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Abstract

Applying the method of reflections, we derive the flow pattern around a confined colloidal particle

with quasislip conditions at its surface, in powers of the ratio a/h of particle radius and wall

distance. The lowest order corresponds to a single reflection at the confining wall. Significant

corrections occur at higher order: the linear term in a/h modifies the amplitudes of the well-known

one-reflection approximation, whereas new features arise in quadratic order. Our results agree

with recent experiments where thermoosmosis drives hydrodynamic attractive forces in confined

colloids.

PACS numbers: 66.10.C, 82.70.-y,47.57.J-
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I. INTRODUCTION

Colloidal transport and small-scale flow in complex fluids are mostly driven by interfacial

forces, that may arise from an electric field, or thermal or chemical gradients [1]. These

external fields induce a quasi-slip velocity at the particle surface and a corresponding fluid

flow. For example, salinity and temperature inhomogeneities have been used for focussing

and spreading colloidal particles in a microchannel, or for locally augmenting their den-

sity by several orders of magnitude [2—4]. Confinement perpendicular to the applied field

modifies both the fluid velocity field and the colloid kinetics. As a particle approaches a

solid boundary, its sedimentation slows down, because of an additional velocity component

proportional to the the ratio a/h of the particle size a and the distance h; on the contrary,

the electrophoretic mobility of a particle approaching a wall varies as (a/h)3 [5—9]. The

steady state is reached if the viscous stress and the repulsion by the wall counterbalance the

interfacial driving force; then the particle is immobile, and the surrounding velocity field is

squeezed by the boundary. Since the particle continues to move the fluid along its surface,

it creates a flow with incoming radial and outgoing vertical components.

As a striking consequence, a second nearby particle experiences an effective attractive

force. Cluster formation of charged micron-sized colloids has been observed during elec-

trophoretic deposition and in an ac field [10—15]. The crucial role of the electroosmotic flow

is confirmed by the fact that aggregation is reversible, i.e., the ordering disappears after

switching off the external field. In the case of electroosmosis in a DC field, the flow u0 = µE

varies linearly with the external field E [1] and leads to particle clustering at the electrode

[11, 15].

More recently, several studies investigated confined colloids in a thermal gradient [16, 17].

Besides the reversible aggregation, these experiments recorded the kinetics of small tracer

particles and reported how the effective attraction of neighbor particles varies with their

distance. Thermal forces have been observed for charged colloidal particles close to a glass

plate with a vertical temperature gradient [16, 17]. The thermoosmotic flow along the particle

surface [18, 19] induces a radial inward flow, which results in hydrodynamic attraction along

the confining wall and favors cluster formation. Thermoosmotic driving accounts both for

the double-layer enthalpy transport and the thermoelectric response of the salt solution, and

thus may take both signs, depending on the solute and solvent properties [20].
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In the present paper we study the flow pattern induced by a constant electric field or

a temperature gradient. The velocity field and the resulting hydrodynamic interactions are

determined as series in powers of the parameter

ε =
a

h
.

We consider a spherical particle at rest at a distance h from a solid boundary plane B. The

stationary flow u(r) is described by Stokes’ equation for an incompressible fluid of viscosity

η,

η∇2
u =∇P, ∇ · u = 0. (1)

Stick boundary conditions apply at the confining wall B, whereas the osmotic flow at the

particle surface S imposes a quasi-slip velocity,

u|B = 0, u|S = −uSeθ. (2)

The unit vector parallel to the particle surface, eθ, is directed downwards; thus uS > 0 corre-

sponds to an upward boundary flow in Fig. 1. For a spherical particle with a homogeneous

surface suspended in a bulk phase the boundary velocity varies with the sine of the polar

angle [1],

uS = u0 sin θ. (3)

In the confined geometry studied here, this relation remains valid if the external field is not

too strongly deformed by the presence of the particle and the solid boundary. A more general

form occurs if the electric permittivities or thermal conductivities show strong discontinuities

at the solid-fluid interfaces.

In Sect. 2 we introduce the velocity field in spherical coordinates and discuss the simple

example of an immobile particle without confinement. Sect. 3 presents the method of reflec-

tions and the systematic expansion in powers of ε, and gives explicit results for the radial

velocity component. In Sect. 4 we discuss recent experiments where colloidal particles are

confined through thermoosmotic driving. In Sect. 5 we abondon the particular form (3) for

the quasislip velocity and study the general case.

II. FLUID FLOW WITHOUT CONFINEMENT

We start with the case of an unconfined immobile particle, which can be realized by coun-

terbalancing the osmotic surface force by an external body force, such as optical tweezers.
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FIG. 1: Confined particle S of radius a at a distance h from the boundary B. We indicate spherical

coordinates r, θ with respect to the particle, r̂, θ̂ with respect to the image particle, and cylindrical

coordonnates ρ, z.

Then the general solution of Stokes’ equation in spherical coordinates reads

v(r, θ) = u0

∞∑

n=1

an

rn
(Rn(θ)er + Tn(θ)eθ) . (4)

(A corresponding expansion for the stream function has been given by Brenner [5].) Writing

the vector Laplace and the divergence operators in the local basis {er, eθ}, one finds the

radial and tangential components in terms of Legendre polynomials and their derivatives,

Rn = pnPn(cos θ) + qnPn−2(cos θ), (5)

Tn = −
pn(n− 2)

n(n+ 1)

dPn
dθ

−
qn
n− 1

dPn−2
dθ

. (6)

The solution of Eq. (1) consists of inhomogeneous and homogeneous contributions with

coefficients pn and qn, respectively. The former are related to a non-uniform pressure pro-

portional to 4n−2
n+1
pnPn/r

n+1. Homogeneous solutions exist for n ≥ 3; this implies q1 = 0 = q2.

With the quasi-slip boundary condition at the particle surface S one has

p1 = 1, q3 = −1. (7)

The radial and tangential compenents of the velocity field are given by

vr
u0
= cos θ

(
a

r
−
a3

r3

)
,
vθ
u0
= −

sin θ

2

(
a

r
+
a3

r3

)
. (8)

In terms of hydrodynamic multipoles [21], this flow consists of a “stokeslet” of strength p1

and a “source doublet” q3. The latter arises from the interfacial forces and varies as 1/r
3 [1],

whereas the external body force results in the stokeslet with the characteristic dependence
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on 1/r. Thus the flow pattern in the vicinity of an immobile particle, as given by Eq. (7)

and illustrated in Fig. 2a, differs significantly from that of a particle moving at velocity u0

due to phoresis.

III. CONFINEMENT AND IMAGE FLOW

A. Velocity field due to an image particle

Stick boundary conditions at the confining wall require both radial and vertical velocity

components to vanish on B. Since this is not possible with the vector field v, we add a

second solution v̂ of Stokes’ equation, such that the sum

u = v + v̂ (9)

satisfies both conditions in Eq. (2). The flow v̂ may be viewed in terms of an image particle

at z = −h. Accordingly, we expand v̂(r̂, θ̂) in a series identical to Eq. (4), yet in powers of

the distance r̂ defined in Fig. 1; the radial and tangential compenents R̂nêr + T̂nêθ depend

on the angle θ̂ with coefficients q̂n, p̂n.

The boundary condition at the confining wall imposes (v̂+v)|B = 0. Separating the par-

allel and perpendicular velocity components uρ and uz, expanding the Legendre polynomials

in powers of their argument, and using r̂ = r and θ + θ̂ = π, one finds a set of equations

relating q̂m, p̂m to qn, pn. For later use we give their solution up to n = 4,

p̂1 = −p1, p̂3 =
24
5ε
p2 −

24
5
q3 +

11
5
p3,

p̂2 = −
2
ε
p1 − p2, p̂4 = −

50
7ε
p3 +

40
7
q4 −

23
7
p4,

q̂3 =
2
ε2
p1 +

16
5ε
p2 −

11
5
q3 +

4
5
p3, q̂5 = −

8
ε
q4,

q̂4 = −
6
ε2
p2 +

6
ε
q3 −

48
7ε
p3 +

23
7
q4 −

12
7
p4. (10)

Thus we have expressed u in terms of qn and pn.

B. Perturbation expansion

The coefficients qn and pn have to be determined from the boundary condition at the

particle surface S. We propose an iteration scheme based on the method of reflections [6]
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a) b) c)

FIG. 2: a) Velocity field v(0) of an immobile particle at z = h, as given in Eq. (7). b) Velocity field

v̂
(0) due to the image particle at z = −h. c) The superposition u(0) satisfies the stick boundary

condition at the wall B.

and resulting in a convergent sequence u(k) = v(k) + v̂(k). At each order the image flow v̂(k)

is determined from v
(k) according to

(v̂(k) + v(k))|B = 0; (11)

the coefficients q̂
(k)
n and p̂

(k)
n are obtained from q

(k)
n and p

(k)
n by using Eq. (10).

In the iteration step we calculate the flow v(k+1) from v̂(k) and the boundary condition at

S. In order to keep the problem of finite dimension, we use ε as a book-keeping parameter

and evaluate the boundary condition to accuracy εk+1, that is

(v(k+1) + v̂(k))|S = O(ε
k+2). (12)

Thus we obtain the coefficients qn and pn as series in ε. Eqs. (11) and (12) may be considered

as reflections of the hydrodynamic flow at the confining wall and the particle surface [6];

successive application gives the velocity field to any desired precision.

As starting point we take the flow around an immobile particle without confinement, as

given in Eq. (7). The image flow v̂(0) follows from Eq. (10) and is illustrated in panel b

of Fig. 2. Besides the stokeslet p̂1 and the source doublet q̂3, it comprises additional terms

p̂2, p̂3, q̂4 corresponding to a “Stokes doublet”. As illustrated in Fig. 2, the image flow differs

qualitatively from v(0). By construction, both parallel and perpendicular components of u(0)

vanish at the boundery B; on the particle surface the error is of the order εu0.
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C. Radial velocity

The above coefficients provide an explicit expression for the velocity field u(0). The flow

parallel to the confining wall is of particular interest for experiment; we thus evaluate its

radial component in cylindrical coordinates in the plane z = h as a function of ρ,

u
(0)
ρ (ρ, h)

u0
= −6

ρah(a2 + h2)

r̂5h
+ 60

ρa3h3

r̂7h
. (13)

Note that both terms are in inverse powers of r̂h =
√
ρ2 + 4h2 and thus stem from v̂

(0);

the radial compenent of v(0) vanishes at z = h. Putting a = h we recover the result given

previously in [17]. The two terms of opposite sign result in the minimum at ρ ≈ 2a. Since

the exact radial velocity vanishes at the particle surface, the finite value at ρ = a reflects

the approximate treatment of the boundary condition (12).

Corrections are calculated from the above iteration scheme. After eliminating r̂ and θ̂

through the relations r̂ cos θ̂ = a cos θ + 2h and r̂ sin θ̂ = a sin θ on B, and writing both

sides as series in cos θ, we obtain a system of equations for the qn, pn, which can be solved

explicitly after expanding in powers of ε. The first correction reads

u
(1)
ρ

u0
= 6
ρah3(ε2q3 − p1)

r̂5h
− 60q3

ρa3h3

r̂7h
, (14)

with modified coefficients

p1 = 1 +
9
8
ε, q3 = −1−

3
8
ε.

(We suppress the label k in pn and qn.) As shown in Fig. 3, the linear correction enhances

the radial velocity by more than a factor 2.

At second-order k = 2, the corrections to p1 and q3 read
81
64
ε2 and −27

64
ε2, respectively,

and two new coefficients p2 = −
15
16
ε2 and q4 =

9
16
ε2 appear. Inserting the image coefficients

(10) and using the function (14), we have

u
(2)
ρ

u0
=
u
(1)
ρ

u0
+
p2
2

(
ρa2

r̂3h
−
a2

ρ2

)
+ ... (15)

The expression in brackets vanishes at large distances; the terms p2 and q4 mainly affect the

fluid velocity close to the particle. According to Fig. 3, the minimum is shifted to a slightly

larger distance, and the behavior close to the particle is improved in view of the boundary

condition uρ(a, h) = 0.
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FIG. 3: Radial velocity u
(k)
ρ in the plane z = h as a function of ρ for the aspect ratio ε = 2

3 ; we

give the results of k = 0, ..., 4 reflections at the particle surface. The dotted line gives the power

law 1/ρ4 of Eq. (16).

Reflections of higher order 3 and 4 do not significantly modify the picture; Fig. 3 suggests

a rapid convergence. Each subsequent reflection at S adds a factor ε; the new contributions

to the component v(k) are of the form pk ∼ ε
k and qk+2 ∼ ε

k. To fourth order, the two first

coefficients read explicitly

p1 = 1 +
9

8
ε+

81

64
ε2 +

217

512
ε3 +

1809

4096
ε4 + ...,

a3 = −1−
3

8
ε−

27

64
ε2 −

191

2560
ε3 −

1479

20480
ε4 + ...

The numerical factors suggest that subsequent coefficients of odd and even order in ε are

of comparable size, e.g., 9
8
∼ 81

64
and 217

512
∼ 1809

4096
in p1; the same pattern occurs for the other

coefficients. The above numbers and our partial results for higher orders k ≥ 5 suggest

that these pairs converge rather rapidly. Moreover we note that some image coefficients q̂n,

p̂n diverge in the limit of small ε, such as p̂2 ∼ −2/ε, the corresponding velocity field is

nonetheless well behaved in the upper half space.

The zero-order expression u(0) becomes exact in the limit ε → 0, but provides a rather

poor approximation for real systems where the parameter ε is not small. For example, the

distance of charged colloids, h ≈ a+ λ, exceeds the radius a by about one Debye length λ;

for micron-size particles the ratio a/h is rather close to unity.

At large distances (ρ ≫ h or z ≫ h) the velocity shows power laws as a function of the
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radial or vertical coordinates. Expanding the radial component in powers of 1/ρ we find

uρ
u0
= −β

ah2z

ρ4
+ ..., (16)

with the numerical coefficient β = 6(1 + 9
8
ε + ...). The vertical component vanishes even

more rapidly, uz/u0 = 9ah
2z2/ρ5 to leading order in ε and 1/ρ. On the vertical axis (ρ = 0)

we find in powers of 1/z
uz
u0
= β

h2a

z3
+ ... (17)

IV. HYDRODYNAMIC INTERACTIONS

A. Lateral attraction

The radial velocity field advects the fluid along the solid boundary B and acts as an

effective force on nearby particles. Their current J = −D∂ρn+nU comprises diffusion with

the Einstein coefficient D and the advection velocity U (ρ) = uρ (ρ, h). The steady-state

probability distribution function n(ρ) = n0e
−V/kBT is readily integrated, with a pseudopo-

tential V . For two beads of equal size, the mutual forces lead to a factor of 2. Fig. 3 shows

that k = 1 provides a good approximation at distances ρ > 2a. Then the effective pair

potential reads as
V

kBT
= 8
u0a

D

(
h3(ε2q3 − p1)

r̂3h
− 6q3

a2h3

r̂5h

)
; (18)

the force F (ρ) = −∂ρV is required to keep the particles at a distance ρ. The dimensionless

Péclet number Pe=u0a/D compares the advection velocity u0 with diffusion over a particle

size; if Pe≫ 1, hydrodynamic interactions provide an efficient trap.

The pair correlation function and the pseudopotential V of polystyrene beads in water

have been determined by single-particle tracking [16]; a direct measurement of the force F

has been reported for silica beads in a water/alcohol mixture [17]. In Fig. 4 we compare

these experiments with our result for k = 1, as given in (18). The data of [16] are fitted with

Pe = 6; with D = kBT/6πηa and a = 1µm this corresponds to a slip velocity u0 = 1.3 µm/s;

with the value ∇T = 0.28 K/µm given in [16], the transport coefficient DT ∼ 5µm
2/Ks lies

in the range expected for weak electrolytes [20]. Thus the first-order approximation of Eqs.

(14) and (18) provides a quantitive description for the flow around confined colloids. The

fit of the force measurements of Ref. [17] lead to a four times larger Péclet number Pe = 24
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FIG. 4: Comparison with experimental data. Triangles give measured values for effective potential

V in units of kBT [16]. Data for the hydrodynamic force F = −∂ρV [17] are indicated by squares

and given in units of kBT/µm. The curves are calculated from (18) and F = −∂ρV with Pe = 6

and 24, respectively.

and a slip velocity of about 10 µm/s. From Fig. 3 it is clear that corrections of higher

order (k > 1) would hardly modify the theroetical curve; yet note that the usual zero-order

approximation k = 0 underestimates the attractive force roughly by a factor of two.

B. Particle rotation

Finally we discuss the curl of the velocity field u that rotates a neighbor particle, as

would do an applied torque. As a consequenc, two nearby beads turn in the ρ-z-plane about

their axes at a frequency Ω, as shown in Fig. 5a. Evaluating ∇ × u to leading order in ε

and 1/rh one finds

Ω = 6u0h
2aρ/r̂5h. (19)

For nearby particles one has Ω ∼ u0/a. Rotation at frequency of about 1 Hz has been

observed experimentally for polystyrene beads in an ac electric field [23]. With the above

parameters, similar values are expected to occur for thermo-osmotic flow.
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a) 

b) 

FIG. 5: a) Particle rotation due to the curl of the neighbor velocity field. b) In aggregates, only the

outer particles rotate significantly. Between inner particles, the vertical fluid flow in the “chimneys”

is indicated along the dashed line.

C. Cluster size

At sufficiently high particle density, the hydrodynamic attraction favors the formation

of cluster at the confining plate; small two-dimensional crystals have indeed observed, both

in an external electric field E [14, 15] and a temperature gradient ∇T [16, 17]. There is

hardly any radial flow towards the inner particles of such a cluster; thus the osmotic flow

at the particle surface is counterbalanced by a downward current in the chimneys between

particles, as shown schematically in Fig. 5b. How this flow pattern influences the size,

shape, and stability of the clusters, remains an open question.

V. DISTORTION OF THE DRIVING FIELD

Throughout this paper we have used the quasislip condition on the particle surface given

in Eq. (2). If this form is generally valid for a spherical particle in a bulk liquid, it does

not necessarily apply to the case of a particle close to a solid boundary. Here we discuss

in detail the case of a temperature gradient, where the validity (2) depends on the values

of the thermal conductivities of the particle, the liquid, and the solid boundary, which we

denote κP , κL, and κB, respectively. The quasislip velocity

uS = −DT∇‖T, (20)

is given by the tangential component of the local temperature gradient at the particle surface.

We start from the applied temperature Text = T0 + z∇T with a constant gradient ∇T

along the z-axis. A more complex field T (r) arises in the vicinity of a colloidal particle. It
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satisfies the stationary diffusion equation

∇
2T = 0; (21)

both the temperature and the normal heat flux are continuous at the interfaces,

Ti = To, (κi∇Ti − κo∇To) · n = 0. (22)

where i, o indicate the inner and outer boundary values, and n is the normal vector. In the

following we derive the local gradient as a power series in ε, and how it varies along the

particle surface.

First consider a spherical bead in an infinite liquid phase. Solving (21) and (22) inside and

outside the bead and matching the solutions at the interface, one readily finds the dipolar

deformation

T = T0 +∇T

(
r + α1

a3

r2

)
cos θ; (23)

for further use we note the well-known contrast factors at spherical and planar surfaces,

αn =
κL − κP

(1 + 1
n
)κL + κP

, γ =
κL − κB
κL + κB

. (24)

If the liquid is a much better heat conductor than the particle, the gradient at the surface

r = a is enhanced by a factor 3
2
; in the opposite case it vanishes as κL/κP .

Now we add the solid boundary B. A rapidly convergent expression is obtained by writing

the temperature in the liquid phase as the sum of two series, located at the positions of the

particle z = h and of its image z = −h,

δTL = a∇T
∑

n≥0

(
cn
an+1

rn+1
Pn(cos θ) + ĉn

an+1

r̂n+1
Pn(cos θ̂)

)
, (25)

whereas that in the solid phase consists of a similar series located at the particle position,

δTB = a∇T
∑

n≥0

dn
an+1

rn+1
Pn(cos θ). (26)

The coordinates are defined in Fig. 1. The coefficients cn, ĉn, dn are determined perturba-

tively, very much like in Sect. 3.

We start from the solution in the absence of the solid boundary, as given in (23) with

the only coefficient c
(0)
1 = α. Continuity of temperature and heat flux at the boundary S is

readily imposed and lead to

c
(0)
1 = α1, ĉ

(0)
1 = α1γ, d

(0)
1 = α1γε

2.
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The iteration step consists in determining the coefficients in next order through the

boundary conditions at the particle surface, with the temperature field inside δTP =

a∇T
∑

n en(r/a)
nPn. We start from the field proportional to ĉ

(0)
1 and find explicit expressions

for two boundary conditions. Here we give the relevant coefficient (n ≥ 1),

c(1)n = (−1)n
n+ 1

2n+2
αnε

n+2ĉ
(0)
1 . (27)

The tangential component of the temperature gradient at the particle surface is obtained

from (25) as the derivative∇‖T = (1/a)dTL/dθ at r = a. Expanding Pk(cos θ̂) in powers of

cos θ and rearranging the terms, we find

∇‖T = sin θ∇T (1 + α1)

+ sin θ∇T
∑

n

(1 + αn)
dPn(x)

dx
c(1)n . (28)

The first term on the right-hand side gives the local gradient in the absence of the solid

boundary. The second one arises from the discontinuity of the heat conductivity at B;

accordingly, it vanishes for κL = κB, that is, for γ = 0.

Thus the boundary velocity in the absence of B takes the well-known form

u0 =
2κL

2κL + κP
DT∇T, (29)

which is the basis of (3). The right-hand side of Eq. (28) gives the change due to the

presence of the solid boundary. The relation (20) implies a corresponding modification of

the boundary velocity,

uS
u0
=

(
1−

α1γ

1 + α1

ε3

4

)
sin θ + α1γ

1 + α2
1 + α1

9ε4

32
sin 2θ + .. (30)

Comparison with Eq. (3) reveals that the deformation of the heat flow due to the presence

of B influences the quasislip velocity in two ways: The expression in parentheses changes the

effective value of the term proportional to sin θ, whereas the remainder adds higher Fourier

componenents sinnθ. Both corrections depend on the parameter ε and thus in principle

have to be added to the perturbation series of Sect. 3.

The prefactor of sin θ in (30) appear in the coefficients p1 and q3 defined in (7), and in

those related through (10). As a consequence, their series are modified at the order ε3. On

the other hand, the Fourier components sinnθ add new source fields in Stokes’ equation and

thus result in additional terms in (6). For example, the above prefactor of sin 2θ appears in
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the coefficients p2 and q4. Since these corrections are of the order ε
n+2, they contribute to

the third and higher reflections only; the analytic results of Eqs. (13)—(18) are of order ε2

and thus remain unchanged.

Fig. 3 indicates that the series expansion of Sect. 3 in powers of ε converges rapidly,

and that third and higher orders contribute rather little. This picture remains valid when

accounting for the conductivity mismatch. The corrections arising from (30) are in general

smaller than those of Sect. 3. Note that the α1 and γ are strictly smaller than unity, and

that the numerical prefactor of ε3 in (30) is smaller than in (16).

According to (24), the corrections in (30) are proportional to the heat conductivity mis-

match both at the particle surface and at the solid boundary; they vanish if κ is continuous

at one of the interfaces, κL = κP or κL = κB. The most significant effect arises if the

conductivities of both the particle and the solid boundary are much larger than that of the

liquid. In the experiment of Ref. [16], the conductivity of the particles (κP = 1 W/Km

for silica and 0.1 W/Km for polystyrene) is not very different from that of water (κL = 0.6

W/Km); both are much smaller than that of the sapphire support (κB = 35 W/Km). In

Ref. [17] the particles and the solid boundary are of glass, with a heat conductivity about

twice as large as the solvent. Inserting these numbers in (30) leads to rather insignificant

corrections.

The discussion of the deformation of a temperature gradient in. (20)—(30) is readily

adapted to that of an applied electric field E, by replacing ∇T with E and the heat con-

ductivities κi with the corresponding permittivities ǫi. In the case of a perfectly conducting

solid boundary, the interface S is an equipotential surface, or isotherm, and results in γ = 1.

VI. SUMMARY

In this paper we have studied the fluid velocity field in the vicinity of a colloidal particle

with interfacial forces, that is immobilized by a solid boundary S. By iterating reflections at

S and at the particle surface, we obtained the fluid flow as a power series in the parameter ε.

For particles at large distance from the wall (ε≪ 1) the wall hardly affects the flow pattern.

We summarize our main results for large ε.

(i) Beyond the usual one-reflection approximation, which corresponds to k = 0 in our

notation, we find qualitatively different corrections in linear and quadratic order in ε. For

14



particles close to the confining wall, ε ∼ 1, the linear term enhances the velocity field by a

factor of about 2, yet leaves the overall flow pattern unchanged.

(ii) In quadratic order k = 2, novel terms arise that modify the fluid velocity in the

immediate vicinity of the bead, but vanish rapidly beyond one or two particle radii.

(iii) As a consequence, the fit of experimental data in Fig; 4 is sensitive to linear correc-

tions only. The quasislip velocity resulting from k = 1 is half as large as that obtained at

zeroth order. Terms of second and higher order are rather insignficant.

(iv) The presence of the solid boundary locally deforms the external field which, as a

consequence, depends itself on the parameter ε. Finite corrections appear at third order;

though they have to be considered in a formal expansion, their contributons are of no

consequence for the above conclusions.

[1] J.L. Anderson, Annu. Rev. Fluid Mech 21, 61 (1989)

[2] S. Duhr, D. Braun, Phys. Rev. Lett. 97, 038103 (2006)

[3] B. Abécassis et al., Nature Materials, 7 785 (2008)

[4] H.-R. Jiang et al., Phys. Rev. Lett. 102, 208301 (2009)

[5] H. Brenner, Chem. Eng. Sci. 16, 242 (1961)

[6] J. Happel, H. Brenner, Low-Reynolds Number Hydrodynamics, Kluwer Academic Publisher

(1991)

[7] H.J. Keh, J.L. Anderson, J. Fluid Mech. 153, 417 (1985)

[8] T.M. Squires, M.P. Brenner, Phys. Rev. Lett. 85, 4976 (2000)

[9] T.M. Squires, J. Fluid Mech. 443, 403 (2001)

[10] M. Giersig, P. Mulvaney, Langmuir 9, 3408-3413 (1993)

[11] M. Böhmer, Langmuir 12, 5747 (1996)

[12] M. Trau, D. Saville, A.I. Askay, Science 272, 706 (1996).

[13] S-R. Yeh et al., Nature 386, 57 (1997)

[14] W.D. Ristenpart et al., Phys. Rev. E 69, 021405 (2004)

[15] Y. Solomentsev, M. Böhmer and J.L. Anderson, Langmuir 13, 6058 (1997).

[16] F.M. Weinert, D. Braun, Phys. Rev. Lett. 101, 168301 (2008)

[17] R. Di Leonardo, F. Ianni, G. Ruocco, Langmuir 25, 4247 (2009)

15



[18] E. Ruckenstein, J. Coll. Interf. Sci. 83, 77 (1981)

[19] R. Piazza, A. Parola, J. Phys. Cond. Matt. 20, 153102 (2008)

[20] A. Würger, Phys. Rev. Lett. 101, 108302 (2008)

[21] J.R. Blake, Proc. Camb. Phil. Soc. 70, 303 (1971)

[22] P. Epstein, Z. Phys. 54, 537 (1929)

[23] J. Santana-Solano, D.T. Wu, D.W.M. Marr, Langmuir 22, 5932 (2006).

16


