy directly units of asset k from units of

asset i rather then going through the asset j. Note that, combined with (ii), it implies that

πij
t πji

t ≥ 1, which means that the ask price is always greater than the bid price. The case

where πij
t πji

t = 1 corresponds to the situation where the ask and bid prices are the same,

i.e. there is no friction.

All over this paper, we shall consider the so-called efficient friction case:

Standing Assumption (EF) : πij
t πji

t > 1 for all i 6= j ≤ d and t ∈ T.
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It means that ask prices are always strictly greater than bid prices.

As in [7] and [8], we model portfolios as d-dimensional processes, each component i corre-

sponding to the number of units of asset i held. The composition of a portfolio holding Vt

at time t can be changed by acting on the financial market. If ξt denotes the net number

of additional units of each asset in the portfolio after trading at time t, it should satisfy the

standard self-financing condition. In our context, this means that ξt ∈ −Kt, whenever we

allow to throw away a non-negative number of the holdings, where, for each ω ∈ Ω,

Kt(ω) := conv
(

πij(ω)ei − ej, ei ; i, j ≤ d
)

,

where ei stands for the i-th unit vector of Rd defined by ek
i = 1i=k.

Note that Vt ∈ Kt means that there exists ξt ∈ −Kt such that Vt +ξt = 0. This explains why

Kt is usually referred to as the solvency cone, i.e. the set of positions that can be turned

into positions with non-negative entries by immediately trading on the market.

As in Bouchard and Pham [1], we also allow for production. In [1], the production regime

depends only on the inventories in some production assets. Here, we consider a different

approach based on a full control of the production regimes. Namely, we consider a family

of random maps (Rt)t∈T from Rd
+ into Rd which corresponds to production functions. It

turns βt units of assets taken from the portfolio at time t into Rt+1(βt) additional units of

assets in the portfolio at time t + 1. For the moment, we only assume that Rt+1 is Ft+1

measurable, in the sense that Rt+1(β) ∈ L0(Rd,Ft+1) for all β ∈ L0(Rd
+,Ft). The control βt

can be associated to a regime of production. The greater, component by component, βt is

and the more the producer is putting inputs into the production system.

All together, a strategy is a pair of adapted processes

(ξ, β) ∈ A0 := L0((−K) × Rd
+),

i.e. such that (ξt, βt) ∈ L0((−Kt) × Rd
+,Ft) for all 0 ≤ t ≤ T . The corresponding portfolio

process, starting from 0, can be written as V ξ,β = (V ξ,β
t )t∈T where

V ξ,β
t :=

t
∑

s=0

(ξs − βs + Rs(βs−1)1s≥1) . (2.1)

Example 2.1 Let us consider the case of a firm which produces electricity from coal. It

has two plants, one in the United-States, the other one in Europe. The first asset, asset

1, is dollars. The second one, asset 2, is euros. The coal can be bought and delivered in

the United-State, this is the third asset, or in Europe, this is the fourth one. Eventually, it

produces electricity which can be sold in the area where it is produced. The random return

depends typically on the spot price, but additional randomness du to the production process
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itself can be added. Since the production regime depends on the amount of coal used for

production, the production function should only depend on the regime β through (β3, β4),

i.e. Rt(β) = Rt(β̃) whenever (β3, β4) = (β̃3, β̃4). The electricity produced in the United-

States (resp. Europe) is converted into dollars (resp. euros), which implies Ri
t(β) = Ri

t(β̃)

whenever β2+i = β̃2+i for i = 1, 2. Due to operational costs, paid in dollars (resp. euros) for

the plant located in the United-States (resp. Europe), we may have Ri
t(β) ≤ 0 for i = 1, 2.

However, electricity production does not transform into coal, so that Ri ≡ 0 for i = 3, 4.

Note that, although the model allows strategies β such that β1 6= 0 or β2 6= 0, they would

never be optimal. It would therefore be equivalent, from no-arbitrage or optimal investment

points of view, to impose the constraint β1 ≡ β2 ≡ 0.

Remark 2.1 Observe that we do not impose constraints on portfolio processes. In partic-

ular, one can consume some asset for production purposes although we do not hold them.

This means that one can borrow some units of assets to use them in the production system.

As usual additional convex constraints could be introduced without much difficulty.

In the following, we shall denote by

AR
t (T ) :=

{

T
∑

s=t

ξs − βs + Rs(βs−1)1s≥t+1 , (ξ, β) ∈ A0

}

, t ≤ T ,

the set of portfolio holdings that are attainable at time T by trading from time t with a zero

initial holding.

Remark 2.2 The sequence of random cones K = (Kt)t∈T is defined here through the bid-

ask process π. However, it should be clear that all our analysis would remain true in a more

abstract framework. Namely, one could only consider that K is a sequence of closed convex

cones such that Kt is Ft-measurable, Rd
+ ⊂ Kt and Kt ∩ (−Kt) = {0} for all t ≤ T .

2.2 The no-arbitrage condition

In a model without production, i.e. R ≡ 0, it was recently proposed by Rásonyi [13] to

consider the following no-arbitrage of the second kind condition, also called no-sure gain in

liquidation value, NGV in short:

NA20: (ζ + A0
t (T ))∩L0(KT ,F) 6= {0} ⇒ ζ ∈ L0(Kt,F), for all ζ ∈ L0(Rd,Ft) and t ≤ T .

It means that we can not end-up at time T with a solvable position without taking any risk

if the initial position was not already solvable.

In this paper, we shall impose a similar condition on the pure financial part of the model,

i.e. there is no-arbitrage of the second kind for strategies of the form (ξ, 0) ∈ A0. Contrary
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to [1], we do not exclude arbitrages coming from the production whenever the production

regime is small. We only exclude marginal arbitrages for high regimes of production in the

following sense:

Definition 2.1 1. We say that there is no marginal arbitrage of the second kind for high

production regimes, in short NMA2 holds, if there exists (c, L) ∈ L∞(Rd × Md, F) such

that NA2L holds and

ct+1 + Lt+1β − Rt+1(β) ∈ L0(Kt+1,Ft+1) for all β ∈ L0(Rd
+,Ft) and t < T . (2.2)

2. We say that there is no arbitrage of the second kind for L, in short NA2L holds, if

(i) ζ − β + Lt+1β ∈ L0(Kt+1,Ft+1) ⇒ ζ ∈ Kt,

(ii) −β + Lt+1β ∈ L0(Kt+1,Ft+1) ⇒ β = 0,

for all (ζ, β) ∈ L0(Rd × Rd
+,Ft) and t < T

The condition (2.2) means that the production function Rt admits an affine upper-bound.

In most production models, the map Rt is concave and therefore typically admits such a

bound. In the second assertion, we focus on the production model where R is replaced with

the linear map associated to L. The fact that we consider the production map β 7→ Lt+1β

instead of β 7→ ct+1 + Lt+1β coincides with the idea that we only want to avoid arbitrages

for high production regimes: for large values of |Lt+1β|, ct+1 becomes negligible.

For L ≡ 0, the condition (i) is equivalent to the NGV condition of [13], this follows from

a simple induction under the standing assumption (EF) above. Our version is a simple

extension to the production-investement model. The condition (i) means that, even if we

produce, we can not have for sure a solvable position at time t + 1 if the position was not

already solvable at time t. The condition (ii) means that producing may lead to net losses.

Remark 2.3 If esssup{|Rt+1(β)|, β ∈ L0(Rd
+,F)} ∈ L∞ for all t < T , then one can choose

L ≡ 0. In this case, NMA2 coincides with the NGV condition of [13] on the pure financial

part, i.e. the no-arbitrage condition is set only on strategies of the form (ξ, 0).

We conclude this section with an example.

Example 2.2 Consider the electricity production model of Example 2.1. Recall that Rj
t ≡ 0

for j ≥ 3 and that Ri
t depends on β only through β2+i for i = 1, 2. If R1

t and R2
t are P− a.s.

concave and non-decreasing, component by component, then Rt(αβ)/α admits P−a.s. a limit

Lt(β) as α → ∞, where the map β 7→ Lt(β) is P − a.s. linear and can thus be associated to

a random matrix Lt of dimension 4. Clearly, Lij
t ≡ 0 if i ∈ {3, 4} or j ∈ {1, 2}. Moreover,

we clearly can find ct ∈ L0(Rd,Ft) such that (2.2) holds.
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2.3 Dual characterization of the no-arbitrage condition and clo-

sure properties

Before to state our main results, let us introduce some additional notations and definitions.

We first define the positive dual cone process K∗ = (K∗
t )t∈T associated to K by

K∗
t (ω) :=

{

z ∈ Rd : x′z ≥ 0 for all x ∈ Kt(ω)
}

, ω ∈ Ω .

For t ≤ τ ≤ T , we denote by Mτ
t (intK∗) the set of martingales Z with positive components

satisfying Zs ∈ L0(intK∗
s ,Fs) for all t ≤ s ≤ τ .

Elements of MT
t (intK∗) were called strictly consistent price systems, on [t, T ], in [14]. They

have the standard interpretation to be associated to a system of prices in a fictitious market

without transaction costs that admits a martingale measure, and such that the relative prices

evolve in the interior of the corresponding bid-ask intervals of the original model induced by

π, i.e. are more favorable for the financial agent. Indeed, one easily checks that

K∗
t (ω) :=

{

z ∈ intRd
+ : zj/zi ≤ πij

t (ω) for all i 6= j ≤ d
}

. (2.3)

Otherwise stated, given Z ∈ MT
t (intK∗), the process Z̄, defined by Z̄i

s := Zi
s/Z

1
s for t ≤

s ≤ T , i.e. where the first asset is taken as a numéraire, is a martingale on [t, T ] under the

measure Q induced by the conditional density process (Z1
s /Z

1
t )t≤s≤T and satisfies Z̄j

s/Z̄
i
s < πij

s

for t ≤ s ≤ T .

Remark 2.4 Note that the condition (EF) above implies that, and is actually equivalent

to, intK∗
t 6= ∅ for all t ≤ T . This follows from (2.3).

Altogether, elements of MT
0 (intK∗) play a similar role as equivalent martingale measures in

frictionless markets, see e.g. [14] and the references therein. In particular, it was shown in

[13] that, for L ≡ 0, the no-arbitrage condition NA20 is equivalent to:

PCE0: for each 0 ≤ t ≤ T and X ∈ L1(intK∗
t ,Ft), there exists a process Z ∈ MT

t (intK∗)

satisfying Zt = X.

This not only means that the no-arbitrage condition NA20 implies the existence of a strictly

consistent price system, but that strictly consistent price systems defined on any subinterval

[t, τ ] can also be extended consistently on [t, T ]: for Z ∈ Mτ
t (intK∗), one can find a strictly

consistent price system Z̃ ∈ MT
t (intK∗) such that Z̃ = Z on [t, τ ].

Such a property is obvious in frictionless markets but in general not true in our multivariate

setting where the geometry of the cones (K∗
t )t∈T is non-trivial.

In our production-investment setting, such price systems should also take into account the

production function. When it is linear, given by the random matrix process L, the cost in
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units at time t of a return (in units) Lt+1β at time t + 1 is β ∈ L0(Rd
+,Ft). For the price

system Z̄ and the pricing measure Q, at time t, the value of the return is EQ[Z̄ ′
t+1Lt+1β|Ft]

and the value of the cost is Z̄ ′
tβ. If no-arbitrage holds in this fictitious market, one should

then be able to find Q such that EQ[Z̄ ′
t+1Lt+1β|Ft] ≤ Z̄ ′

tβ for all β ∈ L0(Rd
+,Ft).

If the fictitious price system is strictly more favorable than the original one, one should actu-

ally be able to choose it in such a way that EQ[Z̄ ′
t+1Lt+1β|Ft] < Z̄ ′

tβ for all β ∈ L0(Rd
+,Ft).

The above discussion naturally leads to the introduction of the set LT
t (intRd

−) of martingales

Z with positive components satisfying E
[

Z ′
s+1(Ls+1 − Id)|Fs

]

∈ L0(intRd
−) for all t ≤ s < T ,

t ≤ T .

Our first main result extends the property NA20 ⇔ PCE0 to NA2L ⇔ PCEL where

PCEL: for each 0 ≤ t ≤ T and X ∈ L1(intK∗
t ,Ft), there exists a process Z ∈ MT

t (intK∗)∩

LT
t (intRd

−) satisfying Zt = X.

Theorem 2.1 NA2L ⇔ PCEL.

Following arguments used in [2], this easily implies that the sets

AL
0 (T ) :=

{

T
∑

s=0

(ξs − βs + Ls(βs−1)1s≥1) , (ξ, β) ∈ A0

}

,

and AR
0 (T ) of attainable claims in the linear and original models are Fatou-closed, in the

following sense.

Definition 2.2 We say that a set A ⊂ L0(Rd,F) is Fatou-closed if for any sequence

(gn)n≥1 ⊂ A which converges P − a.s. to some g ∈ L0(Rd,F) and such that, for some

κ ∈ Rd, gn + κ ∈ KT for all n ≥ 1, then g ∈ A.

In order to prove the closure property for AR
0 (T ), we shall need an additional upper-

semicontinuity assumption:

(USC) : lim sup
β∈Rd

+
,β→β0

Rt(β) − Rt(β
0) ∈ −Kt for all β0 ∈ Rd

+ ,

where the limsup is taken component by component.

Theorem 2.2 AL
0 (T ) is Fatou-closed under NA2L. The same holds for AR

0 (T ) under

NMA2 and (USC).
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3 Applications

3.1 Super-hedging theorems

As usual, the closure property allows to provide dual formulations for the set of attainable

claims. We first formulate it in the linear model.

Proposition 3.1 Assume that NA2L holds. Let V ∈ L0(Rd,F) be such that V + κ ∈

L0(KT ,F) for some κ ∈ Rd. Then, the following are equivalent:

(i) V ∈ AL
0 (T ),

(ii) E [Z ′
T V ] ≤ 0 for all Z ∈ MT

0 (intK∗) ∩ LT
0 (intRd

−).

In the original non-linear model, an abstract dual formulation is also available. However,

due to the non-linearity of the set of attainable terminal claims, it requires the introduction

of the following support function:

αR(Z) := sup
{

E [Z ′
T V ] , V ∈ AR

0b(T )
}

, Z ∈ MT
0 (K∗) ,

where

AR
0b(T ) :=

{

V ∈ AR
0 (T ) s.t. V + κ ∈ KT for some κ ∈ Rd

}

.

Moreover, as usual, we shall need the set AR
0 (T ) to be convex, which is easily checked under

the following additional assumption:

(R) : (a) αRt(β1) + (1 − α)Rt(β2) − Rt(αβ1 + (1 − α)β2) ∈ −Kt

for all α ∈ L0([0, 1],F), β1, β2 ∈ L0(Rd
+,F) , t ≤ T.

(b) Rt(β) ∈ L∞(Rd,F) for all t ≤ T and β ∈ L∞(Rd,F) .

The last assumption implies that bounded strategies lead to bounded terminal wealth, which

will be of important use in our proofs. For ease of notations, we now set

CT
t :=

T
∑

s=t+1

cs , t < T . (3.1)

Proposition 3.2 Assume that NMA2 , (USC) and (R) hold. Let V ∈ L0(Rd,F) be such

that V + κ ∈ L0(KT ,F) for some κ ∈ Rd. Then, the following are equivalent:

(i) V ∈ AR
0 (T )

(ii) E [Z ′
T V ] ≤ αR(Z) for all Z ∈ MT

0 (intK∗).

Moreover, αR(Z) ≤ E
[

Z ′
T CT

0

]

< ∞ for all Z ∈ MT
0 (intK∗) ∩ LT

0 (intRd
−).

In the case where the linear map L coincides with the asymptotic behavior of R, i.e.

(RL) : lim
η→∞

Rt(ηβ)/η = Ltβ for all β ∈ Rd
+ ,

one can restrict to elements in LT
0 (intRd

−) in the above dual formulation.
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Proposition 3.3 Let the conditions of Proposition 3.2 hold. Assume further that (RL) is

satisfied. Let V ∈ L0(Rd,F) be such that V + κ ∈ L0(KT ,F) for some κ ∈ Rd. Then, the

following are equivalent:

(i) V ∈ AR
0 (T )

(ii) E [Z ′
T V ] ≤ αR(Z) for all Z ∈ MT

0 (intK∗) ∩ LT
0 (intRd

−).

3.2 Utility maximization

In order to avoid technical difficulties, we shall only discuss here the case of a (possibly)

random utility function defined on Rd and essentially bounded from above. More general

cases could be discussed by following the line of arguments of [1].

We therefore let U be a P − a.s.-upper semi-continuous concave random map from Rd to

[−∞, 1] such that U(V ) = −∞ on {V /∈ KT} for V ∈ L0(Rd,F). Given an initial holding

x0 ∈ Rd, we assume that

U(x0) :=
{

V ∈ AR
0 (T ) : E [|U(x0 + V )|] < ∞

}

6= ∅.

Then, existence holds for the associated expected utility maximization problem under the

conditions of Proposition 3.2.

Proposition 3.4 Assume that NMA2 , (USC) and (R) hold. Assume further that U(x0) 6=

∅. Then, there exists V (x0) ∈ AR
0 (T ) such that

E [U(x0 + V (x0))] = sup
V ∈U(x0)

E [U(x0 + V )] .

4 Proofs

4.1 No-arbitrage of the second kind in the linear model and (K, L)-

strictly consistent price systems

In this section, we first prove that the no-arbitrage of the second kind assumption NA2L

implies the existence of an element Z ∈ MT
0 (intK∗) ∩ LT

0 (intRd
−), which we call (K, L)-

strictly consistent price system.

The arguments used in the proof of Proposition 4.1 below are inspired by [13], up to non-

trivial modifications. This proposition readily implies that NA2L ⇒ PCEL up to an obvious

induction argument. Before to state it, we recall the following technical result that will be

used in its proof, see Lemma 4.3 in [12].
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Lemma 4.1 Let G ⊂ H ⊂ F be σ-algebras. Let C ⊂ B1 be a H-measurable random convex

compact set. Then, there exists a G-measurable random convex compact set E [C|G] ⊂ B1

satisfying

L0(E [C|G] ,G) = {E [ϑ|G] : ϑ ∈ L0(C,H)}.

Proposition 4.1 Assume that NA2L holds. Then, for all t < T and X ∈ L1(intK∗
t ,Ft),

there exist Z ∈ L1(intK∗
t+1,Ft+1) such that X = E [Z | Ft] and E [Z ′(Lt+1 − Id) | Ft] ∈

intRd
−.

Proof We fix t < T . For ease of notation, we set Mt+1 := Lt+1 − Id. Recall that Lt+1 ∈

L∞(Md,Ft+1) so that Mt+1 is essentially bounded.

1. We first show that intRd
− ⊂ cone(intE [Θ|Ft]) =: H, where

Θ :=
{

M ′
t+1y + r, (y, r) ∈ (K∗

t+1 ∩ B1) × [0, 1]d
}

,

recall that B1 is the unit ball of Rd. For later use, observe that, since Mt+1 is essentially

bounded, Lemma 4.1 applies to Θ up to an obvious scaling argument.

If intRd
− 6⊂ H, then Rd

− 6⊂ H on a set A ∈ Ft with P [A] > 0. For each ω ∈ A, H̄(ω) being a

closed convex cone, we can then find p(ω) ∈ Rd
− and β(ω) ∈ Rd such that

p(ω)′β(ω) < 0 ≤ q′β(ω) for all q ∈ H̄(ω) for ω ∈ A . (4.1)

By a standard measurable selection argument, see e.g. [3, III-45], one can assume that p

and β are Ft-measurable. The right-hand side of (4.1), Lemma 4.1 and the fact that K∗
t+1

is a cone then imply that

(Y ′Mt+1 + ρ′)β1A ≥ 0 for all (Y, ρ) ∈ L∞(K∗
t+1 × Rd

+,Ft+1),

which leads to β1A ∈ Rd
+ and Mt+1β1A ∈ Kt+1. In view of NA2L, this implies that β1A = 0,

which contradicts the left-hand side of (4.1).

2. We next show that there exists Ỹ ∈ L∞(intK∗
t+1,Ft+1) such that E

[

Ỹ ′Mt+1 | Ft

]

∈

int(Rd
−).

To see this, fix η ∈ L∞(intRd
−,Ft) and Z ∈ L∞(intK∗

t+1,Ft+1). Set Z̄ := E [Z ′Mt+1 | Ft].

We can then find ε ∈ L∞((0, 1],Ft) such that η − εZ̄ ∈ L∞(intRd
−,Ft). In view of step 1

and Lemma 4.1, there exists (Y, ρ) ∈ L∞(K∗
t+1 ×Rd

+,Ft+1) and α ∈ L0(intR+,Ft) such that

η − εZ̄ = αE [Y ′Mt+1 + ρ | Ft] or, equivalently, η − αE [ρ | Ft] = E [(αY + εZ)′Mt+1 | Ft].

Clearly, η − αE [ρ | Ft] ∈ int(Rd
−) and αY + εZ ∈ L0(int(K∗

t+1),Ft+1). The required result

is thus obtained for Ỹ := (αY + εZ)/(1 + α).

3. We now show that K∗
t × {0} ⊂ cone(E [Γ|Ft]) =: E where

Γ :=
{

(y, M ′
t+1y + r), (y, r) ∈ (K∗

t+1 ∩ B1) × [0, 1]d
}

.
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Since E [Γ|Ft] is a.s. convex and compact, see Lemma 4.1, it follows that E is P−a.s. convex

and closed. Thus, if K∗
t × {0} 6⊂ E on a set A ∈ Ft, with P [A] > 0, the same arguments as

in step 1 imply that we can find (p, 0) ∈ L0(K∗
t ×{0},Ft) and (ζ, β) ∈ L0(Rd ×Rd,Ft) such

that

p′ζ < 0 on A and 0 ≤ Y ′(ζ + Mt+1β) + ρ′β for all (Y, ρ) ∈ L∞(K∗
t+1 × Rd

+,Ft+1) .

The right-hand side implies that β ∈ Rd
+ and ζ + Mt+1β ∈ Kt+1. In view of NA2L, this

implies that ζ ∈ Kt, thus leading to a contradiction with the left-hand side, since p ∈ K∗
t .

4. We can now conclude the proof. Fix X ∈ L1(intK∗
t ,Ft), let Ỹ be as in step 2 and

fix ε ∈ L1((0, 1],Ft) such that X̃ := X − εE
[

Ỹ | Ft

]

∈ L1(K∗
t ,Ft). It then follows from

step 3 and Lemma 4.1 that we can find Y ∈ L0(K∗
t+1,Ft+1) such that X̃ = E [Y | Ft] and

E [Y ′Mt+1 | Ft] ∈ Rd
−. This implies that X = E

[

Y + εỸ | Ft

]

and E

[

(Y + εỸ )′Mt+1 | Ft

]

∈

intRd
− where Y +εỸ ∈ intK∗

t+1. Since X ∈ L1 and K∗ ⊂ Rd
+, we must have Z := Y +εỸ ∈ L1.

This shows the required result. ✷

It remains to prove the opposite inclusion of Theorem 2.1.

Proposition 4.2 PCEL ⇒ NA2L.

Proof We fix t < T .

1. We first assume that we can find (ζ, β) ∈ L∞(Rd × Rd
+,Ft) satisfying

ζ − β + Lt+1β ∈ Kt+1, (4.2)

and such that ζ /∈ Kt on a set A ∈ Ft of positive measure. This implies that we can find

Zt ∈ L1(intK∗
t ,Ft) such that

Z ′
tζ < 0 on A . (4.3)

In view of PCEL, we can then find Zt+1 ∈ L1(intK∗
t+1,Ft+1) such that E [Zt+1|Ft] = Zt

and E
[

Z ′
t+1(Lt+1 − Id)|Ft

]

∈ intRd
−. By (4.2), we have Z ′

t+1ζ + Z ′
t+1(Lt+1 − Id)β ≥ 0 which,

by taking conditional expectations, leads to Z ′
tζ + E

[

Z ′
t+1(Lt+1 − Id)|Ft

]

β ≥ 0. Since

E
[

Z ′
t+1(Lt+1 − Id)|Ft

]

∈ intRd
− and β ∈ Rd

+, this leads to a contradiction with (4.3).

2. We now assume that β ∈ L0(Rd
+,Ft) is such that (Lt+1−Id)β ∈ Kt+1. For Zt+1 defined as

above, we obtain Z ′
t+1(Lt+1 − Id)β ≥ 0 while E

[

Z ′
t+1(Lt+1 − Id)|Ft

]

∈ intRd
−. This implies

that β = 0. ✷

4.2 The closure properties

In this section, we prove that the sets AL
0 (T ) and AR

0 (T ) are Fatou-closed whenever there

exists a (K, L)-strictly consistent price system, i.e. MT
0 (intK∗) ∩ LT

0 (intRd
−) 6= ∅. In view
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of Theorem 2.1, Theorem 2.2 is a direct consequence of Corollary 4.1 below. We start with

the following key lemma which is inspired from Lemma 12 in [2].

Lemma 4.2 Assume that there exists Z ∈ MT
0 (intK∗) ∩ LT

0 (intRd
−). Then, there exists

Q ∼ P and a constant α ≥ 0, such that, for all κ ∈ Rd and (ξ, β) ∈ A0 satisfying V ξ,β
T + κ ∈

KT , one has:

EQ

[

∑

t∈T

(|ξt| + |βt|)

]

≤ α
(

E
[

Z ′
T CT

0

]

+ Z ′
0κ

)

.

Proof In this proof, we set Mt+1 := Lt+1 − Id and Z̄t := E
[

Z ′
t+1Mt+1|Ft

]

, for t < T , in

order to alleviate notations. We first observe that (Zt, Z̄t) ∈ intK∗
t × intRd

− implies:

Z ′
tξ ≤ −ε|ξ| and Z̄ ′

tβ ≤ −ε|β| for all (ξ, β) ∈ L0((−Kt) × Rd
+,Ft) , t ≤ T , (4.4)

for some ε ∈ L0((0, 1),F), compare with Lemma 11 in [2].

We next deduce from (2.1)-(2.2) that

V ξ,β
T = XT where Xt :=

∑

s≤t

ξs + ζs + cs + Msβs−11s≥1 for some ζ ∈ L0(−K). (4.5)

Since XT +κ = V ξ,β
T +κ ∈ KT , we have Z ′

T XT ≥ −Z ′
T κ so that E [Z ′

T XT |FT−1] is well-defined

since ZT ∈ L1. It then follows from the martingale property of Z, (4.4) and (4.5) that

−Z ′
T−1κ ≤ E [Z ′

T XT |FT−1] ≤ Z ′
T−1XT−1 + E

[

Z ′
T CT

T−1 − ε (|ξT | + |ζT | + |βT−1|) |FT−1

]

.

Iterating this procedure leads to

−Z ′
0κ ≤ E [Z ′

T XT ] ≤ E

[

Z ′
T CT

0 − ε
∑

t∈T

(|ξt| + |ζt| + |βt−1|1t≥1)

]

(4.6)

which implies the required result for Q ∼ P defined by dQ/dP := εα with α := 1/E [ε]. ✷

We can now prove the closure properties.

Corollary 4.1 Let the conditions of Lemma 4.2 hold. Then, AL
0 (T ) is Fatou-closed. If

moreover (USC) holds, then AR
0 (T ) is Fatou-closed.

Proof We only provide the proof for AR
0 (T ). Considering the case R = L will then allow

to conclude for AL
0 (T ) as well. Let (V n)n≥1 ⊂ AR

0 (T ) be such that

V n + κ ∈ KT for all n ≥ 1 and V n → V ∈ L0(Rd,F) P − a.s. (4.7)

Let (ξn, βn)n≥1 ⊂ A0 be such that

V ξn,βn

T = V n for all n ≥ 1. (4.8)
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It then follows from Lemma 4.2 and the left-hand side of (4.7) that there exists Q ∼ P such

that

sup
n≥1

EQ

[

∑

t∈T

(|ξn
t | + |βn

t |)

]

< ∞ .

Using Lemma 4.3 below and a standard induction argument for t = 0 to t = T , one can then

assume, after possibly passing to (Ft-measurable random) subsequences, that (ξn
t , βn

t )n≥1

converges P − a.s. to some (ξt, βt) ∈ L0((−Kt) × Rd
+,Ft), for all t ≤ T . Passing to the

limit sup in (4.8), recall (2.1), and using the semi-continuity assumption (USC) then shows

that V ξ,β
T +

∑

t∈T ζt = V where (ξ, β) := (ξt, βt)t∈T and ζ := (ζt)t∈T ∈ L0(−K). Hence,

V ξ+ζ,β
T = V ∈ AR

0 (T ). ✷

We conclude this section with the statement we used in the above proof, see [10].

Lemma 4.3 Fix t ≤ T and (ηn)n≥1 ⊂ L0(Rd,Ft) be such that lim infn→∞ |ηn| < ∞. Then,

there exists a P − a.s.-increasing sequence (σ(n))n≥1 ⊂ L0(N,Ft) converging P − a.s. to ∞

such that (ησ(n))n≥1 converges P − a.s.

4.3 Super-hedging theorems

We now turn to the proof of the super-hedging theorems, Propositions 3.1, 3.2 and 3.3.

Proof of Proposition 3.2: For ease of notations, we write M for L − Id.

1. The fact that αR(Z) ≤ E
[

Z ′
T CT

0

]

for all Z ∈ MT
0 (intK∗) ∩ LT

0 (intRd
−) is a consequence

of the right-hand side inequality of (4.6) in the proof of Lemma 4.2 above.

2. Clearly, E [Z ′
T V ] ≤ αR(Z) for all Z ∈ MT

0 (intK∗) and V ∈ AR
0b(T ), by definition of

αR. We now prove the converse implication. Fix V ∈ L0(Rd,F) such that V + κ ∈ KT

for some κ ∈ Rd, and assume that E [Z ′
T V ] ≤ αR(Z) for all Z ∈ MT

0 (intK∗), but that

V /∈ AR
0b(T ). Then, AR

0b(T ) being Fatou-closed by Theorem 2.2, if follows that, for k large

enough, V k := V 1|V |≤k − κ1|V |>k does not belong to AR
0b(T ) either but satisfies

E
[

Z ′
T V k

]

≤ E [Z ′
T V ] ≤ αR(Z) for all Z ∈ MT

0 (intK∗). (4.9)

Since AR
0b(T ) is Fatou-closed, it follows from the Krein-Smulian theorem that AR

0 (T ) ∩

L∞(Rd,F) is σ(L∞(Rd,F), L1(Rd,F))-closed. The later being convex under (R), we de-

duce from the Hahn-Banach theorem that we can find Y ∈ L1(Rd,F) and r ∈ R such

that

E [Y ′X] ≤ r < E
[

Y ′V k
]

for all X ∈ AR
0 (T ) ∩ L∞(Rd,F) .

Set ZY
t := E [Y |Ft]. Recalling that R(0) is essentially bounded under (R) and considering

strategies of the form (ξ1t=s, 0)t∈T, with ξ ∈ L∞(−Ks,Fs), easily leads to ZY
s ∈ K∗

s for
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s ≤ T . Fix Z̃ ∈ MT
0 (intK∗) ∩ LT

0 (intRd
−) 6= ∅, see Theorem 2.1, and ε ∈ (0, 1), so that

Ž := εZ̃ + (1 − ε)ZY ∈ MT
0 (intK∗) and

E
[

Ž ′
T X

]

≤ (1 − ε)r + εαR(Z̃) < E
[

Ž ′
T V k

]

∀ X ∈ AR
0 (T ) ∩ L∞(Rd,F), (4.10)

where we recall from step 1 that αR(Z̃) < ∞. In order to conclude the proof, it suffices to

show that

αR(Z) = sup
{

E [Z ′
T X] , X ∈ AR

0 (T ) ∩ L∞(Rd,F)
}

, Z ∈ MT
0 (K∗) , (4.11)

which, combined with (4.10), would imply that αR(Ž) < E
[

Ž ′
T V k

]

, thus leading to a con-

tradiction to (4.9) since Ž ∈ MT
0 (intK∗).

To see that the above claim holds, first observe that, for X ∈ AR
0 (T ) such that X+ρ ∈ KT for

some ρ ∈ Rd, one can always construct an essentially bounded sequence, Xn := X1|X|≤n −

ρ1|X|>n for n ≥ 1, which Fatou-converges to X. Using Fatou’s Lemma, one then obtains

lim infn→∞ E [Z ′
T Xn] ≥ E [Z ′

T X] for all Z ∈ MT
0 (K∗). Moreover, X + ρ ∈ KT implies

X − Xn ∈ KT so that Xn ∈ AR
0 (T ) for all n ≥ 1. This proves (4.11). ✷

Proof of Proposition 3.3: It suffices to repeat the argument of the above proof and to

show that one can choose ZY such that E

[

ZY
t

′
(Lt+1 − Id)|Ft

]

∈ Rd
− for all t ≤ T . To see

this, recall from the above arguments that ZY is a martingale and that it satisfies

E

[

ZY
T

′
X

]

≤ r for all X ∈ AR
0 (T ) ∩ L∞(Rd,F) ,

for some r ∈ R. Recalling the second assertion in (R), we see that any strategy of the form

ν := (0, βs1t=s)t∈T, with βs ∈ L∞(Rd
+,Fs) is such that V ν

T ∈ AR
0 (T ) ∩ L∞(Rd,F). Given

s ≤ T − 1, we thus have

E

[

ZY
s+1

′
(R0

s+1(βs) − βs)
]

+ ℓ ≤ r for all βs ∈ L∞(Rd
+,Fs) , (4.12)

where

R0 := R − R(0) and ℓ := E

[

ZY
T

′
∑

1≤t≤T

Rt(0)

]

.

Using the first assertion in (R), we then deduce that, for η ≥ 1 and βs ∈ L∞(Rd
+,Fs),

Rs+1(βs) − η−1Rs+1(ηβ) − (1 − η−1)Rs+1(0)

= Rs+1(η
−1ηβs + (1 − η−1)0) − η−1Rs+1(ηβ) − (1 − η−1)Rs+1(0) ∈ Ks+1 .

This shows that, for all βs ∈ L∞(Rd
+,Fs), the sequence (ZY

s+1
′
R0

s+1(nβs)/n)n≥1 is non-

increasing and that, by (4.12),

E

[

ZY
s+1

′
(R0

s+1(nβs)/n − βs)
]

≤ (r − ℓ)/n .
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Sending n → ∞, using the monotone convergence theorem and recalling (RL) leads to

E

[

ZY
s+1

′
(Ls+1βs − βs)

]

≤ 0 .

By arbitrariness of βs ∈ L∞(Rd
+,Fs), this readily implies that E

[

ZY
s+1

′
(Ls+1 − Id)|Fs

]

∈ Rd
−.

✷

Proof of Proposition 3.1: The result follows from Proposition 3.3 applied to R = L. In

particular, since 0 ∈ AL
0 (T ), taking CT

0 = 0 in Proposition 3.2 implies αL = 0, where αL is

defined as αR for R = L. ✷

4.4 Utility maximization

Proof of Proposition 3.4. Let (V n)n≥1 be a maximizing sequence. Since U(V ) = −∞

on {V /∈ KT}, it must satisfy V n + x0 ∈ KT for all n ≥ 1. It then follows from Proposition

3.2 that E [Z ′
T V n] ≤ αR(Z) < ∞ for all n ≥ 1, for a given Z ∈ MT

0 (intK∗) ∩ LT
0 (intRd

−).

Hence, for n ≥ 1, we have E [Z ′
T (V n + x0)] ≤ αR(Z) + Z ′

0x0 =: r < ∞ where V n + x0 ∈ KT

and ZT ∈ intK∗
T . This implies that E [ε|V n + x0|] ≤ r for some ε ∈ L0((0, 1],F), compare

with Lemma 11 in [2]. By Komlos Lemma, one can then find a sequence (Ṽ n)n≥1 such that

Ṽ n ∈ conv(V k, k ≥ n) for all n ≥ 1, and (Ṽ n)n≥1 converges P − a.s. to some V (x0) ∈

L0(Rd,F). Since AR
0 (T ) is convex under (R), (Ṽ n)n≥1 ⊂ AR

0 (T ). Since Ṽ n + x0 ∈ KT , for

all n ≥ 1, and AR
0 (T ) is Fatou-closed, see Theorem 2.2, we have V (x0) ∈ AR

0 (T ). Moreover,

the random map U being P − a.s. concave, (Ṽ n)n≥1 is also a maximizing sequence. Since

U(x0 + Ṽ n)+ ≤ 1 for each n ≥ 1, we finally deduce from Fatou’s Lemma and the P − a.s.

upper semi-continuity of U that

sup
V ∈U(x0)

E [U(x0 + V )] = lim sup
n→∞

E

[

U(x0 + Ṽ n)
]

≤ E [U(x0 + V (x0))] .

✷
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[5] J. Grépat and Y. Kabanov. Small transaction costs, absence of arbitrage and consistent

price systems. Preprint.

[6] Y. Kabanov and M. Kijima. A Consumption-Investment Problem with Production Pos-

sibilities. From stochastic calculus to mathematical finance: the Shiryaev Festschrift,

315, Springer Verlag, 2006.
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