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Constructing Positive Definite Elastic Kernels
with Application to Time Series Classification

Pierre-François Marteau, Member, IEEE and Sylvie Gibet, Member, IEEE

Abstract —This paper proposes some extensions to the work on kernels dedicated to string alignment (biological sequence alignment)
based on the summing up of scores obtained by local alignments with gaps. The extensions we propose allow to construct, from
classical time warp distances, what we called summative time warp kernels that are positive definite if some simple sufficient conditions
are satisfied. Furthermore, from the same formalism, we derive a time warp inner product that extend the usual euclidean inner product,
providing the capability to handle discrete sequences or time series of variable lengths in an Hilbert space. The classification experiment
we conducted, using either first near neighbor classifier or Support Vector Machine classifier leads to conclude that the positive definite
elastic kernels we propose outperform the distance substituting kernels for the classical elastic distances we tested. In a similar way,
the kernel based on the distance induced by the time warp inner product outperforms significantly on the considered task the kernel
based on the euclidean distance.

Index Terms —Elastic distance, Time warp kernel, Time warp inner product, Definiteness, Time series classification, SVM.

✦

1 INTRODUCTION

E LASTIC similarity measures such as Dynamic Time
Warping (DTW) or Edit Distances have proved to

be quite efficient compared to non elastic similarity
measures such as euclidean measures or LP norms,
when addressing tasks that require the matching of
times series data, in particular time series clustering and
classification. A very wide scope of application ranging
from physics, chemistry, finance, bio-informatics, net-
work monitoring, etc, have demonstrated the benefits
of using elastic measures. A natural follow up to the
elaboration of elastic measures is to examine whether or
not it is possible to construct Reproducing Time Warp
Hilbert Spaces (RTWHS) from a given elastic measure,
basically vector spaces characterized with inner prod-
ucts having time warp capabilities. Another intriguing
question is to determine whether it is possible or not to
define an inner product structure from which a given
elastic measure is induced ? This question, apart from
its theoretical implication, has a great impact when
regarding the potential application fields, since, if the
answer is positive, it gives a direct access to the Linear
Algebra results and tools.

Unfortunately it seems that common elastic measures
that derive from DTW or Edit Distance are not directly
induced by an inner product of any sort, even when
such measures are metrics. One can conjecture that it
is not possible to embed time series in an Hilbert space
having a time warp capability using these classical elastic
measures.

• P.F. Marteau and Sylvie Gibet are with the VALORIA Lab., Université
Européenne de Bretagne, Université de Bretagne Sud, 56000 Vannes,
France.
E-mail: {Pierre-Francois.Marteau, Sylvie.Gibet}(AT)univ-ubs.fr

This paper is aiming at exploring this issue and pro-
poses the construction of Time Warp Kernels (TWK) that
try to preserve the properties of elastic measures from
which they are derived, while offering the possibility to
embed time series in TWHS. The main contributions of
the paper are the following

1) we establish the indefiniteness of main time warp
measures used in the literature

2) we propose some mechanisms to construct positive
definite kernels from classical time warp measures

3) we define simple Time Warp Inner Product (TWIP)
as an extension to the Euclidean Inner Product.

4) we experiment and compare the proposed kernels
on time series classification tasks using a large va-
riety of time series datasets.

The paper is organized as follows: the second sec-
tion of the paper synthesized the related works; the
third section introduces the notation and mathematical
backgrounds that are used throughout the paper; the
fourth section addresses the non definiteness of classical
elastic measures that prevents the direct construction of
an inner product from these measures. The fifth section
develops the construction of some TWK and TWIP from
classical elastic measures and discusses their potential
benefits. The sixth section gather clustering and classifi-
cation experimentations on a wide range of time series
data and compares TWK and TWIP accuracies with
classical elastic and non elastic measures. The seventh
section proposes a conclusion and some further research
perspectives. An annex gives the proof of our main
results.

2 RELATED WORKS

During the last decades, the use of kernel based methods
in pattern analysis has provided numerous results and
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fruitful applications in various domains such as biology,
statistics, networking, signal processing, etc. Some of
these domains, such as bioinformatics, or more generally
domains that rely on sequence or time series models,
require the analysis and processing of variable lengths
vectors, sequences or time stamped data. A lot of meth-
ods and algorithms have been developed to quantify the
similarity of such objects. From the original dynamic
programming [2] implementation of the symbolic edit
distance [11] by Wagner and Fisher [24], the Smith and
Waterman (SW) algorithm [20] has been designed to
evaluate the similarity between two symbolic sequences
by means of a local gap alignment. More efficient local
heuristics have been since proposed to meet the massive
symbolic data challenge, such as BLAST [1] or FASTA
[14]. Similarly, dynamic time warping measures have
been developed to evaluate similarity between numeric
time series or time stamped data [23], [17], and more
recently [5], [13] propose elastic metrics dedicated to
such numeric data.

Our capability to construct from such ”elastic dis-
tance”, kernels with elastic or time warp properties,
has attracted large attention since significant benefits
are expected from potential applications of kernel-based
machine learning algorithms to variable length data, or
more generally data for which some elastic matching
has a meaning. Among the kernel machine algorithms
applicable to discrimination or regression tasks, Support
Vector Machines (SVM) are reported to yield state of the
art performances.

SVM or vast margin classifiers [21], [4], [19] are a
set of supervised algorithms that learn from positive
and negative examples how to solve discrimination or
regression problems. They generalized linear classifica-
tion algorithms by integrating two concepts: the maximal
margin principle and a kernel function that defines the
similarity or dissimilarity of any pairs of examples,
typically such as an inner product between the vector
representation of two examples.

The definition of ’good’ kernels from known elastic
or time warp distances applicable to data objects of
variable lengths has thus been a major challenge since
the 90s. The notion of ’goodness’ has rapidly been as-
sociated to the concept of definiteness. Basically SVM
algorithms involve an optimization process whose so-
lution is proved to be uniquely defined if and only if
the kernel is positive definite: in that case the objective
function to optimize is quadratic and the optimization
problem convex. Nevertheless, if the definiteness of ker-
nels is an issue, in practice, many situations exist where
definite kernels are not applicable. This seems to be the
case for the main elastic measures traditionally used to
estimate the similarity of objects of variable lengths. A
pragmatic approach consists in using indefinite kernels
although contradictory results have been reported about
the impact of definiteness or indefiniteness of kernels on
the empirical performances of SVMs. The sub-optimality
of the non convex optimization process is possibly one of

the causes leading to these un-guaranteed performances
[25], [7]. Regulation procedures have been proposed
to locally approximate indefinite kernels functions by
definite ones with some benefits. Among others, some
approaches apply direct spectral transformations to in-
definite kernels: the methods [26] consist in flipping the
negative eigenvalues or shifting the eigenvalues using
the minimal shift value required to make the spectrum of
eigenvalues positive and reconstructing the kernel with
the original eigenvectors in order to produce a posi-
tive semidefinite kernel. Yet, in general, ’convexification’
procedures are difficult to interpret geometrically and
the expected effect of the original indefinite kernel may
be lost. Some theoretical highlights have been provided
through approaches that consist in embedding the data
into a pseudo-Euclidean (pE) space and formulating
the classification problem with an indefinite kernel as
that of minimizing the distance between convex hulls
formed from the two categories of data embedded in
the pE space [8]. The geometric interpretation results in a
constructive method allowing to apprehend, and in some
cases predict, the classification behavior of an indefinite
kernel SVM in the corresponding pE space.

Our approach is founded on the work of Haussler
(199) on convolution kernels [9] defined on set of discrete
structures such as strings, trees or graphs. The iterative
method that is develops is generative as it allows to build
complex kernels from the convolution of simple local
kernels. Following the work of Haussler (1999), Saigo
and al [16] define, from the smith and waterman algo-
rithm [20], a kernel to detect local alignment between
strings by convolving simpler kernels. These authors
show that the Smith and Waterman distance measure
dedicated to determining similar regions between two
nucleotide or protein sequences, that is not definite, is
nevertheless connected to the logarithm of a point wise
limit of a series of definite convolution kernels. In fact
these previous works have very general implications,
the first being that classical elastic measures can also be
understood as the limit of a series of definite convolution
kernels. We generalize in some way the results presented
by Siago and al. on the Smith and Waterman algorithm
and propose extensions to construct time warp inner
products.

3 NOTATIONS AND MATHEMATICAL BACK -
GROUNDS

In order to ensure that this paper is self-content, we
give, without much details, commonly used definitions
for metric or quasi metric, inner product, kernel and
definiteness, sequence set, and classical elastic measures.

3.1 Premetric, pseudometric and metric

Definition 3.1: A premetric on a set U is a function δ :
U × U → R which satisfies the following axioms:
For all (x, y) ∈ U × U ,
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1) δ(x, y) ≥ 0 (non negativity)
2) δ(x, x) = 0 (null if identical)

Definition 3.2: A pseudometric on a set U is a function
δ : U × U → R which satisfies the following axioms:
For all (x, y) ∈ U × U ,

1) δ(x, y) ≥ 0 (non negativity)
2) δ(x, x) = 0 (null if identical)
3) δ(x, y) = δ(y, x) (symmetry)
4) δ(x, z) ≤ d(x, y) + d(y, z). (subadditivity/triangle

inequality)

Definition 3.3: A metric, called also a distance, on a
set U is a pseudometric δ : U × U → R for which the
second axiom rewrites :
For all (x, y) ∈ U × U , δ(x, y) = 0 if and only if x=y.
(null iff identical)

3.2 Inner Product

In the following, the field of scalars denoted F is either
the field of real numbers R or the field of complex
numbers C.

Definition 3.4: An inner product space is a vector space
V over the field F together with an inner product, i.e.,
with a map
〈·, ·〉 : V × V → F

that satisfies the following three axioms for all vectors
x, y, z ∈ V and all scalars a ∈ F:

1) Conjugate symmetry:
〈x, y〉 = 〈y, x〉.

2) Linearity in the first argument:
〈ax, y〉 = a〈x, y〉.
〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉.

3) Positive-definiteness:
〈x, x〉 ≥ 0 with equality only for x = 0.

3.3 Kernel and definiteness

Definition 3.5: A kernel on a non empty set U refers to
a complex (or real) valued symmetric function ϕ(x, y) :
U × U → C (or R).

Definition 3.6: Let U be a non empty set. A function
ϕ : U × U → C is called a positive (resp. negative)
definite kernel if and only if it is Hermitian (i.e.
ϕ(x, y) = ϕ(y, x) where the overline stands for
the conjugate number) for all x and y in U and
∑n

i,j=1 cic̄jϕ(xi, xj) ≥ 0 (resp.
∑n

i,j=1 cic̄jϕ(xi, xj) ≤ 0),
for all n in N, {x1, x2, ..., xn} ⊆ U and {c1, c2, ..., cn} ⊆ C.

Definition 3.7: Let U be a non empty set. A function
ϕ : U × U → C is called a conditionally positive
(resp. conditionally negative) definite kernel if and
only if it is Hermitian (i.e. ϕ(x, y) = ϕ(y, x) for
all x and y in U ) and

∑n
i,j=1 cic̄jϕ(xi, xj) ≥ 0

(resp.
∑n

i,j=1 cic̄jϕ(xi, xj) ≤ 0), for all n ≥ 2 in N,
{x1, x2, ..., xn} ∈ Un and {c1, c2, ..., cn} ∈ Cn with

∑n
i=1 ci = 0.

In the last two above definitions, it is easy to show that
it is sufficient to consider mutually different elements in
U , i.e. collections of distinct elements x1, x2, ..., xn. This
is what we consider for the remaining of the paper

Definition 3.8: A positive (resp. negative) definite ker-
nel defined on a finite set U is also called a positive (resp.
negative) semidefinite matrix. Similarly, a positive (resp.
negative) conditionally definite kernel defined on a finite
set is also called a positive (resp. negative) conditionally
semidefinite matrix.

For short, we will use PD, ND, CPD and CND
for positive definite, negative definite, conditionally
positive definite and conditionally negative definite to
characterize either kernel or matrix through out the
paper.

It is quite straightforward to construct PD kernels
from CND kernels. For instance, if ϕ is a CND
kernel on a set U and Ω ∈ U then [**ref**]
ϕ′(x, y) = ϕ(x,Ω) + ϕ(y,Ω) − ϕ(x, y) − ϕ(Ω,Ω) is a
PD kernel, so are e(ϕ

′(x,y)) and e−ϕ(x,y). The converse is
also true.

3.4 Sequence set

Definition 3.9: Let U be the set of finite sequences
(symbolic sequences or time series): U = {Ap

1|p ∈ N}.
Ap

1 is a sequence with discrete index varying between 1
and p. We note Ω the empty sequence (with null length)
and by convention A0

1 = Ω so that Ω is member of set
U. |A| denotes the length of the sequence A. Let Up =
{A ∈ U | |A| ≤ p} be the set of sequences whose length
is lower or equal to p.

Definition 3.10: Let A be a finite sequence. Let a′i be
the ith element (symbol or sample) of sequence A. We
will consider that a′i ∈ S × T where S embeds the
multidimensional space variables (either symbolic or
numeric) and T ⊂ R embeds the time stamp variable,
so that we can write a′i = (ai, tai

) where ai ∈ S and
tai
∈ T , with the condition that tai

> taj
whenever

i > j (time stamps strictly increase in the sequence of
samples). Aj

i with i ≤ j is the subsequence consisting
of the ith through the jth element (inclusive) of A. So
Aj

i = a′ia
′
i+1...a

′
j . Λ denotes the null element. Aj

i with
i > j is the null time series, e.g. Ω.

3.5 General Edit/Elastic distance on a sequence set

Definition 3.11: An edit operation is a pair
(a′, b′) 6= (Λ,Λ) of sequence elements, written a′ → b′.
Sequence B results from the application of the edit
operation a → b into sequence A, written A ⇒ B via
a′ → b′, if A = σa′τ and B = σb′τ for some subsequences
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σ and τ . We call a′ → b′ a match operation if a′ 6= Λ and
b′ 6= Λ, a delete operation if b′ = Λ , an insert operation
if a′ = Λ.

For any pair of sequences Ap
1, B

q
1 , for which we

consider the extensions Ap
0, B

q
0 whose first element

is the null symbol Λ, and for each elementary edit
operation related to position 0 ≤ i ≤ p in sequence A
and to position 0 ≤ j ≤ q in sequence B is associate
a cost value Γa′

i
→b′

j
(Ap

1, B
q
1), or Γa′

i
→Λ,j(A

p
1, B

q
1) or

ΓΛ,i→b′j
(Ap

1, B
q
1) ∈ R. To simplify this writing we will

simply write Γ(a′i → b′j), Γ(a′i → Λ) or Γ(Λ → b′j)
although this will not be fully appropriate in general.

Definition 3.12: A function δ : U × U → R is called an
edit distance defined on U if, for any pairs of sequences
Ap

1, B
q
1 , the following recursive equation is satisfied

δ(Ap
1, B

q
1) =

Min







δ(Ap−1
1 , Bq

1) + Γ(a′p → Λ) delete

δ(Ap−1
1 , Bq−1

1 ) + Γ(a′p → b′q) match

δ(Ap
1, B

q−1
1 ) + Γ(Λ→ b′q) insert

(1)

Note that not all edit/elastic distances are metric. In
particular, the dynamic time warping distance does not
satisfy the triangle inequality.

3.5.1 Levenshtein distance

The Levenshtein distance δlev(x, y) has been defined for
string matching. For this edit distance, the delete and
insert operations induce unitary costs, i.e. Γ(a′p → Λ) =
Γ(Λ → b′q) = 1 while the match cost is null if a′p = b′p or
1 otherwise.

3.5.2 Dynamic time warping

The DTW similarity measure δdtw [23][17] is defined
according to the previous notations as:

δdtw(A
p
1, B

q
1) = dLP (ap, bq)

+ Min







δdtw(A
p−1
1 , Bq

1)

δdtw(A
p−1
1 , Bq−1

1 )

δdtw(A
p
1, B

q−1
1 )

(2)

where dLP (ap, bq) is the Lp norm in Rk, and so for
DTW, Γ(a′p → Λ) = Γ(a′p → b′q) = Γ(Λ → b′q) =
dLP (ap, bq). One may note that the time stamp values
are not used, therefore the costs of each edit operation
involve vectors a and b in S instead of vectors a′ and b′

in S × T . One of the main restrictions of δdtw is that it
does not comply with the triangle inequality as shown
in [5].

3.5.3 Edit Distance with real penalty

δerp(A
p
1, B

q
1) = Min







δerp(A
p−1
1 , Bq

1) + Γ(a′p → Λ)

δerp(A
p−1
1 , Bq−1

1 ) + Γ(a′p → b′q)

δerp(A
p
1, B

q−1
1 ) + Γ(Λ→ b′q)

(3)

with

Γ(a′p → Λ) = dLP (ap, g)
Γ(a′p → b′q) = dLP (ap, bq)
Γ(Λ→ b′q) = dLP (g, bq)

where g is a constant in S and dLP (x, y) is the Lp norm
of vector (x− y) in S.

Note that the time stamp coordinate is not taken into
account, therefore δerp is a distance on S but not on S×T .
Thus the cost of each edit operation involves vectors a
and b in Rk instead of vectors a′ and b′ in Rk+1.

According to the authors of ERP [5], the constant g
should be set to 0 for some intuitive geometric interpre-
tation and in order to preserve the mean value of the
transformed time series when adding gap samples.

3.5.4 Time warp edit distance

Time Warp Edit Distance (TWED) [12], [13] is defined
similarly to the edit distance defined for string [11][24].
The similarity between any two time series A and B of
finite length, respectively p and q is defined as:
δtwed(A

p
1, B

q
1) =

Min







δtwed(A
p−1
1 , Bq

1) + Γ(a′p → Λ) deleteA
δtwed(A

p−1
1 , Bq−1

1 ) + Γ(a′p → b′q) match

δtwed(A
p
1, B

q−1
1 ) + Γ(Λ→ b′q) deleteB

(4)

with

Γ(a′p → Λ) = d(a′p, a
′
p−1) + λ

Γ(a′p → b′q) = d(a′p, b
′
q) + d(a′p−1, b

′
q−1)

Γ(Λ→ b′q) = d(b′q, b
′
q−1) + λ

The time stamps are exploited to evaluate d(a′, b′). In
practice, d(a′, b′) = dLP (a, b)+ ν · dLP (ta, tb) where λ is a
positive constant that represent a gap penalty and ν is a
non negative constant which characterizes the stiffness
of the δtwed elastic measure.

4 UNDEFINITENESS OF ELASTIC DISTANCE
KERNELS

The Levenshtein distance kernel ϕ(x, y) = δlev(x, y)
is known to be undefinite. We report below the first
known counter-example produced by [6]. Let consider
the subset of sequences V = {abc, bad, dab, adc, bcd} that
leads to the following distance matrix

MV
lev =













0 3 2 1 2
3 0 2 2 1
2 2 0 3 3
1 2 3 0 3
2 1 3 3 0













(5)

and consider coefficient vectors C and D in R5 such
that
C = [1, 1,−2/3,−2/3,−2/3] with

∑5
i=1 ci = 0 and

D = [1/3, 2/3, 1/3,−2/3,−2/3] with
∑5

i=1 di = 0.
Clearly C · MV

lev · CT = 2/3 > 0 and
D · MV

lev · DT = −4/3 < 0, showing that MV
lev has
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no definiteness.

The DTW kernel ϕ(x, y) = δdtw(x, y) is also known
to be neither CND nor CPD. The following example
demonstrate this known result. Let consider the subset
of sequences V = {01, 012, 0123, 01234}.

Then the DTW empiric gram matrix evaluated on V
is

MV
dtw =









0 1 2 3
1 0 0 0
2 0 0 0
3 0 0 0









(6)

and consider coefficient vectors C and D in R4 such
that
C = [1/4,−3/8,−1/8, 1/4] with

∑4
i=1 ci = 0 and

D = [−1/4,−1/4, 1/4, 1/4] with
∑4

i=1 di = 0. Clearly
C ·MV

dtw ·CT = 2/32 > 0 and D ·MV
dtw ·DT = −1/2 < 0,

showing that MV
dtw has no definiteness.

Similarly, it is easy to find simple counter examples
that show that neither ERP nor TWED kernels are defi-
nite.

Let consider the subset of sequences V =
{010, 012, 103, 301, 032, 123, 023, 003, 302, 321}.

For the TWED metric, with ν = 1.0 and λ = 0.0 we
get the following matrix:

MV
twed =

































0 2 7 9 6 7 5 5 10 9
2 0 5 9 4 5 3 3 8 9
7 5 0 6 7 4 6 2 5 10
9 9 6 0 13 10 12 8 1 4
6 4 7 13 0 5 3 5 12 9
7 5 4 10 5 0 2 6 9 6
5 3 6 12 3 2 0 4 11 8
5 3 2 8 5 6 4 0 7 10
10 8 5 1 12 9 11 7 0 5
9 9 10 4 9 6 8 10 5 0

































(7)

The eigenvalue spectrum for this matrix is the
following:
{4.62, 0.04, −2.14, −0.98, −0.72, −0.37, −0.19, −0.17,
−0.06, −0.03 }. This spectrum contains 2 strictly positive
eigenvalues, showing that MV

twed has no definiteness.

For the ERP metric, with g = 0.0 we get the following
matrix:

MV
erp =

































0 2 3 3 4 5 4 2 4 5
2 0 3 5 2 3 2 2 4 5
3 3 0 4 3 2 3 1 3 4
3 5 4 0 7 6 7 5 1 2
4 2 3 7 0 3 2 2 6 5
5 3 2 6 3 0 1 3 5 4
4 2 3 7 2 1 0 2 6 5
2 2 1 5 2 3 2 0 4 5
4 4 3 1 6 5 6 4 0 1
5 5 4 2 5 4 5 5 1 0

































(8)

The eigenvalue spectrum for this matrix is the
following:
{4.63, 0.02, 1.39e − 17, −2.21, −0.97, −0.56, −0.41,
−0.26, −0.17, −0.08 }. This spectrum contains 3 strictly
positive eigenvalues (although the third positive
eigenvalue which is very small could be the result of
the imprecision of the used diagonalization algorithm),
showing that MV

erp has no definiteness.

This shows that the metric properties of a distance
defined on U, in particular the triangle inequality, are
not sufficient conditions to establish definiteness (con-
ditionally or not) of the associated distance kernel. One
could conjecture that elastic distances cannot be definite
(conditionally or not), possibly because of the presence
of the max or min operators into the recursive equation.
We will see in the following sections that replacing these
min or max operators by a sum operator allows under
some conditions to construct series of positive definite
kernels whose limit is quite directly connected to the
elastic distance kernels previously addressed.

5 CONSTRUCTING POSITIVE DEFINITE KER-
NELS FROM ELASTIC DISTANCE

The simple idea leading to the construction of positive
definite kernels from a given elastic distance defined on
U is to replace the min or max operator into the recursive
equation defining the elastic distance by a

∑

operator.
Instead of keeping one of the best alignment paths, the
new kernel will sum up all the subsequence alignments
with some weighting factor that could be optimized. This
has been done successfully for the Smith and Waterman
symbolic distance that is also known to be indefinite
[16] and we propose in the following sub sections some
generalizations and extensions of this result.

5.1 Summative Time Warped Kernels

Definition 5.1: A function < .; . >: U×U→ R is called
a Summative Time Warp Kernel (STWK) if, for any pairs
of sequences Ap

1, B
q
1 , there exists a function f : R → R

such that the following recursive equation is satisfied

< Ap
1;B

q
1 >=

∑







< Ap−1
1 , Bq

1 > ⋆f(Γ(a′p → Λ)) delete

< Ap−1
1 , Bq−1

1 > ⋆f(Γ(a′p → b′q)) match

< Ap
1, B

q−1
1 > ⋆f(Γ(Λ→ b′q)) insert

(9)

Where ⋆ is either the addition or the multiplication.
Summative refers to the

∑

operator replacing the min
or max usually used. The recursion is initialized using
< A0

1, B
0
1 >=< Ω,Ω >= ξ ∈ R.

This type of kernel sum up for all the possible alignment
paths between the two times series, the multiplication or
the addition of the local quantities f(Γ(a′ → b′)).

Definition 5.2: If ⋆ is the addition, the STWK is called
additive, otherwise it will be called multiplicative.
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The following theorem states necessary and sufficient
conditions on f(Γ(a′ → b′)) for an STWK to be definite
and thus is a basis for the construction of definite STWK.

Theorem 5.3: Definiteness of STWK:

i) A STWK is positive definite on U if the local kernel
k(a′, b′) = f(Γ(a′ → b′)) is positive definite on
((S × T ) ∪ {Λ})2 and ξ > 0.

ii) An additive STWK is negative definite on U if the
local kernel k(a′, b′) = f(Γ(a′ → b′)) is negative
definite on ((S × T ) ∪ {Λ})2 and ξ ≤ 0.

iii) An additive STWK is conditionally positive definite
if the local kernel k(a′, b′) = f(Γ(a′ → b′)) is
conditionally positive definite on ((S × T ) ∪ {Λ})2.

A sketch of proof for theorem 5.3 is given in the
appendix.

As in general the cost function Γ is conditionally
negative definite, choosing for f(h) the exponential
ensures that f(Γ(a′ → b′)) is a positive definite kernel
[18]. Other functions can be used such as the Inverse
Multi Quadric kernel k(a′, b′) = 1√

(Γ(a′→b′))2+θ2
. As with

the exponential (Gaussian or Laplace) kernel, Multi
Quadric kernel results in a positive definite matrix with
full rank (Micchelli, 1986) and thus forms a infinite
dimension feature space.

5.2 Some instances of additive and multiplicative
STWK

5.2.1 Additive STWK
Definition 5.4:

< Ap
1, B

q
1 >twip=

1
3 ·

∑







< Ap−1
1 , Bq

1 >twip delete

< Ap−1
1 , Bq−1

1 >twip +e−ν.d(tap ,tbq )(ap · bq) match

< Ap
1, B

q−1
1 >twip insert

where d is a distance, and ν a stiffness parameter. We
suggest to take ξ = 0 for this additive SWTK.

Proposition 5.5: Definiteness of the additive STWK
< ., . >twip that has the property of an inner product:

i) < ., . >twip is positive definite.

ii) Furthermore, < ., . >twip is an inner product on
(U,⊕,⊗), that we call a Time Warp Inner Product
(TWIP), where ⊕ and ⊗ are defined in definition
5.2.1 and Algorithm 5.6 respectively,

iii) The euclidean inner product < ., . >ED on a set
of time series of constant lengths and uniformly

sampled is the limit when ν →∞ of < ., . >twip on
this same set.

Definition 5.6: For all A ∈ U and all λ ∈ R, C = λ⊗ A
∈ U is such that for all 0 ≤ i ≤ |A|, c′i = (λ.ai, tai) and
thus |C| = |A|.

Algorithm 1 A⊕B

For all A, B in U, C = A⊕B ∈ U is given by
i← 0, j ← 0, k ← 0
WHILE i < |A| OR j < |B| DO
IF i < |A| AND j < |B|

IF tai = tbj
c′k = (ai + bj, tai)
i← i+ 1, j ← j + 1, k ← k + 1

ESLE IF tai < tbj
c′k = (ai, tai)
i← i+ 1, k ← k + 1

IF tai > tbj
c′k = (ai, tbj)
j ← j + 1, k ← k + 1

END IF
ENDIF
IF i < |A|

c′k = (ai, tai)
i← i+ 1, k ← k + 1

END IF
IF j < |B|

c′k = (bj, tbj)
j ← j + 1, k ← k + 1

END IF
END WHILE

Note that any discrete time series spaces of variable
lengths and non uniformly sampled, when provided
with the metric (norm) induced by a TWIP, is a Hilbert
space.
The proof of proposition 5.5 is straightforward and is
omitted.

5.2.2 Multiplicative exponentiated STWK
Definition 5.7:

< Ap
1, B

q
1 >me=

1
3 ·

∑











< Ap−1
1 , Bq

1 >me .e
−ν′·Γ(a′

p→Λ) delete

< Ap−1
1 , Bq−1

1 >me .e
−ν′·Γ(a′

p→b′q) match

< Ap
1, B

q−1
1 >me .e

−ν′·Γ(Λ→b′q) insert

(10)

where ν′ is a stiffness parameter that weights the
contribution of the local elementary costs. The larger ν′

is, the more the kernel is selective around the optimal
paths. At the limit, when ν′ → ∞, only the optimal
paths costs are sum up by the kernel. Note that, as
in general several optimal paths leading to the same
global cost exist, limν′→+∞−1/ν′ · log(< A,B >me) does
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not coincide with the elastic distance δ that involves the
same corresponding elementary costs.

We suggest to set ξ = 1 for this kind of multiplicative
ATWK.

Proposition 5.8: Definiteness of the multiplicative ex-
ponentiated STWK < ., . >me

< ., . >me is positive definite for the cost functions
Γ(a′p → Λ), Γ(a′p → b′q) and Γ(Λ → b′q) involved in the
computation of the δlev , δdtw, δerp and δtwed distances.
The multiplicative SWTKs constructed from these dis-
tances are referred respectively to STWKlev, STWKerp,
STWKdtw, STWKtwed in the remaining of the paper.

The proof of proposition 5.8 is straightforward and is
omitted.

6 CLASSIFICATION EXPERIMENTS

We empirically evaluate the effectiveness of some STWK
comparatively to Gaussian Radial Basis Function (RBF)
Kernels or elastic distance substituting kernels [7] using
some classification tasks on a set of times series coming
from quite different application fields. The classification
task we have considered consists of assigning one of
the possible categories to an unknown time series for
the 20 data sets available at UCR repository [10]. As
time is not explicitly given for these datasets, we used
the index value of the samples as the time stamps for
the whole experiment.

For each dataset, a training subset (TRAIN) is defined
as well as an independent testing subset (TEST). We use
the training sets to train two kind of classifiers:

• the first one is a first near neighbor (1-NN) classifier:
first we select a training data set containing time
series for which the correct category is known. To
assign a category to an unknown time series selected
from a testing data set (different from the train set),
we select its nearest neighbor (in the sense of a
distance or similarity measure) within the training
data set, then, assign the associated category to its
nearest neighbor. For that experiment a leave one
out procedure is performed on the training dataset
to optimized the meta parameters of the considered
comparability measure.

• the second one is a SVM classifier [4], [22] config-
ured with a Gaussian RBF kernel whose parame-
ters are C > 0, a trade off between regularization
and constraint violation and σ that determines the
width of the Gaussian function. To determine the
C and σ hyper parameter values we adopt a 5-
folded cross-validation method on each training
subset. According to this procedure, given a pre-
defined training set TRAIN and a test set TEST, we
adapt the meta parameters based on the training set
TRAIN: we first divide T into 5 stratified subsets

TRAIN1, TRAIN2, , TRAIN5; then for each subset
TRAINi we use it as a new test set, and regard
(TRAIN − TRAINi) as a new training set; Based
on the average error rate across the ten subsets, the
optimal values of meta parameters are selected as
the ones leading to the minimal average error rate.

6.1 Additive STWK

We tested the additive STWK based on the Time Warp
Inner Product < Ap

1, B
q
1 >twip (Eq.10). Precisely, we used

the time warp distance induced by < Ap
1, B

q
1 >twip,

basically δtwip(A
p
1, B

q
1) = (< Ap

1 −Bq
1 , A

p
1 −Bq

1 >twip)
1/2

.

6.1.1 Meta parameters
δtwip is characterized by the meta parameter ν (the
stiffness parameter) that is optimized for each dataset
on the train data by minimizing the classification error
rate of a first near neighbor classifier. For this kernel, ν
is selected in {100, 10, 1, .1, .01, ..., 1e− 5}.

To explore the potential benefits of TWIP against the
Euclidean inner product, we tested also the Euclidean
Distance δed that is the limit when ν →∞ of δtwip.

The kernels exploited by the SVM classifiers
are the Gaussian kernels STWKtwid(A,B) =
eδtwid(A,B)2/(2·σ2) and Ked(A,B) = eδed(A,B)2/(2·σ2).
The meta parameters C is selected into the
discrete set {2−5, 2−4, ..., 1, 2, ..., 210}, and σ2 into
{2−5, 2−4, ..., 1, 2, ..., 210}.

Table 1 gives for each data set and each tested kernels
(Ked and STWKtwip) the corresponding optimized
values of the meta parameters.

6.2 Multiplicative STWK

We tested the multiplicative exponentiated STWK
based on the δerp, δdtw, δtwed distance costs.
We consider respectively the positive definite
STWKerp, STWKdtw, STWKtwed kernels.
Our experiment compares classification errors on the
test data for

• the first near neighbor classifiers based on the
δerp, δdtw, δtwed distance measures (1-NN δerp, 1-NN
δdtw and 1-NN δtwed),

• the SVM classifiers using Gaussian distance sub-
stituting kernels based on the same distances and
their corresponding STWK, e.g. SVM δerp, SVM
STWKerp, SVM δdtw, SVM STWKdtw, SVM δtwed,
SVM STWKtwed.

For δerp, δtwed, STWKerp and STWKtwed we used
the L1-norm, while the L2-norm has been implemented
for δdtw and STWKdtw, a classical choice for DTW [15].
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TABLE 1
Datasets sizes and meta parameters used in conjunction with Ked and STWKtwip kernels

DATASET length|#class|#train|#test Ked : C, σ STWKtwip : ν,C, σ

Synthetic control 60|6|300|300 1.0;0.125 0.1;2.0;0.0625
Gun-Point 150|2|50|150 256;1.0 1e-5;2048;2.0
CBF 128|3|30|900 8;1.0 0.01;1.0;0.0312
Face (all) 131|14|560|1690 4;0.5 1e-5;16.0;0.062
OSU Leaf 427|6|200|242 2;0.125 0.01;16;0.25
Swedish Leaf 128|15|500|625 128;0.125 1.0;16;0.125
50 Words 270|50|450|455 32;0.5 0.01;32;0.25
Trace 275|4|100|100 8;0.0156 1e-5;512;0.25
Two Patterns 128 |4|1000|4000 4.0;0.25 0.01;2.0;0.0625
Wafer 152|2|1000|6174 4.0;0.5 0.1;8.0;0.0625
face (four) 350|4|24|88 8.0;2.0 1000;8.0;2.0
Ligthing2 637|2|60|61 2.0;0.125 .01;1.0;0.125
Ligthing7 319|7|70|73 32.0;256.0 0.1;512.0;8.0
ECG 96|2|100|100 8.0;0.25 1000.0, 8.0, 0.25
Adiac 176|37|390|391 1024.0;0.125 1000;1024.0;0.125
Yoga 426|2|300|300 64.0;0.125 1.0;16.0;0.0625
Fish 463|7|175|175 64.0;1.0 10.0;64.0;1.0
Coffee 286|2|28|28 128.0;4.0 1000.0;128.0;4.0
OliveOil 570|4|30|30 2.0;0.125 0.01;4.0;0.125
Beef 470|5|30|30 128.0;4.0 1000.0;128.0;4.0

TABLE 2
Meta parameters used in conjunction with δerp, STWKerp, δdtw, STWKdtw, δtwed and STWKtwed kernels

DATASET δerp : g;C;σ STWKerp : g; ν′;C;σ δdtw : C; σ STWKdtw : ν′;C; σ δtwed : λ; ν;C;σ STWKtwed : λ; ν; ν′;C; σ

Synthetic control 0.0;2.0;0.25 0.0;0.457;256.0;0.062 8.0;4.0 0.047;1024.0;0.062 0.75;0.01;1.0;0.25 0.75;0.01;0.685;8.0;4.0
Gun-Point -0.35;4.0;0.031 -0.35;0.457;128.0;1.0 16.0;0.0312 0.457;64.0;2.0 0.0;0.001;8.0;1.0 0.0;0.001;0.685;32;32
CBF -0.11;1.0;1.0 -0.11;0.203;4.0;32.0 1.0;1.0 0.457;2.0;1.0 1.0;0.001;1.0;1.0 1.0;0.00;,0.20;4.0;32.0
Face (all) -1.96;4.0;0.5 -1.96;1.028;8.0;0.62 2.0;0.25 1.028;4.0;0.25 1.0;0.01;8.0;4.0 1.0;0.01;2.312;8.0;4.0
OSU Leaf -2.25;2.0;0.062 -2.25;1.541;256;0.031 4.0;0.062 1.541;32.0;0.062 1.0;1e-4;8.0;0.25 1.0;1e-4;1.028;64.0;1.0
Swedish Leaf 0.3;8.0;0.125 0.3;0.203;1.0;4.0 4.0;0.031 5.202;0.062;0.5 1.0;1e-4;16.0;0.062 1.0;1e-4;0.304;32.0;1.0
50 Words -1.39;16.0;0.25 -1.39;0.685;16;0.25 4.0;0.062 1.028;64.0;0.062 1.0;1e-3;8.0;0.5 1.0;1e-3;1.028;32.0;2.0
Trace 0.57;32;0.62 0.57;0.457;256;4.0 4;0.25 0.685;16;0.25 0.25;1e-3;8.0;0.25 0.25;1e-3;300;0.0625;0.25
Two Patterns -0.89;0.25;0.125 -0.89;0.304;0.004;1.0 x,y 0.457;2.0;0.125 1.0;1e-3;0.25;0.125 1.0;1e-3;0.685;0.25;0.125
Wafer 1.23;2.0;0.062 1.23;0.685;4.0;0.5 1.0;0.016 1.541;1024;0.031 1.0;0.125;4.0;0.62 1.0;0.125;1.541;1.0;4.0
face (four) 1.97;64;16 1.97;0.685;32;2 16;0.5 0.457;16;2 1.0;0.01;4;2 1.0;0.01;1.027;4;2
Ligthing2 -0.33;2;0.062 -0.33;2.312;128;0.062 2.0;0.031 1.541;32;0.062 0.0;1e-6;8;0.25 0.0;1e-6;1.541;8;8
Ligthing7 -0.40;128;2 -0.40;0.685;32;0.25 4;0.25 0.685;32;0.062 0.25;01;4;0.5 0.25;0.1;0.685;4;8
ECG 1.75;8;0.125 1.75;0.457;16;0.5 2;0.62 1.028;32;0.062 0.5;1.0;4;0.125 0.5;1.0;5.202;8;16
Adiac 1.83;16;0.0156 1.83;2.312;4096;0.031 16;0.0039 1.028;2048;0.031 0.75;1e-4;16;0.016 0.75;1e-4;2.312;128;1
Yoga 0.77;4;0.031 0.77;11.7054096;0.031 4;0.008 26.337;1024;0.031 0.5;1e-5;2;0.125 0.5;1e-5;3.468;256;2
Fish -0.82;64;0.25 -0.82;0.685;32;0.5 8;0.016 3.468;64;16 0.5;1e-4;4;.5 0.5;1e-4;0.457;16;16
Coffee -3.00;16;0.062 -3.00;26.337;4096;16 8;0.062 5.202;512;4 0;0.1;16;4 0;0.1;300;1024;128
OliveOil -3.00;8;0.5 -0.82;0.457;256;0.062 2;0.125 0.457;32;0.125 0;0.001;256;32 0;0.001;32;32
Beef -3.00;128;0.125 -3.00;0.685;0.004;16384 16;0.016 0.457;0.004;16 0;1e-4;2;1 0;1e-4;0.135;0.004;16
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TABLE 3
Comparative study using the UCR datasets: classification error rates (in %) obtained using the first near neighbor

classification rule and a SVM classifier for the Ked and STWKtwip kernels

DATASET 1-NN ED SVM Ked 1-NN STWKtwip SVM STWKtwip

Synthetic control 12 2 0.67 1.0
Gun-Point 8.67 6 8.67 4.67
CBF 14.8 11.5 2.4 3.66
Face (all) 28.6 16.62 24.44 24.08
OSU Leaf 48.3 43.8 44.63 43.8
Swedish Leaf 21.3 6.24 20 8.8
50 Words 36.9 30.10 31.86 29.23
Trace 24 24 23 8
Two Patterns 9 7.45 4.1 4.1
Wafer 0.52 0.52 0.43 0.54
face (four) 21.59 14.77 21.59 14.77
Ligthing2 24.6 32.78 18.03 26.22
Ligthing7 42.5 36.98 31.51 34.24
ECG 12 9 12 9
Adiac 38.87 24.81 38.87 24.81
Yoga 17 14.86 16.86 14.7
Fish 21.71 13.14 21.71 12.57
Coffee 25 0 17.85 0
OliveOil 13.33 13.33 13.33 13.33
Beef 46.67 30 46.67 30
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Fig. 1. Comparison of error rates (in %) between two 1-NN classifiers based on the Euclidean Distance (1-NN ED),
δED, and the distance δTWIP induced by a time warp inner product (1-NN TWIP). The straight line has a slope of 1.0
and dots correspond, for the pair of classifiers, to the error rate on the tested data sets. A dot below (resp. above) the
straight line indicates that distance δTWIP has a lower (resp. higher) error rate than distance δED.
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Fig. 2. Comparison of error rates (in %) between two SVM classifiers, the first one based on the Euclidean Distance
gaussian kernel (SVM Ked), and the second one based on a gaussian kernel induced by a time warp inner product
(SVM STWKtwip). The straight line has a slope of 1.0 and dots correspond, for the pair of classifiers, to the error rate
on the tested data sets. A dot below (resp. above) the straight line indicates that SVM STWKtwip has a lower (resp.
higher) error rate than distance SVM Ked

TABLE 4
Comparative study using the UCR datasets: classification error rates (in %) obtained using the first near neighbor

classification rule and a SVM classifier for the erp, STWKerp, dtw and STWKdtw kernels

DATASET 1-NN δerp SVM δerp SVM STWKerp 1-NN δdtw SVM δdtw SVM STWKdtw

Synthetic control 3.6 1.33 1.33 7 2.33 1
Gun-Point 4 1.33 1.33 9.3 10 1.33
CBF 0.3 3.55 3.22 0.3 1.44 5.44
Face (all) 20.2 18.1 16.86 19.2 15.32 16.98
OSU Leaf 39.7 35.95 30.57 40.9 43.8 23.55
Swedish Leaf 12 7.36 6.24 21 18.56 5.6
50 Words 28.1 24.61 16.04 31 29.45 17.58
Trace 17 1 1 0 0 2
Two Patterns 0 0 0 0 0 0
Wafer 0.9 0.89 0.44 2 2.95 0.39
face (four) 10.2 4.55 3.4 17 12.5 5.68
Ligthing2 14.8 18.03 19.67 13.1 24.59 19.67
Ligthing7 30.1 16.43 17.80 27.4 21.91 16.43
ECG 13 9 13 23 17 13
Adiac 37.8 30.94 24.04 39.6 34.52 25.32
Yoga 14.7 12.1 11.47 16.4 16.87 11.2
Fish 12 9.71 4.57 26.7 19.42 4.57
Coffee 25 17.85 14.29 17.9 7.14 17.85
OliveOil 16.7 16.67 16.67 13.3 16.67 16.67
Beef 50 46.67 50 50 50 42.85
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Fig. 3. Comparison of error rates (in %) between two SVM classifiers, the first one based on the δerp substituting
kernel (SVM δerp), and the second one based on an additive time warp kernel induced by the ERP distance (SVM
STWKerp). The straight line has a slope of 1.0 and dots correspond, for the pair of classifiers, to the error rate on the
tested data sets. A dot below (resp. above) the straight line indicates that SVM STWKerp has a lower (resp. higher)
error rate than distance SVM δerp
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Fig. 4. Comparison of error rates (in %) between two SVM classifiers, the first one based on the δdtw substituting
kernel (SVM δdtw), and the second one based on an additive time warp kernel induced by the δdtw distance (SVM
STWKdtw)). The straight line has a slope of 1.0 and dots correspond, for the pair of classifiers, to the error rate on the
tested data sets. A dot below (resp. above) the straight line indicates that SVM STWKdtw has a lower (resp. higher)
error rate than distance δdtw
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TABLE 5
Comparative study using the UCR datasets: classification error rates (in %) obtained using the first near neighbor

classification rule and a SVM classifier for the δtwed and STWKtwed kernels

DATASET 1-NN δtwed SVM δtwed SVM STWKtwed

Synthetic control 0 1.33 1.33
Gun-Point 2 0.067 0
CBF 0.67 3.5 2.44
Face (all) 23.6 16.86 15.09
OSU Leaf 28.1 18.18 22.73
Swedish Leaf 14.6 6.4 5.12
50 Words 18.9 14.51 16.26
Trace 9 0 1
Two Patterns 0.1 0.02 0
Wafer 1 0.4 0.37
face (four) 15.9 2.27 3.4
Ligthing2 19.7 21.31 21.31
Ligthing7 37 21.29 23.28
ECG 11 8 7
Adiac 41.7 31.02 23.52
Yoga 14 9.9 10.83
Fish 8.6 2.86 3.43
Coffee 28.5 28.5 17.86
OliveOil 16.7 13.33 13.33
Beef 33.3 53.33 50
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Fig. 5. Comparison of error rates (in %) between two SVM classifiers, the first one based on the δtwed substituting
kernel (SVM δtwed), and the second one based on an additive time warp kernel induced by the ERP distance (SVM
STWKtwed). The straight line has a slope of 1.0 and dots correspond, for the pair of classifiers, to the error rate on the
tested data sets. A dot below (resp. above) the straight line indicates that SVM STWKtwed has a lower (resp. higher)
error rate than distance SVM δtwed
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6.2.1 Meta parameters
For δerp kernel, the meta parameter g is optimized
for each dataset on the train data by minimizing the
classification error rate of a first near neighbor classifier
using a Leave One Out (LOO) procedure. For this kernel,
g is selected in {−3,−2.99,−2.98, · · · , 2.98, 2.99, 3}. This
optimized value is also used for comparison into the
STWKme(ERP ) kernel.

For δtwed kernel, the meta parameters λ and
ν are optimized for each dataset on the train
data by minimizing the classification error
rate of a first near neighbor classifier. For our
experiment, the stiffness value (ν) is selected from
{10−5, 10−4, 10−3, 10−2, 10−1, 1} and λ is selected from
{0, .25, .5, .75, 1.0}. If different (ν, λ) values lead to the
minimal error rate estimated for the training data then
the pairs containing the highest ν value are selected
first, then the pair with the highest λ value is finally
selected. These optimized (λ, ν)values are also used for
comparability purposes into the STWKtwed kernel.

The kernels exploited by the SVM classifiers
are the Gaussian Radial Basis Function (RBF)
kernels K(A,B) = eδ(A,B)2/(2·σ2) where δ stands
for δerp, δdtw, δtwed, STWKerp(ERP , STWKdtw,
STWKtwed. The meta parameters C is selected
into {2−5, 2−4, ..., 1, 2, ..., 210}, and σ2 into
{2−5, 2−4, ..., 1, 2, ..., 210}. The best values are obtained
using a cross validation procedure.

For the STWKerp, STWKdtw and STWKtwed kernels,
the meta parameter 1/ν′ is selected into the discrete set
S = {10−5, 10−4, ..., 1, 10, 100}.

The optimization procedure is as follows:

• for each value in S, we train a SVM STWK∗ clas-
sifier on the training dataset using the previously
described 5-folded cross validation procedure to
select the SVM meta parameters cost and σ and the
average of the classification error is recorded.

• the best σ,C and ν′ values are the one that lead to
the minimal average error.

Table 2 gives for each data set and each tested
kernels (δerp, δdtw, δtwed, STWKerp, STWKdtw and
STWKtwed) the corresponding optimized values of the
meta parameters.

6.3 Discussion

6.3.1 Additive STWK experiment analysis
Table 3 shows the classification error rates obtained for
the tested methods, e.g. the first near neighbor classi-
fier based on the Euclidean Distance and the distance
induced by the time warp inner product (1-NN ED and
1-NN δtwip), the Gaussian RBF kernel SVM based on the
euclidean distance and the distance induced by the time
warp inner product (SVM Ked and SVM STWKtwip).

This experiment shows that the time warp inner
product is significantly more effective for the considered
tasks comparatively to the edit distance measure, since
it exhibits, on average, the lowest error rates for the
testing data for both the 1-NN and SVM classifiers, as
shown in Table 3 and Figures 1 and 2. The stiffness
parameter in δtwip seems to play a significant role in
these classification tasks, and this for a quite large
majority of data sets.

6.3.2 Multiplicative STWK experiment analysis

Tables 4 and 5 show the classification error rates ob-
tained for the tested methods, e.g. the first near neighbor
classifier based on the δerp, δdtw and δtwed distances (1-
NN δerp, 1-NN δdtw and 1-NN δtwed), the Gaussian RBF
kernel SVM based on the same distances (SVM δerp, SVM
δdtw and SVM δtwed) and euclidean distance and the
Gaussian RBF kernel SVM based on the STWK kernels
(SVM STWKerp, SVM STWKdtw and SVM STWKtwed).

In this experiment, we show that the SVM classifiers
clearly outperforms the 1-NN classifiers. But the interest-
ing results reported in tables 4 and 5 and figures 3, 4 and
5 is that SVM STWKerp and SVM STWKerp performs
slightly better than SVM δerp and SVM δtwed respectively,
and the SVM STWKdtw is clearly much better than the
SVM δdtw. This could come from the fact that δerp and
δtwed are metrics but not δdtw. SVM δdtw behaves poorly
compared to the other tested classifiers probably because
the SVM optimization process is not performing well.
Nevertheless, the STWKdtw kernel based on δdtw seems
to correct greatly its drawbacks.

7 CONCLUSION

Following the works on convolution kernels [9] and
local alignment kernels defined for strings processing
around the Smith and Waterman algorithm [20] [16],
we summative time warp kernels (STWK) applicable
for string and time series processing. We give some
simple sufficient conditions to build positive definite
STWK. Our generalization leads us to propose additive
and multiplicative STWK. For multiplicative STWK,
we show that, for the exponentiated version we have
experimented, the sufficient conditions are basically
satisfied by very classical elastic distances defined
by a recursive equation, in particular this is the case
for the edit distance, the well known Dynamic Time
Warping measure and for some variant such as the Edit
Distance With Real penalty and the Time Warp Edit
Distance, these two last being metrics as well as the
symbolic edit distance. From the general additive STWK
definition we have been able to propose a time warp
inner product (TWIP) from which a metric (or norm)
that generalizes the euclidean distance (or euclidean
norm) is induced. The experiments conducted on a
large variety of time series datasets show that both
the multiplicative positive definite STWKs outperform
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the indefinite elastic distances they are derived from,
when considering 1-NN and SVM classification tasks.
Our experiments also show that the additive STWK
we constructed from the proposed instance of TWIP
outperforms similarly and significantly the kernels
derived from the euclidean inner product.

This time warp inner product opens some interesting
perspectives since it leads to reconsider the notion
of orthogonality in discrete time series spaces. In
particular, in such spaces spaces provided with a TWIP
the discrete sine and cosine waveforms are not any
more orthogonal. If so, what may look like a discrete
elastic Fourier transform ?

APPENDIX A
A.1 Proof of theorem 5.3

i) Let show that if the function f(Γ(a′ → b′)) :
(S×T )∪{Λ} → R is positive definite and if ξ > 0 , then
an additive or multiplicative STWK is definite positive.

To that end, we consider the set Vr = {V ⊂
U such that Max(Ak,Al)∈V 2([Ak| + |Al|) ≤ r},
and show by induction on r that, P1: if
the previous conditions are satisfied, for all
r ∈ R+ ∪ {0}, all V = {A1, A2, · · · , A|V |} ∈ Vr, all
(α1, α2, · · · , α|V |) ∈ R|V |,

∑

k,l αkαl (< Ak, Al >) ≥ 0.

Base case (BC): The proposition P1 is obviously true
for r = 0 since we restrict the sequence set to U0 = {Ω}
since ξ > 0.

Inductive Hypothesis (IH): Let suppose that the
proposition P1 is true for a value r ≥ 0 and let show
that it is verified for r + 1.

Let first note < Ak, Al >i,j=< Ai
k,1, A

j
l,1 > the restriction

of the STWK up to index 0 ≤ i ≤ |Ak| in Ak and index
0 ≤ j ≤ |Al| in Al.

For all finite subset V = {A1, A2, · · · , A|V |} ∈ Vr+1

and all (α1, α2, · · · , α|V |) ∈ R|V | we have

∑

k,l

αkαl < Ak, Al >=

∑

m,n/|Am|,|An|≥1

αmαn < Am, An >

+
∑

p,q/|Ap|=0,|Aq|≥1

αpαq < Ap, Aq >

+
∑

p,q/|Ap|=0,|Aq|≥1

αpαq < Aq, Ap >

+
∑

r,s/|Ar|=|As|=0

αrαs < Ar , As >

thus, by definition of the STWK

Γa′
i
→b′

j
(Ap

1, B
q
1)

∑

k,l

αkαl < Ak, Al >=

∑

m,n/|Am|,|An|≥1

αmαn(< Am, An >|Am|,|An|−1 ⋆

f(ΓΛ→a′
n,|An|

(Am, An))

+
∑

m,n/|Am|,|An|≥1

αmαn(< Am, An >|Am|−1,|An|−1 ⋆

f(Γa′
m,|Am|

→a′
n,|An|

(Am, An))

+
∑

m,n/|Am|,|An|≥1

αmαn(< Am, An >|Am|−1,|An| ⋆

f(Γa′
m,|Am|

→Λ(Am, An))

+
∑

p,q/|Ap|=0,|Aq|≥1

αpαq(< Ω, Aq >0,|Aq|−1 ⋆

f(ΓΛ→a′
l,|Aq |

(Ap, Aq))

+
∑

p,q/|Ap|=0,|Aq|≥1

αpαq(< Aq,Ω >|Aq|−1,0 ⋆

f(Γa′
l,|Aq|

→Λ(Aq, Ap))

+
∑

r,s/|Ar|=|As|=0

αrαs.ξ

Within each term (except the last one) of the sum
constituting the right hand side of the previous
equality, the ⋆ operator associates two kernels whose
arguments are identical. The restricted STWK present
within these terms are positive definite since they
all apply on subsets that belong to some Vs with
s ≤ r and which are by IH positive definite. As ⋆
is either the addition or the multiplication and as
positive definite kernels are closed under summation
or multiplication [3], all this terms are positive. The
last term being obviously positive, we establish that
∑

k,l

αkαl (< Ak, Al >) ≥ 0. Thus the proposition P1 is

true at r + 1. By induction, the proposition P1 is true
for all r ∈ R+ ∪ {0}. Finally we have established that
For all finite subset V = {A1, A2, · · · , A|V |} ∈ Vr+1

and all (α1, α2, · · · , α|V |) ∈ R|V | we have
∑

k,l

αkαl (< Ak, Al >) ≥ 0, e.g. the STWK < ., . >

is positive definite �

ii) and iii) are proved in a very similar way.

A.2 Proof of proposition 5.5

The proofs of i) and ii) are obtained using a similar
recursion as the one used to prove theorem 5.3.
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