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Abstract–Oxygen glucose deprivation (OGD) leads to rapid suppression of synaptic transmission. 

Here we describe an emergence of rhythmic activity at 8 to 20 Hz in the CA3 subfield of 

hippocampal slice cultures occurring for a few minutes prior to the OGD-induced cessation of 

evoked responses. These oscillations, dominated by inhibitory events, represent network activity, 

as they were abolished by tetrodotoxin. They were also completely blocked by the GABAergic 

antagonist picrotoxin, and strongly reduced by the glutamatergic antagonist NBQX. Applying 

CPP to block NMDA receptors had no effect and neither did UBP302, an antagonist of GluK1-

containing kainate receptors. The gap junction blocker mefloquine disrupted rhythmicity. 

Simultaneous whole-cell voltage-clamp recordings from neighboring or distant CA3 pyramidal 

cells revealed strong cross-correlation of the incoming rhythmic activity. Interneurons in the CA3 

area received similar correlated activity. Interestingly, oscillations were much less frequently 

observed in the CA1 area. These data, together with the observation that the recorded activity 

consists primarily of inhibitory events, suggest that CA3 interneurons are important for 

generating these oscillations. This transient increase in inhibitory network activity during OGD 

may represent a mechanism contributing to the lower vulnerability to ischemic insults of the CA3 

area as compared to the CA1 area. 
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Brain ischemia leads to a rapid increase in extracellular glutamate concentration, which triggers 

neurotoxic cell death mainly through the excessive activation of calcium-permeable NMDA 

receptors (Choi and Rothman, 1990). Neurons react to the decrease in oxygen and glucose by 

initiating a series of adaptive responses to mitigate excitotoxicity. Both long term mechanisms 

involving alterations in gene transcription and cell metabolism (Lipton, 1999), as well as 

immediate effects on electrophysiological properties (Krnjević, 2008) serve to protect neurons, 

thereby allowing them to recover from ischemic insults of short duration. Among the best 

characterized of the immediate protective mechanisms are neuronal hyperpolarization (Hansen et 

al., 1982; Fujiwara et al., 1987; Leblond and Krnjević, 1989; Luhmann and Heinemann, 1992; 

Jiang et al., 1994; Fujimura et al., 1997; Erdemli et al., 1998; Tanabe et al., 1999) and adenosine-

mediated inhibition of glutamatergic synaptic transmission (Fowler, 1989; Zeng et al., 1992; 

Gribkoff and Baumann, 1992; Katchmann and Hershkowitz, 1993; Zhu and Krnjević, 1997; 

Pearson et al., 2006). The neuronal hyperpolarization enhances magnesium block of the NMDA 

channel, which impedes calcium influx, thereby reducing excitatory synaptic transmission by 

inhibiting glutamate release. In addition, it was recently shown that specific classes of neurons 

that are particularly resistant to ischemic cell death express mechanisms to down-regulate NMDA 

receptor function (Avignone et al., 2005; Gee et al., 2006; Nakanishi et al., 2009; Zhang et al., 

2009). Changes in membrane properties and in synaptic function are expected also to modify 

network activity in neuronal populations. Indeed, ischemia induced an epoch of high frequency 

discharge recorded from the hippocampus in anesthetized rats just prior to the suppression of 

synaptic activity (Freund et al., 1989). And in an in vitro preparation consisting of the whole 

hippocampus from neonatal rats, anoxia induced gamma oscillations originating in the CA3 area 

(Dzhala et al., 2001). In hippocampal slice cultures older than three weeks, we observed that 

OGD induces a slower form of network oscillations primarily in the theta range. We 



 4 

characterized the basic properties of these oscillations by recording from individual hippocampal 

neurons and from cell pairs. We find that the rhythmic responses induced in the hippocampus at 

the onset of OGD are driven primarily by a powerful activation of the inhibitory network in the 

CA3 region.  

 

EXPERIMENTAL PROCEDURES 

All experiments used protocols approved by the Veterinary Department of the Canton of Zurich. 

Hippocampal slice cultures were prepared from 6 day old Wistar rats and maintained for 3-6 

weeks in vitro using the roller drum technique as described (Gähwiler et al., 1998). Animals were 

killed by decapitation. Slice cultures were then transferred to a patch-clamp recording setup and 

superfused with artificial cerebrospinal fluid (ACSF) equilibrated with 95% O2/5% CO2 

containing (in mM): 124 NaCl, 2.5 KCl, 26 NaHCO3, 1.25 NaH2PO4, 10 glucose, 3 CaCl2, 2 

MgCl2, pH 7.4. Neurons were visualized with DIC optics and whole-cell patch-clamp recordings 

were made with pipettes (2-4 MΩ) containing (in mM): 140 Cs-gluconate, 5 NaCl 10 HEPES, 10 

phosphocreatine, 1 mM EGTA, 1 mM MgCl2, 0.1% biocytin, pH 7.2-7.4. Neurons were voltage-

clamped at -50 mV, a potential where the driving force allows visualization of both excitatory 

postsynaptic currents (EPSCs) and inhibitory postsynaptic currents (IPSCs). Signals were 

amplified with an Axopatch 200B amplifier (Axon Instruments, Foster City, CA), filtered at 2 

kHz, stored and analyzed on a personal computer using pClamp8 or pClamp9 software (Axon 

Instruments). Series resistance (7-15 MΩ) was monitored regularly. Stimulation (200 μs) was 

applied with a glass pipette filled with artificial cerebrospinal fluid placed in the stratum lucidum.  

OGD was induced by superfusing slice cultures with artificial cerebrospinal fluid equilibrated 

with 95% N2/5% CO2 in which glucose was substituted with 8 mM sucrose plus 2 mM 2-

deoxyglucose and 3 mM NaN3 was added. Note that 8 mM sucrose is much below the typical 

concentrations of 500 mM sucrose, which are used to induce direct osmotic effects on 

transmission (Rosenmund and Stevens, 1996). 

After recording, slices were fixed 4-12 hours in 4% paraformaldehyde in 0.1 M phosphate buffer 

pH 7.4. Slices were washed in 0.1 M phosphate buffer then equilibrated overnight with 30% 

sucrose 12% glycerol quick-frozen in liquid nitrogen cooled isopentane and stored at -80 °C until 

processed. After thawing, slice cultures were removed from the coverslips, washed in 0.1 M 

phosphate buffer and permeabilized in 0.1 M phosphate buffer, 0.4% Triton X-100 and 5% heat-

inactivated horse serum for 24 hours at 4 °C. Slices were then processed with streptavidin-

conjugated AlexaFluor-488 to reveal biocytin-filled neurons. To visualize the layers of the 

hippocampus, a primary antibody that recognizes mature neurons (neuronal nuclear antigen, 

mouse α-NeuN 1:400, Chemicon, CA, USA) was incubated for 24 hours at 4 °C in 0.1 M 

phosphate-buffered saline with 0.4% Triton X-100 and 2.5% heat-inactivated horse serum. 

Cultures were washed with 0.1 M PB 0.4% Triton X-100 (4 x 30 min) and incubated at 4 °C 

overnight with donkey α-mouse Alexa 546 (1:350, Molecular Probes) in 0.1 M PB, 0.4% Triton 
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X-100 and 2.5% heat-inactivated horse serum. After extensive washing sections were air-dried, 

mounted with Fluorostab mounting medium (Bioscience Products AG, Switzerland), and stored 

in the dark at 4 °C. Image stacks were collected with a Leica SP2 confocal microscope and 

interneurons were identified by their morphology and an absence of dendritic spines. 

Chemicals 

Concentrated stock solutions of drugs were prepared in distilled water or dimethylsulfoxide as 

appropriate, stored at -20 
o
C in single-use aliquots, thawed and diluted in ACSF immediately 

before use. Picrotoxin and mefloquine were purchased from Sigma. NBQX, SYM2206, UBP302, 

DHPG, YM298198, and MPEP were purchased from Tocris (Bristol, UK). CPP was kindly 

provided by Novartis AG (Basel, Switzerland). Tetrodotoxin was purchased from Ascent 

Scientific (Bristol, UK).  

Analysis 

Two types of analyses were performed to describe the activity induced by OGD. In the first 

instance autocorrelation functions were used to classify the activity as rhythmic or not. When two 

cells were recorded simultaneously, cross-correlation functions were also calculated alongside the 

autocorrelations. Records were examined by eye and the autocorrelation and/or cross-correlation 

functions were calculated using Clampfit for the 3-4 most rhythmic-appearing 0.6 – 2 s long 

segments during each condition and averaged. The period was calculated from the time of the 

second peak in the autocorrelation function (period). When the second peak of the autocorrelation 

function was at least 0.3 and several regularly spaced peaks appeared, the segment was classified 

as ‘rhythmic’. The overall activity during a given condition was classified as rhythmic when at 

least 3 rhythmic segments could be identified during the recording. While performing this 

analysis we observed that the frequency of the activity typically increased initially and would 

gradually change during the recording. We therefore used a second method of analysis to show 

the time course of the change in frequency of IPSCs. This approach involved first a pre-filtering 

of the postsynaptic current responses followed by a classification of the detected transients into 

IPSCs versus EPSCs based on their shape (polarity, rise, and decay time). The first step consisted 

of a detrend operation to remove very slow fluctuations that can contaminate the baseline of the 

signals. This procedure was performed with a moving average filter (duration of the sliding 

window: 0.25 s). Non-IPSC events were then removed using a threshold operation in which 

signals of negative polarity are set to zero, and the amplitude of the remaining signals was 

squared to increase the signal-to-noise ratio. The squared signal was compared to a threshold . 

To minimize false negatives and false positives, an algorithm was employed that allowed the user 

to easily adjust the  threshold and to immediately view the generated graphed data. Thus, the  

threshold was adjusted manually and data output was reviewed visually. The frequency of the 

IPSPs was then plotted against time using a sliding window with 1 second duration.  

Statistical analysis 

Data are presented as mean percentage of control ± SEM. Paired Student’s t-tests were used to 

compare responses under the various conditions. 
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RESULTS 

All experiments were performed with roller-drum hippocampal slice cultures where synaptic 

connectivity approaches that found in vivo (Zimmer and Gähwiler, 1984; Frotscher and Gähwiler, 

1998). Thus, broad band oscillatory activity is much more readily induced in this preparation 

(Fischer et al., 2002) than in acute hippocampal slices in which rhythmicity is usually restricted 

to a single band and requires application of very high concentrations of agonists (Konopacki et 

al., 1987; MacVicar and Tse, 1989; Williams and Kauer, 1997; Fisahn et al., 1998; Gillies et al., 

2002). More recent work, however, has shown that network oscillations are better maintained in 

acute slices if an adequate oxygen supply is ensured by increasing the perfusion (Wu et al., 2005, 

Hajos et al., 2009). 

When pyramidal neurons in the CA3 region of the hippocampus were voltage-clamped at -50mV, 

stimulation of the stratum lucidum or dentate gyrus evoked mixed EPSC/IPSC responses 

dominated by IPSCs (Fig. 1A, a-d; Brown and Johnston, 1983; Lawrence and McBain, 2003, 

Mori et al., 2004). OGD gradually decreased evoked responses until they were completely 

blocked. Coincident with the depression of evoked responses, OGD induced rhythmic activity 

dominated by IPSCs in 65 of 69 CA3 PCs, which ceased when evoked responses were blocked 

(Fig. 1A). Hypoxia alone failed to induce oscillations. This activity was abolished by tetrodotoxin 

(0.5 µM) indicating that it was driven by action potential-dependent synaptic inputs from 

presynaptic neurons rather than reflecting intrinsic membrane oscillations (n = 4, Fig. 1B). Once 

initiated, the frequency of IPSCs recorded from CA3 pyramidal neurons remained relatively 

constant, until all activity stopped (ACF 0.382 ± 0.012, period 111.8 ± 4.5 ms, n = 69 Fig. 1C). 

Spontaneous activity returned with some delay when normal oxygenated aCSF was perfused 

beginning immediately after the cessation of activity i.e. after 3-5 minutes. The outward 
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potassium current initiated by OGD was not examined here, as patch pipettes were filled with a 

cesium-based recording solution.  

Recording from pairs of CA3 neurons revealed that the activity induced by OGD was 

synchronous across the CA3 area (Fig. 2), and activity recorded from pairs of CA3 pyramidal 

neurons became highly correlated (CCF: 0.689 ± 0.055, n = 8, Fig. 2A). Recordings from 12 of 

16 interneurons in the CA3 area also revealed rhythmic activity during OGD (ACF: 0.331 ± 

0.025, period 112.4 ± 5.1 ms, n = 16) that was highly correlated with the activity recorded from 

other CA3 interneurons in 3 of 6 pairs (CCF 0.455 ± 0.090, n = 6) or the activity recorded from 

CA3 pyramidal neurons in 3 of 4 pairs (CCF 0.572 ± 0.075, n = 4, Fig. 2B). This finding strongly 

suggests that OGD-induced network activity occurs throughout the CA3 region of the slice 

cultures. When CA3 interneurons were recorded in current clamp mode, action potentials were 

not observed during the control period. OGD, however, led to a transient depolarization 

associated with action potential discharge (Fig. 2B) in 6 out of 7 cells (mean action potential 

frequency: 5.4 ± 1.8 Hz, peak frequency: 48.3 ± 17.2 Hz), consistent with the increase in IPSP 

frequency observed in CA3 cells during OGD.  

In contrast, in recordings made from the CA1 region, rhythmicity was usually not present in the 

activity induced by OGD (Fig. 2C, ACF 0.247 ± 0.066, n = 10). Furthermore, when recordings 

were obtained simultaneously from a CA1 and a CA3 pyramidal cell, rhythmic activity was 

always seen in the CA3 cell but only in 2 of 7 CA1 pyramidal cells.  OGD also induced transient 

rhythmic activity in only 2 of 6 neurons located in the dentate gyrus (not shown, ACF 0.209 ± 

0.061, period 107.6 ± 13.6 ms, n = 6). These findings suggest that the activity originates in the 

CA3 neuronal network. 



 8 

The OGD-induced activity absolutely required the activity of GABAergic interneurons as it was 

abolished in the presence of picrotoxin (300 µM) (Fig 3A). Antagonists of glutamate receptors, 

however, had diverse effects on the OGD-induced activity depending on the targeted subtype. 

The AMPA/kainate receptor antagonist NBQX (20 µM), applied 2 minutes prior to OGD, 

dramatically reduced inward (excitatory) and outward (inhibitory) events. However, very small 

rhythmic currents remained in 2 of 4 neurons (Fig 3B, ACF 0.295 ± 0.035, period 140.4 ± 16.6 

ms, n = 4). OGD-induced rhythmic activity persisted in 5 of 5 CA3 neurons in the presence of the 

specific NMDA receptor antagonist CPPene (20 µM) (Fig 3C ACF 0.411 ± 0.039, period 113.4 ± 

12.9 ms, n = 5). The specific AMPA receptor antagonists GYKI 54266 (30 µM) and SYM 2206 

(20 µM) altered the OGD-induced activity from continuous rhythmic outward currents to very 

short (< 1 second) stretches of rhythmic activity (GYKI ACF 0.314 ± 0.033, period 106.9 ± 10.9 

ms, n = 5; SYM ACF 0.456 ± 0.060, period 187.3 ± 33.9 ms, n = 6) interspersed with very large 

amplitude bursts (Fig. 3D). The GluK1-specific kainate receptor antagonist UBP302 (1 µM) did 

not appreciably alter the OGD-induced oscillations (ACF 0.502 ± 0.046, period 100.1 ± 17.5 ms, 

n = 4) or at 5-10 µM (Fig. 3E, ACF 0.431 ± 0.052, period 128.9 ± 14.3 ms, n = 4).  

Gap junctions between hippocampal interneurons (Meyer et al., 2002; Traub et al., 2003; Price et 

al., 2005; Zsiros and Maccaferri, 2005) and probably also between hippocampal pyramidal cells 

(Schmitz et al., 2001; Traub et al., 2003; Mercer et al., 2006) play a significant role in oscillatory 

behavior. We therefore tested the effects of a 20 minute application of mefloquine (25 µM), 

which blocks a number of connexins (Cruikshank et al., 2004; Yamamoto and Suzuki, 2008) 

found in neuronal gap junctions. In the presence of mefloquine there was an increase in burst-like 

activity in CA3 neurons that for short segments (maximum about 0.6 seconds) was quite 

rhythmic in 2 of 4 neurons (ACF 0.304 ± 0.063, period 90.1 ± 15.6 ms, n = 4). OGD further 
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increased the activity (Fig 3F, ACF 0.348 ± 0.027, period 73.3 ± 17.2 ms, n = 3), which again had 

primarily very short rhythmic segments.  

The increase in extracellular glutamate concentrations associated with ischemia may enhance the 

activation of Group I metabotropic glutamate receptors (mGluRs), which are localized peri- or 

extra-synaptically (Lujan et al., 1996), and whose activation can induce synchronized oscillations 

(Whittington et al., 1995). Indeed, we observed that the group I metabotropic glutamate receptor 

agonist (S)-DHPG at low concentrations (~100 nM) induced oscillations in the CA3 region of the 

slice cultures that were qualitatively similar to those observed with OGD (Fig. 3G1, ACF 0.433 ± 

0.030, period 126.4 ± 11.4 ms, n = 8). OGD induces significant rises in extracellular glutamate 

(Jabaudon et al., 2000; Rossi et al., 2000) which may therefore induce oscillations by acting on 

group I mGluRs. The non-competitive group I mGluR antagonists YM289198 (2 µM) and MPEP 

(5 µM) blocked the oscillations induced by DHPG (Fig. 3G2 ACF 0.177 ± 0.023, n = 6). The 

same cocktail did not, however, block the OGD-induced oscillations (Fig. 3G3 ACF 0.488 ± 

0.044, period 100.6 ± 12.0 ms, n = 6). Thus, activation of mGluRs is sufficient to induce 

oscillations in slice cultures but is not necessary for the oscillations evoked by OGD. 

 

DISCUSSION 

This investigation performed with organotypic slice cultures shows that energy deprivation in the 

hippocampus results in a strong but transient increase in synaptic inhibitory activity in the CA3 

area. The much lower prevalence of rhythmic inhibitory activity in CA1 pyramidal cells is likely 

due to the functional uncoupling of inhibitory interneurons from the CA1 network by anoxia 

(Khazipov et al., 1993; Congar et al., 1995), and may therefore contribute to the greater 
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susceptibility of CA1 pyramidal cells to excitotoxic cell death. The frequency of the network 

IPSCs in the CA3 area was between 8 and 20 Hz, a range which is somewhat higher than theta 

oscillations recorded from rodent in vivo (4 – 12 Hz; Bland, 1986), possibly as a consequence of 

OGD. Simultaneous recordings from CA3 pyramidal cell pairs as well as from interneuron pairs 

showed that OGD led to highly correlated discharge of IPSPs, which was not apparent during 

control periods. This result suggests that individual interneurons impose rhythmicity on large 

numbers of neighboring cells, as has been demonstrated in the CA1 subfield (Cobb et al., 1995). 

The extreme ramification of basket cell axons (Fig. 2B) is consistent with such an entrainment 

function. Synchronization may also involve electrical coupling among neurons (Traub et al., 

2004). Numerous studies have shown electrical coupling among interneurons in the CA1 subfield 

(Zhang et al., 2004; Price et al., 2005; Zsiros and Maccaferri, 2005; Zsiros et al., 2007). Our data 

suggest that this may also be the case in the CA3 subfield. Mefloquine, at a concentration that 

blocks gap junctions, clearly disrupted the OGD-induced rhythmic discharge of IPSPs in CA3 

pyramidal cells. The origin of the brief burst of IPSCs is presently unknown and probably reflects 

a gap junction-independent effect of mefloquine (Zhou et al., 2006). Interestingly, OGD did not 

readily induce oscillations in CA1 pyramidal cells, and furthermore, the oscillations we observed 

in CA3 neurons were not propagated to CA1. This is in contrast to normal in vivo conditions, 

where the CA3 region represents a major input for theta rhythmicity in CA1 cells (reviewed in 

Buzsaki, 2002). Presumably, it is the breakdown in ionic gradients during OGD that leads to 

failure in axonal conduction and/or synaptic transmission of Schaffer collaterals.  

The emergence of hippocampal oscillations largely reflects intrinsic properties of the synaptic 

circuitry, as shown in vivo (Bragin et al., 1995) and in vitro (Fischer et al., 1999; Gillies et al., 

2002; Wu et al., 2005). Furthermore, the theta range of rhythmic activity matches the resonant 

frequency of hippocampal principal cells (Leung and Yu, 1998). A trigger is, however, necessary 
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to bias the excitability of the network to shift into the oscillatory mode. Both an atropine-

sensitive form initiated by cholinergic inputs arising in the septum, as well as an atropine-

insensitive form mediated by as yet unidentified transmitters, and typical for awake animals, can 

be distinguished (reviewed in Buzsaki, 2002). The oscillations observed here in hippocampal 

slice cultures correspond to the latter form, as this preparation lacks cholinergic inputs (Hefti and 

Gähwiler, 1984; Gähwiler et al., 1989). Energy deprivation rapidly reverses the operational 

direction of glutamate transporters (Jabaudon et al., 2000; Rossi et al., 2000) leading to 

accumulation of extracellular glutamate. Thus, we hypothesized that glutamate serves to trigger 

oscillatory activity initiated by OGD. We then attempted to determine which class of glutamate 

receptors is mediating the OGD-induced oscillations. We first blocked AMPA receptors, which 

greatly reduced oscillations, as described previously (MacVicar and Tse, 1989; Williams and 

Kauer, 1997; Gillies et al., 2002). As with the suppression of rhythmicity with tetrodotoxin, this 

finding is likely to reflect the requirement of an intact network rather than identifying AMPA 

receptors as the generators of theta. NMDA receptors have been implicated in the transmission of 

theta activity from the entorhinal cortex to the CA1 subfield in in vivo experiments (reviewed in 

Buzsaki, 2002). Furthermore, blocking NMDA receptors inhibited the propagation of oscillations 

from the CA3 to the CA1 subfield in slices (Williams and Kauer, 1997). However, we observed 

no effect on oscillations in the CA3 subfield after NMDA receptor blockade, in keeping with 

earlier studies (MacVicar and Tse, 1989; Williams and Kauer, 1997). Blocking GluK1 subunit-

containing kainate receptors also had no effect on rhythmicity. Oscillations in the theta range can 

be induced in the CA3 subfield by activating mGluRs (Fig. 3G this study; Cobb et al., 2000; 

2003), although at higher concentrations mGluR agonists block theta rhythms because of 

endocannabinoid release (Reich et al., 2005). When we blocked postsynaptic mGluRs with non-

competitive antagonists, OGD-induced rhythmic activity was not reduced. Together, these data 
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strongly suggest that activation of mGluRs alone does not trigger the oscillations observed with 

OGD. However, high concentrations of extracellular glutamate are likely to have an indirect 

action by inducing neurons or glia to release as yet unidentified neurotransmitters or 

neuropeptides that drive network oscillations. Thus, even though neurons initially hyperpolarize 

in response to energy deprivation (Krnjević, 2008), we propose that a sufficient number of 

interneurons are transiently activated through glutamate-induced transmitter release to generate a 

transient phase of oscillatory activity. Previous studies in vivo (Freund et al., 1989) and in the 

whole hippocampus of neonatal rats (Dzhala et al., 2001) reported that energy deprivation 

induced a transient burst of gamma oscillations, whereas in our study in slice cultures we 

observed oscillations at lower frequencies close to the theta range. As pointed out by Dzhala and 

colleagues (2001), the neonatal tissue they used may not support theta oscillations, which arise 

after day 8 in rodents (Leblanc and Bland, 1979; Leinekugel et al.; 2002, but see Karlsson and 

Blumberg, 2003). Furthermore, it has been proposed that high levels of gamma oscillation may 

interfere with theta activity (Traub et al., 2004). Thus, slight shifts in network conditions may 

favor theta oscillations, or gamma oscillations may be more sensitive to anoxia (Huchzermeyer et 

al., 2008) than theta oscillations. Network properties will also differ among various in vitro 

preparations, which will make it necessary to test further these mechanisms in the in vivo 

situation.  

In conclusion, this study in organotypic slice cultures shows that energy deprivation induces a 

transient increase in inhibitory network activity mainly in the CA3 region, which may contribute 

to the decreased susceptibility to ischemia of CA3 as compared to CA1 pyramidal cells. 
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Fig. 1. Effects of OGD in the CA3 region of organotypic slice cultures. A) Continuous voltage-

clamp recording from a CA3 pyramidal neuron. Electrical stimuli were applied in the dentate 

gyrus region to evoke currents at 30 s intervals. OGD induces rhythmic network activity which 

together with the evoked responses is abolished after 3 to 4 minutes. Time of OGD is indicated 

by bar above trace. One second segments of the recordings are expanded as indicated below 

along with evoked currents (a-d, 100 ms segments). The autocorrelation functions calculated 

from the expanded regions are shown below. B) Sample recording during OGD in the presence of 

tetrodotoxin. C) Mean frequency of inhibitory events during OGD of 9 CA3 pyramidal neurons 

showing time course of activity. 
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Fig. 2. Rhythmic activity induced by OGD occurs across the CA3 region. A) Paired voltage-

clamp recordings of two CA3 pyramidal neurons show that the OGD-induced activity was highly 

synchronized between cells. B) Sample recording from a CA3 interneuron shows that they also 

receive rhythmic network input. The soma was in Stratum pyramidale and the axonal 

morphology was typical of a chandelier cell. The panel at the right depicts action potential 

discharge in a different CA3 interneuron. C) OGD-induced rhythmic activity was much less 

frequently recorded in the CA1 region as shown in this example recording. Autocorrelation and 

cross-correlation functions were calculated from the regions delineated by the dotted lines. 



 21 

 

 

 

Fig. 3. OGD-induced oscillations require intact inhibitory transmission and are highly sensitive to 

AMPA receptor antagonists. A-G) Traces on the left show the effect of the indicated drug on 

OGD- induced oscillations. On the right is the corresponding autocorrelation function for each 

trace. In some traces vertical dotted lines indicate the region from which the autocorrelation 

function was calculated. H) Summary of the peak mean frequencies of IPSCs in the different 

conditions. All traces are 2 seconds long. 


