
HAL Id: hal-00486997
https://hal.science/hal-00486997v1

Preprint submitted on 7 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Collision-free walk planning for humanoid robots using
numerical optimization

Thomas Moulard, Florent Lamiraux, Pierre-Brice Wieber

To cite this version:
Thomas Moulard, Florent Lamiraux, Pierre-Brice Wieber. Collision-free walk planning for humanoid
robots using numerical optimization. 2010. �hal-00486997�

https://hal.science/hal-00486997v1
https://hal.archives-ouvertes.fr

Collision-free walk planning for humanoid robots
using numerical optimization

Thomas Moulard, Florent Lamiraux
LAAS-CNRS, Université de Toulouse

7, avenue du Colonel Roche
31077 Toulouse cedex 4, France

thomas.moulard@laas.fr

Pierre-Brice Wieber
INRIA Rhône-Alpes, Grenoble, France

pierre-brice.wieber@inria.fr

Abstract— This paper addresses the problem of walk plan-
ning for a humanoid robot on a flat ground cluttered by
obstacles. The algorithm we propose works in two steps. In
a first step, a collision-free path for the bounding box of the
robot moving in the horizontal plane is planned using classical
path planning methods. In a second step, a spline is fit on
the path and optimized using numerical optimization tools.
The optimization criterion is time, constraints are defined by
positive distance to obstacles and bounded velocities of the feet.
The method has been tested on a real humanoid robot HRP-2.

I. INTRODUCTION

Humanoid robots are highly complex systems due to their
numerous degrees of freedom. As such, computing whole
body movement is time-consuming when using classical
probabilistic path planning algorithms such as Rapidly-
exploring Random Trees (RRT) or Probabilistic Road Maps
(PRM) [7] [3].

Considering the whole body is critical for manipulation
or contact point planning and leads to complex algorithms
trying to solve a problem in a high dimensional space.
However, when focusing on the walking problem alone,
the problem is much simpler. Indeed, most of the time the
movement is realized on a flat ground which allows to search
for a 2d trajectory with 3d constraints. An example of this
approach is [16] where path planning for a humanoid robot
is simplified by considering bounding boxes.

Even in this precise context, walking to a goal position can
usually be done in plenty of different ways. Independently
of the path which should be as short as possible, trajectory
should take into account hardware constraints such as speeds
and acceleration bounds. A specific issue is also choosing
between walking forward or sideways. Usually, humans
behave as cart-like systems [1] but this can change when the
environment is especially cluttered with obstacles or when
the goal position is near the starting one. [11] presents a
method based on numerical optimization combining holo-
nomic and non-holonomic movements which does not take
into account obstacles.

On the opposite, approaches such as [2] allow to walk
on uneven terrain, step over obstacles or climb stairs. The
algorithm relies on a stack of foot prints and chooses the next
best foot print through different heuristics. The generality of
the presented algorithm is useful for difficult situations but
may be inefficient when the robot is walking on a flat ground

Fig. 1. Humanoid robot HRP-2 passing between two chairs

due to the growing complexity of the underlying graph used
for A* based algorithms.

This paper describes a motion planning method for hu-
manoid robots walking on flat ground with obstacles. The
novelty resides in the combination of numerical optimization
methods with classical path planning techniques.

II. PLANNING ALGORITHM FOR A HUMANOID
ROBOT

To plan a trajectory for a humanoid robot, one efficient
method is to first consider the robot as a box moving on a
plane. This simplified model contains three degrees of free-
dom: x, y, θ. Then, a probabilistic path planning algorithm
is applied to search for a trajectory. One difference between
previous approaches is that this search is not constrained
to produce efficient movement. On the opposite, movement
between roadmap nodes are classical linear interpolation.
When the search tree is not constrained at all and only checks
for collision, solving the planning problem on the simplified
model is fast. Previous work on optimizing search trees for
constraint-free applications includes [4], [15] and [5].

After having computed a rough trajectory for the box, nu-
merical optimization is used to refine the path and transform
it into an efficient trajectory. This step will be explained in
detail in the next section.

The optimization process done, an efficient and feasible

Fig. 2. Fitting a cubic spline on a trajectory

trajectory is obtained. To generate the whole-body movement
for the humanoid robot, a stack of foot prints is generated
along the box trajectory.

Being given robot foot steps and waist height, it is possible
to reconstruct the movement of the lower part of the robot
using inverse kinematics [12]. This step also integrates the
stability constraint. As a consequence, it may reject some
infeasible foot steps. In practice, enforcing a reasonable step
length during the foot step generation phase prevents this
kind of failure.

III. NUMERICAL OPTIMIZATION FOR PATH
PLANNING

Numerical optimization step takes a collision-free trajec-
tory as its input and computes a more efficient trajectory.

Numerical optimization solvers search the vector of pa-
rameters which minimizes a cost function under linear and
non-linear constraints. The first step is to fit the input
trajectory on a parameterized curve. By modifying the curve
control points, the solver will be able to change the trajectory
as desired.

A. Spline fitting

The proposed algorithm uses cubic splines [13] to fit the
trajectory. One interesting spline feature in this case is that if
a control point is repeated up to the spline order, the spline
will pass through this control point. As the input trajectory
generated by the probabilistic method is made of several
linear paths (linear interpolation is used to link roadmap
nodes), the final trajectory is a set of segments, it makes
the fitting process trivial.

To fit the trajectory, one control point is added at the
beginning and the end of the trajectory and three control
points are added between each segment. To increase the
possible movements (Figure 2).

Time control point 1 . . . control point n
λ x0 y0 θ0 . . . xn yn θn

Fig. 3. Optimization parameters

B. Time scaling

Figure 3 illustrates that an additional parameter λ is added
to model the trajectory speed. λ = 1 means normal speed
and λ = 2 corresponds to a trajectory twice slower. The
normal speed is defined by the probabilistic method step but
is not affected by hardware constraints. At the beginning of
the solving step, a λ satisfying all constraints is computed to
make sure that the optimization process starts from a valid
point.

Let γ be the initial trajectory defined from tmin to
tmax. A free time trajectory Γ is defined from Tmin to
Tmax = Tmin + λ(tmax − tmin) as

Γλ(T) = γ(tmin +
1
λ

(T − Tmin)) (1)

The use of a free time trajectory allows the solver to both
optimize trajectory shape and speed by respectively changing
the control points and the scale. The free time trajectory
derived from the initial trajectory γ is used as the state of
the solver.

C. Cost function

The remaining task is to define the optimization problem
properly. An optimization problem is defined by the cost
function which evaluates the “efficiency” of a trajectory and
the constraints which enforces that the solving algorithm will
not return an invalid trajectory.

The only factor required in the cost function is time: the
trajectory should be as fast as possible while respecting the
speed constraints described in the next section.

Cost(x) = λ (2)

D. Speed constraint

Three types of constraints are considered in the problem:
constraints on the initial and goal points, speeds and obsta-
cles constraints.

The first constraints indicates that the first and the last
control points cannot be moved.

Speeds constraints are computed on each foot separately.
The constraint combines frontal and orthogonal speed into
one value to penalize more orthogonal speed compared to
frontal speed. It means that the robot will be allowed to
go much faster when walking forward. As a consequence,
as the solver tries to accelerate the trajectory as much as
possible, it will also change the control points to prefer
forward movements. The constraints is expressed for each
foot through the following formula:

Speed (t,foot)(x) = (
vxfoot
vxmax

)2 + (
vyfoot
vymax

)2 − 1 (3)

Fig. 4. Frontal and orthogonal speeds computation for each foot

As illustrated in Figure 4, this constraint defines an ellipse
to constrain more lateral speeds. vxfoot is the frontal speed of
the specified foot and vyfoot is the orthogonal speed defined
as follow:

vxfoot(q, q̇) =
(

cos θ
sin θ

)(
ẋ
ẏ

)
= cos θ ẋ+ sin θ ẏ (4)

vyfoot(q, q̇) =
(
−sin θ
cos θ

)(
ẋ
ẏ

)
= −sin θ ẋ+ cos θ ẏ (5)

In the previous formula, (x, y, θ) represents the foot posi-
tion in the global frame. q and q̇ are respectively the robot
configuration and its derivative with respect to time.

This formulation presents the interest of gathering or-
thogonal speed and frontal speed in one constraint. When
constraining separately speeds, high orthogonal speeds tra-
jectories do not cost more than others. On the opposite, by
summing speeds, having high orthogonal speeds limits the
frontal speed and by consequence the trajectory will have a
higher cost.

This constraint is applied along the whole trajectory:

∀T ∈ [Tmin, Tmax], foot ∈ (left , right),
Speed (T,foot)(x) ≤ 0 (6)

vxmax and vymax are respectively maximum frontal and
orthogonal velocities and depend on the robot.

In practice, a time discretization step is used to add the
constraint uniformly along the trajectory.

E. Obstacle constraint

Obstacle constraint is more difficult to express: distance
function has to be defined carefully to produce acceptable
gradients for the solver. Indeed, the naive approach which

Fig. 5. Distance computations

associates zero distance to any configuration where the robot
and the obstacle are in collision will not work. The reason is
that anytime the constraint is not fulfilled, a null gradient will
be returned, preventing the solver from knowing in which
direction the search should be pursued.

To avoid that pitfall, the distance is computed from the
plane inside the bounding box to the obstacle and the
minimum distance is increased by half of the box width as
illustrated in Figure 5.

The constraint can be expressed as the following formula:

Obstacle(T,obstacle)(x) = distance(obstacle,Γ(T)) (7)

As the speed constraint, the obstacle constraint is dis-
cretized along the trajectory:

∀T ∈ [Tmin , Tmax],Obstacle(T,obstacle)(x) ≤ dmin (8)

dmin is defined as half of the box width plus a safety
distance which depends on the application.

To quickly compute this constraint gradient during the
solving process, the method explained in [9] is used. Gradient
computation details can be found in the appendix. Compared
to numeric differentiation, using this algorithm makes the
whole solving process about 100 times faster.

IV. EXPERIMENTAL RESULTS

This approach has been tested using a HRP-2 humanoid
platform [6]. This 30 degrees of freedom is 1.54 [m] tall and
weights 58 [kg].

The first environment that has been tested is composed of
two chairs which are narrow enough to forbid straight for-
ward movement. Bounds on the environment have been set to
make sure the RRT has to pass between the chairs to solve
the problem. This example illustrates how holonomic and
non-holonomic movements are combined in this approach.
The second environment (tested in simulation only) is more
general: it represents a large room with some obstacles. This
illustrates that this approach is still valid when planning a
longer trajectory. Computation time for these two examples
are detailed in Figure 6

Scenarii Path planning Optimization Whole process
Passing between two chairs 8.58s 47.22s 2 min 05.55 s

Large environment with obstacles 4.14 s 1 min 9.35 s 4 min 5.11 s

Fig. 6. Computation time. Whole process column incorporates probabilistic path planning step, optimization and whole-body movement computation.

Fig. 7. Passing between two-chairs simulation

To compute these examples, the RobOptim optimization
framework1 and the CFSQP non-linear solver [8] have been
used. The KineoWorks SDK2 has also been used. In particu-
lar, the collision detector KCD has played an important role
in this approach efficiency.

The reshaped trajectory which has been tested on HRP-2
is shown in Figure 7. This figure illustrates differents states
of the bounding box along the trajectory.

The optimization process has been profiled using Val-
grind and reveals that most of the time is spent computing
constraints and the associated gradient. With the example
requiring the robot to pass between two chairs, about 19%
of the time was constraints computation and 53% was
gradients computation. Constraints incorporating geometry
are particularly costly: on the whole computation time, 34%
has been spent in the 3d distance computation routines.

V. FUTURE WORK: OPTIMIZING WHOLE BODY
TRAJECTORIES

The method presented in the previous section is used to
generate trajectories but can be extended to whole body
trajectory optimization. Few works such as [10] and [14]
are currently exploring this idea. Future work will allow
the current framework to optimize the whole robot posture
through the same idea: first using search tree to find a rough

1http://roboptim.sourceforge.net/
2http://www.kineocam.com/

Fig. 8. Simplified model of the robot for posture optimization

estimation and then refining it through numerical optimiza-
tion. Fast computation can be achieved by generalizing the
obstacle constraint presented in the previous section to the
whole humanoid robot as illustrated by Figure 8. This work
may allow to generate better trajectories in difficult cases
as numerical optimization can easily saturate a constraint
unlike random search trees which usually do not find “limit
configurations”. However, acceptable computing time and
good convergence despite the presence of local minima still
have to be demonstrated.

VI. CONCLUSION

In this paper, we presented an approach to refine trajecto-
ries generated by a probabilistic planning algorithm. Results
both in simulation and with real hardware demonstrated that
this method generates efficient trajectories. Previous section
also illustrated that computation time are acceptable even
with complex environment containing multiple obstacles.

However, this method still presents some drawbacks: nu-
merical optimization as any local method will not be able
to change globally the structure of a trajectory, it will be
limited to local optimization to refine the trajectory. Local
minima can also prevent the method from converging toward
a better solution. Another problem is that if this method
refines properly difficult cases, it is much slower than usual
heuristics such as shortcuts. To allow fast optimization when
the initial trajectory is extremely inefficient despite a simple
environment, the shortcut algorithm is run as a pretreatment
to optimize roughly before using numerical optimization.

http://roboptim.sourceforge.net/
http://www.kineocam.com/

VII. ACKNOWLEDGMENTS
This work has been supported by the R-BLINK project,

ANR-08-JCJC-0075-01. We are very grateful to Oussama
Kanoun for providing us with the picture of Figure 8.

APPENDIX

[9] introduces a fast method to compute obstacles distance.
This section describes the algorithm proposed in this article.

Let O(q) and R(q) respectively the closed point on the
obstacle and the robot when the robot is in configuration q.
d represents the distance between these two points:

d(q) = ||O(q)−R(q)|| (9)

The gradient associated to this formula is:

∂d(q)
∂q

=
(O(q)−R(q))T

||O(q)−R(q)||
(
∂O

∂q
(q)− ∂R

∂q
(q)) (10)

In the previous equation, most of the computation time is
due to the two derivatives. As closest points vary with the
configuration, the equation seems at first sight costly and
would greatly slow the optimization process.

Fortunately, a more efficient formulation is possible by
considering a reference frame attached to the considered
body: (B(q), e1(q), . . . , ed(q)). The point considered on the
robot can be expressed as:

R(q) =
d∑
l=1

ρl(q)el(q) (11)

In the previous equation, (ρ1(q), . . . , ρl(q)) are local co-
ordinates of R(q). The gradient can then be expressed as:

∂R

∂q
(q) =

d∑
l=1

∂ρl
∂q

(q)el(q) +
d∑
l=1

ρl(q)
∂el(q)
∂q

(12)

This formula can be explained through the law of compo-
sitions of motions. The two parts of the sum are respectively:
• the relative motion of R(q),
• the absolute motion of the point coinciding with R(q).
As the relative motion of R(q) stays in the body boundary,

it is by consequence orthogonal to vector O(q)−R(q):

(O(q)−R(q))T
d∑
l=1

∂ρl
∂q

(q)el(q) = 0 (13)

Following the same idea with ∂O
∂q (q), we can conclude that

the relative motion on the obstacle is orthogonal to vector
O(q)−R(q):

(O(q)−R(q))T
∂O

∂q
(q) = 0 (14)

The gradient finally be expressed as:

∂d

∂q
(q) =

(R(q)−O(q))T

||O(q)−R(q)||
∂R∈body
∂q

(15)

∂R∈body

∂q =
∑d
l=1 ρl(q)

∂el(q)
∂q and represents the absolute

velocity induced by variations of q, of the point of the body
coinciding with R(q).

REFERENCES

[1] G. Arechavaleta, J.-P. Laumond, H. Hicheur, and A. Berthoz. Opti-
mizing principles underlying the shape of trajectories in goal oriented
locomotion for humans. In Humanoid Robots, 2006 6th IEEE-RAS
International Conference on, pages 131–136, Dec. 2006.

[2] Joel Chestnutt, James Kuffner, Koichi Nishiwaki, and Satoshi Kagami.
Planning biped navigation strategies in complex environments. In in
IEEE Int. Conf. Humanoid Robots, 2003.

[3] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George Kantor,
Wolfram Burgard, Lydia E. Kavraki, and Sebastian Thrun. Principles
of Robot Motion: Theory, Algorithms, and Implementations (Intelligent
Robotics and Autonomous Agents). The MIT Press, June 2005.

[4] E. Ferre and J.-P. Laumond. An iterative diffusion algorithm for part
disassembly. In Robotics and Automation, 2004. Proceedings. ICRA
’04. 2004 IEEE International Conference on, volume 3, pages 3149–
3154 Vol.3, April-1 May 2004.

[5] L. Jaillet, A. Yershova, S.M. La Valle, and T. Simeon. Adaptive
tuning of the sampling domain for dynamic-domain rrts. In Intelligent
Robots and Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International
Conference on, pages 2851–2856, Aug. 2005.

[6] K. Kaneko, F. Kanehiro, S. Kajita, H. Hirukawa, T. Kawasaki,
M. Hirata, K. Akachi, and T. Isozumi. Humanoid robot hrp-2. In
Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004 IEEE
International Conference on, volume 2, pages 1083–1090 Vol.2, 26-
May 1, 2004.

[7] Steven M. LaValle. Planning Algorithms. Cambridge University Press,
May 2006.

[8] Craig Lawrence, Jian L. Zhou, and Andr L. Tits. User’s guide for cfsqp
version 2.5: A c code for solving (large scale) constrained nonlinear
(minimax) optimization problems, generating iterates satisfying all
inequality constraints. Technical report, 1997.

[9] O. Lefebvre, F. Lamiraux, and D. Bonnafous. Fast computation of
robot-obstacle interactions in nonholonomic trajectory deformation. In
Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, pages 4612–4617, April 2005.

[10] S. Miossec, K. Yokoi, and A. Kheddar. Development of a software
for motion optimization of robots - application to the kick motion of
the hrp-2 robot. pages 299 –304, Dec. 2006.

[11] K. Mombaur, J.-P. Laumond, and E. Yoshida. An optimal control
model unifying holonomic and nonholonomic walking. In Humanoid
Robots, 2008. Humanoids 2008. 8th IEEE-RAS International Confer-
ence on, pages 646–653, Dec. 2008.

[12] O. Stasse, B. Verrelst, P.-B. Wieber, B. Vanderborghtand P. Evrard,
A. Kheddar, and K. Yokoi. Modular architecture for humanoid walking
pattern prototyping and experiments. Advanced Robotics, Special
Issue on Middleware for Robotics –Software and Hardware Module
in Robotics System, 22(6):589–611, 2008.

[13] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer,
New York, 3 edition, August 2002.

[14] W. Suleiman, E. Yoshida, J.-P. Laumond, and A. Monin. On humanoid
motion optimization. pages 180 –187, 29 2007-Dec. 1 2007.

[15] A. Yershova and S. M. LaValle. Improving motion-planning al-
gorithms by efficient nearest-neighbor searching. Robotics, IEEE
Transactions on, 23(1):151–157, Feb. 2007.

[16] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond. Humanoid
motion planning for dynamic tasks. In Humanoid Robots, 2005 5th
IEEE-RAS International Conference on, pages 1–6, Dec. 2005.

	INTRODUCTION
	PLANNING ALGORITHM FOR A HUMANOID ROBOT
	NUMERICAL OPTIMIZATION FOR PATH PLANNING
	Spline fitting
	Time scaling
	Cost function
	Speed constraint
	Obstacle constraint

	EXPERIMENTAL RESULTS
	FUTURE WORK: OPTIMIZING WHOLE BODY TRAJECTORIES
	CONCLUSION
	ACKNOWLEDGMENTS
	Appendix
	References

