
HAL Id: hal-00486841
https://hal.science/hal-00486841

Submitted on 26 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explicitly distributed AOP using AWED
Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno de

Fraine, Davy Suvée

To cite this version:
Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno de Fraine, Davy Suvée.
Explicitly distributed AOP using AWED. 5th international conference on Aspect-Oriented Software
Development, Mar 2006, Germany. pp.51-62, �10.1145/1119655.1119665�. �hal-00486841�

https://hal.science/hal-00486841
https://hal.archives-ouvertes.fr

Explicitly distributed AOP using AWED †

Luis Daniel Benavides Navarro,
Mario Südholt
OBASCO project

École des Mines de Nantes/INRIA
4 rue Alfred Kastler

44307 Nantes cedex 3, France

{lbenavid,sudholt}@emn.fr

Wim Vanderperren, Bruno De Fraine,
Davy Suvée

System and Software Engineering Lab
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Belgium

{wvdperre,bdefrain,dsuvee}@vub.ac.be

ABSTRACT

Distribution-related concerns, such as data replication, of-
ten crosscut the business code of a distributed application.
Currently such crosscutting concerns are frequently realized
on top of distributed frameworks, such as EJBs, and initial
AO support for the modularization of such crosscutting con-
cerns, e.g., JBoss AOP and Spring AOP, has been proposed.

Based on an investigation of the implementation of repli-
cated caches using JBoss Cache, we motivate that crosscut-
ting concerns of distributed applications benefit from an as-
pect language for explicit distributed programming. We pro-
pose AWED, a new aspect language with explicit distributed
programming mechanisms, which provides three contribu-
tions. First, remote pointcut constructors which are more
general than those of previous related approaches, in par-
ticular, supporting remote sequences. Second, a notion of
distributed advice with support for asynchronous and syn-
chronous execution. Third, a notion of distributed aspects
including models for the deployment, instantiation and state
sharing of aspects. We show several concrete examples how
AWED can be used to modularly implement and extend
replicated cache implementations. Finally, we present a pro-
totype implementation of AWED, which we have realized by
extending JAsCo, a system providing dynamic aspects for
Java.

Categories and Subject Descriptors

C.2 [Computer-communication networks]: Distributed
Systems—Distributed applications; D.3.3 [Programming
languages]: Language Constructs and Features

General Terms

Languages, Experimentation

†This work has been supported by AOSD-Europe, the Eu-
ropean Network of Excellence in AOSD (aosd-europe.net).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD 06, March 20–24, 2006, Bonn, Germany
Copyright 2006 ACM 1-59593-300-X/06/03 ...$5.00.

Keywords

Aspects, remote pointcuts, AWED, distributed execution,
distributed language constructs.

1. INTRODUCTION
Distributed applications are inherently more complex to

develop than sequential ones because of the additional re-
quirements brought about by a partitioning of the software
system across the network (e.g., handling of communication
and synchronization between system components, network
failures, management of load balancing, . . .). Previous re-
search has shown that traditional programming languages
do not allow to separate well distribution concerns from
standard functional concerns [34]. Web caching [28, 10] and
unit testing of distributed applications [24], for instance,
have been shown to be subject to serious crosscutting prob-
lems. Techniques developed in the field of Aspect-Oriented
Software Development (AOSD) [22] should be useful to sep-
arate distribution concerns. However, despite its increasing
popularity for sequential applications, relatively few AO ap-
proaches address the development of distributed software.

By now, a number of distributed middleware solutions
have been developed that offer features for aspect-oriented
development, such as JBoss AOP [1] and Spring AOP [3].
However, these solutions in essence apply a non-distributed
AO system to an existing framework for distribution, such
as J2EE. More specifically, they can only modify the distri-
bution behavior of a base program by introduction (or re-
moval) of distribution-related code expressed in terms of the
underlying framework. Such approaches are therefore inher-
ently limited to the framework’s capabilities. In particular,
they do not provide general support for explicit distribution
in the aspect language or weaver technology, for instance,
to support automatic deployment, state sharing and remote
execution.

Few AO approaches, most notably D [34], JAC [25] and
DJcutter [24], have support for explicit distribution in as-
pects. However, these approaches provide rather limited
support for aspects which are triggered on conditions of pro-
grams running on remote hosts. Mechanisms to quantify
over sets of hosts are lacking, and advice execution cannot
be distributed over remote hosts. Sequence aspects, for in-
stance, have recently been proven useful for system-level im-
plementation of web caches [16], in particular protocol mod-
ifications, but none of the AO languages for distributed as-
pects support remote sequences. A larger set of distributed
abstraction should support, in particular, a larger set of dis-

tributed applications which may require diverse distributed
implementation strategies.

To resolve these shortcomings, this paper introduces AWED,
an aspect-oriented programming language with explicit sup-
port for distribution. AWED has three main characteristics.
First, it offers remote pointcuts that can match events on
remote hosts, including support for remote sequences. Sec-
ond, it allows for distributed advice execution. Third, it
provides a model of distributed aspects which addresses de-
ployment, instantiation and data sharing issues. Further-
more, we present an implementation of AWED built on top
of the dynamic AOP system JAsCo [30]. This implemen-
tation allows to dynamically apply distributed aspects and
apply compiler optimizations such as just-in-time compila-
tion and hot swapping. Finally, to motivate and illustrate
our approach, we present a detailed analysis of crosscutting
concerns in the context of the application server JBoss [2],
using AWED, in particular, to address modularization issues
of the JBoss Cache component.

This paper is structured as follows. Sec. 2 motivates
crosscutting problems concerning replication and transac-
tion concerns in JBoss cache. Sec. 3 presents the AWED
aspect language. In Sec. 4 we show how AWED can be
applied to different distribution problems, in particular dis-
tributed caching schemes. Sec. 5 introduces DJAsCo, our
publicly-available prototype implementation of AWED on
top of JAsCo. Sec 6 discusses related work and Sec. 7 gives
a conclusion and presents future work.

2. MOTIVATION: CACHE REPLICATION

AND JBOSS CACHE
As a motivating example we consider distribution prob-

lems arising in the context of the JBoss application server [2],
which is built on J2EE, the Java-based middleware platform.
Concretely, we consider replication in the JBoss Cache sub-
systems [7]. Replicated caches that provide a fast store close
to client applications are a common solution to speed up dis-
tributed applications. The cache implementation of JBoss
can be used to replicate data within a set of machines and
thus ensures that all machines can access that data locally.

JBoss cache is a replicated transactional cache, i.e., the
coherence of hte data in the caches forming a common clus-
ter is ensured by guarding updates using transactions. A
JBoss cache can either be configured to be local, in which
case no data is replicated to other caches on other machines,
or it can be global, which means that all changes are repli-
cated to all the other caches (on all other machines) that
are part of the cluster. Transactions in JBoss Cache are
implemented using pessimistic locking. Once a transaction
is finished on the local machine, a two phase commit pro-
tocol is initiated to replicate transactions. If all the caches
can acquire the necessary local locks and make the modifi-
cations, a commit message is sent to finalize the transaction,
otherwise the transaction is rolled back on all nodes.

In the following we focus on two modularization prob-
lems which JBoss Cache is subject to. (Note that we do
not investigate if JBoss, which we consider a legacy applica-
tion, could have been restructured to avoid these problems
in the first place.) First, as we will analyze in detail below,
the replication concern in JBoss Cache is crosscutting: it is
scattered over large parts of its implementation and tangled
with other scattered concerns. Second, modification of the

1 ♣✉❜❧✐❝ Object put(Fqn fqn, Object key, Object value)
t❤r♦✇s CacheException {

3 GlobalTransaction tx=getCurrentTransaction();
MethodCall m =

5 ♥❡✇ MethodCall(putKeyValMethodLocal,
♥❡✇ Object[]{tx, fqn, key, value, Boolean.TRUE});

7 r❡t✉r♥ invokeMethod(m); }

Figure 1: Low-level transaction handling in class
❚r❡❡❈❛❝❤❡

standard behavior of JBoss Cache is also hindered by this
crosscutting. It is, for instance, not possible to replicate
specific data only in subsets of the caches from the cluster,
once a cluster has been initialized.

JBoss Cache comes equipped with two AO-related mech-
anisms which could potentially be useful to overcome the
modularization issues mentioned: an interception mecha-
nism (package jboss.cache.interceptors) and JBossCache-
AOP. With regard to the first mechanism, we show be-
low that these interceptors do not resolve the crosscutting
issues mentioned above. The second mechanism, JBoss-
CacheAOP, is an Aspect-Oriented extension of JBoss Cache
implemented using JBoss AOP, which allows to use JBoss
Cache together with standard Java objects (“POJOs”) in a
transparent manner. JBossCacheAOP enables developers to
simply put an object in a cache, and automatically handles
the mapping of the object to the cache; the programmer
can continue using POJOs as usual. This mechanism thus
does not match our goals either: JBossCacheAOP is solely
used to facilitate the use of JBoss Cache in an application
but does not address modularization or extension of JBoss
Cache’s cache replication functionality.

Technically, the JBoss Cache implementation stores data
in a tree data structure. The main tree data class is aug-
mented with code to support a chain of interceptors, par-
tially separating crosscutting concerns (e.g., replication, trans-
actions, eviction policies and automatic access to backend
data stores) in classes called interceptors. Each method in-
vocation to a TreeCache object is then processed by the el-
ements of the interceptor chain. The TreeCache class, how-
ever, is still subject to crosscutting by the code for replica-
tion and transactions. For instance, each low-level cache ma-
nipulation method, such as put has to get the transactional
context, modify it if necessary and pass it along explicitly
as shown in Figure 1, where the object of type MethodCall

is used for replication purposes.
Figure 2 illustrates these crosscutting concerns by show-

ing the scattering of replication and transaction code in class
TreeCache (left diagram in the figure) in the interceptor
package (right). Replication code is colored black in both
subfigures, transaction code is marked dark gray and calls
into the TreeCache method from the interceptor package are
colored light gray. The figures clearly exhibit crosscutting of
replication code, its tangling with transaction code and the
interdependence between the TreeCache class and the inter-
ceptor package (the large number of calls from TreeCache

into the interceptor package are not shown because they are
frequently located near or part of the crosscutting code in
the TreeCache class.)

More precisely, the TreeCache class includes 188 meth-
ods and consists of 1741 lines of code (LOC): the scattered
code relevant for replication amounts to more than 196 LOC;

Figure 2: Crosscutting concerns in JBoss: class
❚r❡❡❈❛❝❤❡ (left), interceptor package (right)

the code for transactions accounts for more than 228 LOC.
The situation for the interceptor framework is similar: it
includes 9 classes consisting of 1263 LOC altogether; the
(lower-bound) line counts for code relevant for replication,
transactions and calls to TreeCache respectively are 30, 41,
and 73. This provides strong evidence that the interceptor
mechanism is not sufficient to solve the crosscutting prob-
lems.

Hence, understanding the replication and transactional
behavior of the JBoss Cache implementation, which uses
the interception mechanism, is far from trivial. Even sim-
ple modifications to the policies are difficult because of the
crosscutting concerns. This applies, e.g., if the replication
policy is to be changed to one where replication is done only
when a cache is interested in some specific data and only
within the subgroup of hosts that are also interested in the
same data instead of replicating always between all members
of a cluster. Finally, note that AspectJ-like languages are
not appropriate in this context: as shown by Nishizawa et
al. [24] they are subject to limitations, in particular, requir-
ing inadequately complex aspect definitions in the context
of distributed crosscutting functionalities.

3. THE AWED LANGUAGE
Modularization of crosscutting concerns for distributed

applications using an aspect language, i.e., in terms of point-
cut, advice and aspect abstractions, suggests support for the
following issues: (i) a notion of remote pointcuts allowing to
capture relationships between execution events occurring on
different hosts, (ii) a notion of groups of hosts which can be
referred to in pointcuts and manipulated in advice, (iii) ex-
ecution of advice on different hosts in an asynchronous or
synchronous way and (iv) flexible deployment, instantiation,
and state sharing models for distributed aspects.

AWED provides such support through three key concepts
at the language level. First, remote pointcuts, which enable
matching of join points on remote hosts and include remote
calls and remote cflow constructs (i.e., matching of nested
calls over different machines). As an extension of previ-
ous approaches AWED supports remote regular sequences
which smoothly integrate with JAsCo’s stateful aspects [33]
but also include features of other recent approaches for (non-
distributed) regular sequence pointcuts [14, 15, 16, 4]. Sec-
ond, support for distributed advice: advice can be executed

in an asynchronous or synchronous fashion on remote hosts
and pointcuts can predicate on where advice is executed.
Third, distributed aspects, which enable aspects to be con-
figured using different deployment and instantiation options.
Furthermore, aspect state can be shared flexibly among as-
pect instances on the one hand, as well as among sequence
instances which are part of an aspect on the other hand.

3.1 Syntax and semantics
AWED’s syntax is shown in Fig. 3 using EBNF formalism

(i.e., square brackets express optionality; parentheses mul-
tiple occurrences, possibly none; terminal parentheses are
enclosed in apostrophes).

3.1.1 Pointcuts

Pointcuts (which are generated by the non-terminal Pc)
are basically built from call constructors (execution allows
to denote the execution of the method body), field getters
and setters, nested calls (cflow) and sequences of calls (non-
terminal Seq).

AWED employs a model where, upon occurrence of a join
point, pointcuts are evaluated on all hosts where the corre-
sponding aspects are deployed. Pointcuts may then contain
conditions about (groups of) hosts where join points origi-
nate (term host(Group)), i.e., where calls or field accesses
occur. Furthermore, pointcuts may be defined in terms of
where advice is executed (term on(Group)). Advice execu-
tion predicates may further specify a class implementing a
selection strategy (using the term on(Group, Select)) which
may, e.g., act as an additional filter or define an order in
which the advice is executed on the different hosts. Groups
are sets of hosts which may be constructed using the host
specifications localhost, jphost and adr:port, which re-
spectively denote the host where a pointcut matches, the
host where the corresponding join point occurred and any
specific host. Alternatively, groups may be referred to by
name. (Named groups are managed dynamically within ad-
vice by adding and removing the host which an aspect is
located on, see Sec. 3.1.2 below.)

Finally, pointcut definitions may extract information about
the executing object (target) and arguments (args), and
may test for equality of expressions (eq), the satisfaction of
general conditions (if), and whether the pointcut lexically
belongs to a given type (within). Pointcuts may also be
combined using common logical operators.

As a first example, the following simple pointcut could be
part of a replicated cache aspect:

call(void initCache()) && host(”adr1:port1”)
Here, the pointcut matches calls to the cache’s initCache

method that originate from the host that has the specified
address. The advice will be executed on any host where
the aspect is deployed (possibly multiple ones) as there is
no restriction on the advice execution host. The following
example restricts the execution hosts to be different from
the host where the joinpoint occurred:

pointcut putCache(Object key, Object o):
call(* Cache.put(Object,Object))

&& !on(jphost) && args(key, o)
Here, the pointcut matches calls to the cache’s put oper-

ation on hosts other than the joinpoint host and binds the
corresponding data items. (Note that in this case the clause
!host(localhost) could replace !on(jphost) to achieve ex-
actly the same effect of matching non-local joinpoints.) If

// Pointcuts

Pc ::= call(MSig) | execution(MSig)
| get(FSig) | set(FSig)
| cflow(Pc) | Seq
| host(Group) | on(Group[, Select])
| target({Type}) | args({Arg})
| eq(JExp, JExp) | if(JExp)
| within(Type)
| Pc ‖ Pc | Pc && Pc | !Pc

Seq ::= [Id:] seq({Step}) | step(Id,Id)
Step ::= [Id:] Pc [→Target]
Target ::= Id | Id ‖ Target
Group ::= { Hosts }
Hosts ::= localhost | jphost | ”Ip:Port”

| GroupId
GroupId ::= String
Select ::= JClass

// Advice

Ad ::= [syncex] Pos({Par}) : PcAppl ’{’ {Body} ’}’
Pos ::= before | after | around
PcAppl ::= Id({Par})
Body ::= JStmt | proceed({Arg})

| addGroup(Group) | removeGroup(Group)

// Aspects

Asp ::= [Depl] [Inst] [Shar] aspect Id ’{’ {Decl} ’}’
Depl ::= single | all
Inst ::= perthread | perobject | perclass

| perbinding
Shar ::= local | global | inst | group(Group)
Decl ::= [Shar] JVarD | PcDecl | Ad
PcDecl ::= pointcut Id({Par}) : Pc

// Standard rules (intensionally defined)

MSig, FSig ::= // method, field signatures (AspectJ-style)
Type ::= // type expressions
Arg,Par ::= // argument, parameter expressions
Id ::= // identifier
Ip,Port ::= // integer expressions
JClass ::= // Java class name
JExp ::= // Java expressions
JStmt ::= // Java statement
JVarD ::= // Java variable declaration

Figure 3: AWED language

the corresponding advice puts the item in the local cache, a
condition on the aspect type (named, e.g., ReplCache), such
as !within(ReplCache), can be used to avoid triggering the
pointcut during the advice execution.

Sequences. Sequences (derived by the non-terminal Seq)
are supported by two constructions on the pointcut level.
First, the term [Id:] seq({Step}) allows to define sequences
which may be named using an identifier and consist of a list
of (potentially named) steps (non-terminal Step). A step
may define the steps to be executed next (non-terminal Tar-
get).1 A sequence matches if the sequence is completed, i.e.,
if the current joinpoint matches the last step and previous
joinpoints of the execution trace matched the previous steps
in order. Second, the term step(seq,step) matches if the
step named step of the sequence named seq matches. This
allows advice to be triggered after a specific step within a se-
quence using a term of the form s: seq(... l: logout() ...) ‖ step(s, l).
Note that this last term matches the complete sequence be-
sides the specified step; this can, if necessary, easily be ruled
out. This sequence definition allows for a smooth integration
of sequences and the finite-state aspects of non-distributed
JAsCo.

To illustrate the use of sequence pointcuts, consider the
following pointcut, which could be part of a simple cache
replication protocol:

pointcut replPolicy(Cache c):
replS: seq(s1: initCache() && target(c) → s3 ‖s2 ‖s4,

s2: cachePut() → s3 ‖ s2 ‖ s4,
s3: stopCache() → s1
s4: cacheInconsistency())

1Note that while our sequences obviously encode finite-state
automata, many applications of regular structures, in partic-
ular communication protocols [16], are effectively sequence-
like, i.e., of a one-dimensional directed structure, so that we
decided to use the more intuitive terminology for AWED.

(Here, identifiers like initCache denote undefined point-
cuts specifying corresponding call pointcuts.) The pointcut
above defines a sequence of four steps. An initialization
step which may be followed either by a put operation (s2),
termination of the cache (s3) or an error step (s4). A put
operation (s2) may be repeated, followed by a cache termi-
nation (s3) or result in a cache inconsistency (s4). After
cache termination, the cache may be initialized once again.
Finally, a cache inconsistency terminates the sequence (and
may be reacted upon by advising the pointcut).

Note that the above definition does not enforce that the
steps are taking in the context of the same cache. This is,
however, simple to achieve by binding the targets of the dif-
ferent steps target(c), and use eq or if pointcuts to ensure
the appropriate relationships at different steps in a sequence.

A step may be referred to in pointcuts and advice as exem-
plified in the following example which shows how to provide
a special pointcut for the second step in the previous se-
quence (and how to bind the variables used in that step) so
that advice can later be attached to it:

pointcut putVal(Cache c, String key, Object o):
step(replS, s2) && target(c) && args(key, o)

3.1.2 Advice

Advice (non-terminal Ad) is mostly defined as in AspectJ:
it specifies the position (Pos) where it is applied relative
to the matched join point, a pointcut (PcAppl) which trig-
gers the advice, a body (Body) constructed from Java state-
ments, and the special statement proceed (which enables
the original call to be executed).

In an environment where advice may be executed on other
hosts (which is possible in AWED using the on pointcut
specifier), the question of synchronization of advice execu-
tion with respect to the base application and other aspects
arises. AWED supports two different synchronization modes
for remote advice execution: by default remote advice is ex-

ecuted asynchronously to the calling context. In this case
synchronization, if necessary, has to be managed by hand.
In contrast, syncex marks remote advice for synchronous
execution. Local advice is always executed synchronously.
The semantics of the proceed statement is “localized”: the
last around advice invokes the original behavior on the local
host. The return value of the around advice is sent back
to the original joinpoint host and processed in the regular
around advice chain on that joinpoint host in case of a syn-
chronous advice execution. Asynchronous advices are exe-
cuted in parallel and there is thus no guarantee with respect
to advice precedence. We have opted for this semantics be-
cause it provides for an intuitive yet efficient remote advice
execution semantics.

Advice is also used to manage named groups of hosts:
addGroup adds the current host to a given group, remove-
Group allows to remove the current host from a group.

To give an example of basic advice functionality, the fol-
lowing advice definition is useful in the context of collabo-
rating replicated caches:

around(String k, Object o): putCache(k, o) {
Object obj = getNewRemoteValue(k);
if (obj != null) { proceed(k, obj); }
else { proceed(k, o); } }

This advice first tests whether a new value is present re-
motely for a given key. If this is the case, the new value is
stored in the cache.

3.1.3 Aspects

Aspects (non-terminal Asp) group a set of fields as well as
pointcut and advice declarations. Aspects may be dynam-
ically deployed (Depl) on all hosts (term all) or only the
local one (term single).

Furthermore, aspects support four instantiation modes
(Inst): similar to several other aspect languages, aspects
may be instantiated per thread, per object, or per class.
However, aspect instances may also be created for differ-
ent sets of variable bindings arising from sequences (term
perbinding) as introduced in [16, 4]. In this last case, a
new instance is created for each distinct set of bindings of
the variables in the sequence, i.e., of the variables declared
as arguments of a sequence pointcut or fields used in the
sequence pointcut.

Finally, AWED allows distributed aspects of the same
type to share local state (Shar): values of aspect fields may
be shared among all aspects of the same type (term global),
all instances of an aspect which have been created using the
instantiation mechanisms introduced before (term inst), all
aspects belonging to the same group (term group(Group))
or all aspects on the one host (term local; note that these
possibly belong to different execution environments, such as
JVMs). Sharing modifiers can be given for an aspect as a
whole or individual fields (Decl), if both are given, the latter
have priority.

4. APPLICATIONS
In this section, several applications of AWED are pre-

sented. We illustrate how replicated, cooperating distributed
caches can be modularly implemented, and how distribu-
tion and execution clustering concerns can be introduced
concisely into an existing non-distributed application.

4.1 Caching revisited

1 ❛❧❧ ❛s♣❡❝t CacheReplication{
♣♦✐♥t❝✉t cachePcut(Object key, Object o):

3 ❝❛❧❧(* Cache.put(Object,Object))
&& ❛r❣s(key,o) && !♦♥(❥♣❤♦st) &&

5 !✇✐t❤✐♥(CacheReplication);

7 ❜❡❢♦r❡(Object key, Object o): cachePcut(key,o){
Cache.getInstance().put(key, o); }

9 }

Figure 4: Cache replication as an aspect

In Sec. 2 we have presented distributed caching and, in
particular, its support through the JBoss Cache OO frame-
work, as a motivating example for crosscutting in distributed
applications. Fig. 4 shows how an aspect for cache replica-
tion can be implemented using AWED which accounts for
all places where cache elements are requested and replicated
to all other caches in a cluster, i.e., an essential part of the
functionality of replication within JBoss Cache’s TreeCache
class.

Cache group

Internet

request summary update
request data,provide data

Summary−based access

Figure 5: Adaptive cache behavior

The aspect declaration in line 1 indicates that the as-
pect will be distributed globally and that a singleton in-
stance (AWED’s default instantiation mode) is created on
each host. The pointcut defined in lines 2–5 matches calls
putting elements in the cache; the term !on(jphost) limits
advice execution to aspects which are not deployed on the
host where the join point matched. The advice (lines 7–8)
simply puts the element in the cache. As the pointcut as-
sured that only aspects which are remote to the matching
join point perform this advice, replication is thus achieved.

As a more intricate example, we consider an example of
the large number of replication strategies for caches that use
hierarchical, cooperative and adaptive caching strategies [8,
19]. Such strategies typically do not distribute data over
whole clusters but replicate objects only to caches in the
cluster that explicitly request them. Furthermore, coopera-
tive behavior is useful, e.g., looking for a copy in neighboring
caches before (slowly) accessing farther caches or a central-
ized server holding the master copy of the data at hand.
This kind of behavior is not part of the current JBoss Cache
specification and would be very difficult to graft on its im-
plementation without the use of AO techniques due to the
crosscutting problems of its replication code.

In the following we present the heart of a summary-based
cooperative cache strategy using AWED. Summary-based
caching strategies (see, e.g., [18]) use “summaries”, i.e.,

1 ❛❧❧ ❛s♣❡❝t CollaborativeCachePolicy {

3 ❣r♦✉♣(cacheGroup, summaryHosts) SummaryT summaries;
❣r♦✉♣(cacheGroup, summaryHosts) ✐♥t cacheMisses = 0;

5 ❢✐♥❛❧ ✐♥t THRESHOLD = 1000;
...

7

♣♦✐♥t❝✉t initCache(Cache c):
9 ❝❛❧❧(* Cache.init()) && ❤♦st(❧♦❝❛❧❤♦st) && t❛r❣❡t(c);

11 ♣♦✐♥t❝✉t getCache(Cache c, String key):
❝❛❧❧(* Cache.get(String)) && ❤♦st(cacheGroup)

13 && t❛r❣❡t(c) && ❛r❣s(key);

15 ♣♦✐♥t❝✉t putCache(Cache c, String key, Object data):
❝❛❧❧(* Cache.put(String, Object)) && t❛r❣❡t(c)

17 && ❛r❣s(key, data) && !♦♥(❥♣❤♦st) && ♦♥(cacheGroup)
&& !✇✐t❤✐♥(CollaborativeCachePolicy);

19

♣♦✐♥t❝✉t replPolicy(Cache c):
21 replP: s❡q(s0: initCache(c) -> s1

s1: getCache(c, k1) -> s2,
23 s2: putCache(c, k2, val) && ❡q(k1, k2) -> s1);

25 ❛❢t❡r(Cache c): st❡♣(replP, s0) && t❛r❣❡t(c) {
✐❢ (c.isDomain(cache)) addGroup(cacheGroup);

27 ✐❢ (c.isDomain(border)) addGroup(summaryHosts);
initializeSummaries(); }

29

❛r♦✉♥❞(Cache c, String key): st❡♣(replP, s1) && ❛r❣s(c, key) {
31 Object obj = c.get(key);

✐❢ (obj == ♥✉❧❧) {
33 obj = ♣r♦❝❡❡❞();

✐❢(obj != ♥✉❧❧) {
35 c.put(key, obj);

cacheMisses++; } }
37 r❡t✉r♥ obj; }

39 s②♥❝❡① ❛r♦✉♥❞(Cache c, String key):
st❡♣(replP, s1) && ❛r❣s(c, key)

41 && ♦♥(summaryHosts, awed.combination.and(
awed.targets.filter(summaries),

43 awed.result.getFirst)) {
✐❢ (cacheMisses > THRESHOLD)

45 updateSummaries(summaries.getHosts())
r❡t✉r♥ c.get(key, o); }

47

❜❡❢♦r❡(Cache c, String key, Object o):
49 st❡♣(replP, s2) && ❛r❣s(c, key, o) {

c.put(key, o); }
51 }

Figure 6: Aspect-based cooperative cache

small digests of the cache contents of neighboring caches.
The summaries can be used to test whether a cache con-
tains a value with high probability. They can therefore be
used to guide the decision which neighboring caches to con-
tact and thus reduce network traffic.

Fig. 5 schematically illustrates a summary-based caching
strategy used in the context of a cooperative replicated cache
scheme. In the following, we present an aspect Collabora-

tiveCachePolicy (see Fig. 6) realizing cache groups which
replicate data among them as introduced in the previous
example, but which also uses summaries to selectively get
data from farther caches outside the cache group. These
two sets of hosts are represented by groups cacheGroup and
summaryHosts, respectively (line 3). Summary information
is shared between hosts of the cache groups and the far-
ther hosts at the border using AWED’s group sharing fea-
ture. This provides for a concise integration of summaries
and is appropriate because summary-based caching algo-
rithms only infrequently update summaries. A simpler (and
at times more inefficient) sharing mechanism than for the
cached data itself can therefore be used for them.

Overall, the aspect consists of a three step remote se-
quence replPolicy (line 20), which first matches the cache
initialization, followed by repeated cache accesses and cache
replication operations. An explicit equality test ensures
that the put operation in the third step concerns the same
cache objects (identified through their keys) as looked up in
the second step (assuming that the cache object does not
change).

Concretely, at cache initialization time (see the pointcut
at line 8) the two host groups are set up as well as initial
summary information (advice at line 25). A cache access us-
ing getCache (line 11) first looks up the value locally, and,
if not found in the cache group attempts to acquire it from
the outside. The advice at line 30 first accesses the local
cache. If the data is not found, it calls proceed to trig-
ger a synchronous remote advice (line 39) which (because of
the on clause) queries hosts of group summaryHosts: this
is achieved using a filter selecting hosts whose summaries
indicate that the value should be present. The remotely ex-
ecuted advice body returns the query result and requests
updates of the summaries if a threshold number of cache
modifications has been exceeded (this accounts for the ba-
sic property of infrequent updates of summary information,
see [18]). The replication within the cache group is achieved
as above by matching put operations using the pointcut put-
Cache (line 15). This pointcuts triggers the advice at line 48
which executes a put operation on all hosts in the cache
group which are different from the host where the original
put occurred.

4.2 Distribution and Clustering
In [29], Soares et al. illustrate how AOP techniques can

be employed to explicitly introduce distribution within ex-
isting, non-distributed applications. For this, AspectJ is em-
ployed to automatically insert the required RMI code frag-
ments. Their proposal requires two types of aspects: one
aspect for handling server distribution concerns and one as-
pect for handling client distribution concerns. At the server
side, a remote interface is generated for each object that
should be distributable and the server-side aspect declares
the remote objects to implement these generated interfaces.
Additional methods are introduced by means of the server

1 ♣♦✐♥t❝✉t distribution(Facade f):
t❛r❣❡t(f) && ❝❛❧❧(* *(..)) &&

3 && !❤♦st("Serveripadr:port") && ♦♥("Serveripadr:port");

5 s②♥❝❡① Object ❛r♦✉♥❞(Facade f): distribution(f) {
r❡t✉r♥ ♣r♦❝❡❡❞(Facade.getInstance()); }

Figure 7: Distribution as an aspect

aspect to implement various technical details to support ref-
erences to server objects (by default RMI sends a copy of the
server object to the client). The client side aspect is respon-
sible for capturing and redirecting the local method calls
and declaring these methods to throw remote exceptions.
In addition, each method specified in the remote interface
requires a dedicated redirection advice, as AspectJ does not
allow to change the target object in a proceed statement
which is required to redirect the calls to the remote objects.

AWED allows for a more elegant solution, which does
not require the overhead of introducing the required RMI-
specific code. AWED allows to solve this distribution prob-
lem using a single aspect which is illustrated in figure 7. The
distribution pointcut selects all calls to Facade methods
on the client and makes sure that the accompanying advice
is only executed at the server side. By employing negation of
the host designator, calls on the server side will not match
the pointcut themselves. The redirection behavior is en-
capsulated in a synchronous around advice. As the around
advice gets executed on the server host, the getInstance

method of the Facade class will retrieve an instance which
is local to the server host (this could be generalized in or-
der not to rely on a single object.) The proceed expression
will invoke the original behavior on that Facade instance lo-
cated on the server host. The AWED solution improves on
the AspectJ-based solution: first, there is no need for RMI
specific code to be injected in the server classes, which is
a tedious process that is not always possible, and secondly,
only one aspect with one pointcut and advice suffices while
in the AspectJ solution at least two aspects and a pointcut-
advice pairs for each method in the Facade class are nec-
essary. Note that AWED shares this advantage with other
middleware-based AOP approaches, such as DJCutter [24]
and DAOP [26].

When multiple servers are available to handle remote re-
quests, one can choose to cluster these servers together such
that incoming requests can be dispersed, e.g., to balance
the server load. Again, AWED provides an elegant solution
and allows this clustering behavior to be encapsulated in a
single aspect. Figure 8 illustrates this clustering pointcut.
All available servers are part of the ServerGroup and the on

designator specifies that the accompanying advice should be
executed only on a server that is part of that specific group.
As only one specific host should be the target of the redirec-
tion, a Round Robin load balancing mechanism is employed,
which assigns a server host on a rotating base.

5. IMPLEMENTATION
Two of the main features the AWED language requires

from its underlying middleware implementation are the abil-
ity to intercept joinpoints from other hosts and the capabil-
ity to execute advice on other hosts. A static aspect com-
piler, as for instance employed by AspectJ [21], is not well

♣♦✐♥t❝✉t clustering(Facade f):
2 t❛r❣❡t(f) && ❝❛❧❧(* *(..)) && !❤♦st("Servergroup")

&& ♦♥("Servergroup", awed.hostselection.RoundRobin);
4

s②♥❝❡① Object ❛r♦✉♥❞(Facade f): clustering(f) {
6 r❡t✉r♥ ♣r♦❝❡❡❞(Facade.getInstance()); }

Figure 8: Clustering as an aspect

suited to facilitate a flexible distributed AOP platform, as
this setup requires all aspects to be present on all the ap-
plicable hosts at compile or weave time. As such, all hosts
need to be known and fixed in advance, which removes a
lot of flexibility. A dynamic AOP approach however, allows
to dynamically add/remove hosts and aspects, which is an
important feature for large-scale distributed systems.

Therefore, we have chosen the JAsCo dynamic AOP frame-
work as an implementation platform for the AWED lan-
guage. JAsCo can be easily extended and provides highly
efficient advice execution through its Hotswap and Jutta sys-
tems [32]. Furthermore, JAsCo already natively supports a
model of stateful aspects based on finite state machines [33],
which can be extended to support distributed sequences as
well. In the remainder of the paper we present DJAsCo, an
extension of the base JAsCo system for explicit distribution.
We first briefly introduce the JAsCo run-time architecture
and its optimizations. Afterwards, the DJAsCo run-time ar-
chitecture and our prototype implementation are discussed
in detail, and a performance evaluation is presented. The
DJAsCo extension has been made publicly available as a
part of the regular JAsCo distribution [20].

5.1 JAsCo run-time infrastructure
The JAsCo run-time infrastructure is based on a central

connector registry that manages the registered connectors2

and aspects at run-time (see figure 9). This connector reg-
istry serves as the main addressing point for all JAsCo enti-
ties and contains a database of connectors and instantiated
aspects. Whenever a connector is loaded into or removed
from the system at run-time, the connector registry is no-
tified and its database of registered connectors and aspects
is automatically updated. The left-hand side of Figure 9
illustrates a JAsCo-enabled class from which the joinpoint
shadows are equipped with traps. As a result, whenever a
joinpoint is triggered, its execution is deferred to the con-
nector registry, which looks up all connectors that are reg-
istered for that particular joinpoint. The connector on its
turn dispatches to the applicable aspects.

The connector registry has an open plugin-based architec-
ture that allows to easily extend the joinpoint interception,
aspect lookup (pointcut evaluation) and advice execution
parts, in particular for composition and optimization pur-
poses.

In addition to the connector registry, the run-time archi-
tecture consists of two other systems: HotSwap and Jutta.
HotSwap allows to dynamically install traps only at those
joinpoint shadows that are subject to aspect application.
When a new aspect is deployed, the applicable joinpoints

2JAsCo introduces explicit connectors that instantiate and
deploy aspects onto a concrete (component) context. In our
AspectJ-based language, the aspect construct is responsible
for both. An AspectJ-like aspect can easily map onto a
connector-aspect pair in JAsCo.

Figure 9: JAsCo run-time architecture

shadows are hot-swapped at run-time with their trapped
equivalents. Likewise, the original byte code is reinstalled
when an aspect is removed and no other aspects are appli-
cable on the joinpoint shadow at hand. Jutta on the other
hand, is a just-in-time compiler for aspects that allows to
generate a highly optimal code fragment for every joinpoint
shadow. By caching these code fragments, an important
performance gain is realized. The current version of the
JAsCo run-time weaver, based on HotSwap and Jutta, is
able to compete performance-wise with statically compiled
aspect languages such as AspectJ, while still preserving dy-
namic AOP features [13]. A major concern of the DJAsCo
design is to preserve compatibility of the weaver with these
two tools, in particular to enable the optimization of remote
pointcuts.

Figure 10: DJAsCo distributed run-time architec-
ture. The aspects are distributed to all relevant
hosts. Joinpoint1 occurs in Host X and is also sent
to Host Y in order to trigger aspects on that remote
joinpoint.

5.2 DJAsCo run-time architecture
The JAsCo run-time architecture can be distributed using

two different strategies: either a single connector registry is
kept for all hosts or each host separately maintains a dedi-
cated connector registry. The first solution has the advan-
tage that a single registry is responsible for the aspect exe-
cution, whereas the second solution requires the distributed
connector registries to be synchronized. In general, a cen-
tral entity is considered to be a problematic solution in a
distributed setting, as it inherently does not scale and can
become a performance bottleneck. Therefore we choose to
deploy a separate connector registry at each host (see fig-
ure 10).

Every connector registry is responsible for the locally in-
tercepted joinpoints and its locally deployed aspects. In
order to allow aspect execution on remote joinpoints, the
intercepted joinpoints need to be sent to the other hosts.
Likewise, in order to allow aspect execution on remote hosts,
the aspects need to be distributed as well. The following
sections explain these issues in more detail.

5.2.1 Remote pointcuts

In order to execute advice that trigger on remote join-
points, the joinpoint information should be distributed to
all interested hosts. To this end, a plugin for the connec-
tor registry has been implemented that: 1) intercepts all
joinpoints, 2) prepares them for transmission and 3) sends
them to the remote hosts. Joinpoints need to be prepared
before transmission as not all joinpoint information might
be transmittable. Our current system uses Java Serializa-
tion to transmit objects from one host to another. For this,
the joinpoint is first stripped from all contextual informa-
tion (e.g. callee, actual arguments) that is nor serializable
nor primitive. Furthermore, the advice implementation can-
not access advice variables nor reflectively query joinpoint
information that is not serializable. Although this is an im-
portant limitation, it is typical in distributed environments.
For instance, arguments of Java RMI method invocations
need to be serializable or primitive as well.

In a last step, the joinpoint information is sent to the
remote hosts. In order to locate and send this informa-
tion to other interested hosts, the JGroups framework is
employed [6]. JGroups is a well-known toolkit for reliable
multicast communication. In addition, JGroups supports a
wide range of network protocols, which makes our system
independent of specific network technologies.

JAsCo’s stateful aspects, i.e., finite-state based sequences [33],
have been extended to a distributed setting in order to im-
plement AWED’s distributed sequences. This is a rather
straightforward process, because the state of a sequence
pointcut is not managed by the JAsCo run-time infrastruc-
ture (deployed locally, see figure 10), but by the aspect
itself. The aspect intercepts remote joinpoints, matching its
stateful pointcut description in a similar way as for join-
points matching regular pointcuts. Afterwards, the internal
state is updated by firing the relevant transition(s) in the
internal state machine.

5.2.2 Aspect Distribution

In order to execute advice on remote hosts, the aspects
themselves should also be distributed to the host(s) in ques-
tion. One solution would be to force an administrator to
manually deploy the aspects on every applicable host. How-

ever, as an advice execution host sometimes depend on com-
plex expressions with several variables, it might be difficult
to manually deploy the aspects onto remote hosts in an opti-
mal fashion. For instance, deploying aspects to hosts where
they can never be applicable is useless and wastes the sys-
tem resources of those particular hosts. Hence, the DJAsCo
extension automatically distributes the aspects to all remote
hosts that might be applicable. When a new host joins, the
DJAsCo run-time infrastructure detects this event, and the
host automatically receives the possibly applicable aspects.
Likewise, when new aspects are deployed at a particular
host, they are automatically deployed at the relevant remote
hosts. It is possible to avoid this automatic deployment of
aspects on remote hosts by marking them with the single

modifier.
Technically, JGroups is again employed to transfer the as-

pects and to be informed of changes in the network setup
such as newly joined hosts. In contrast to joinpoints, as-
pects are class-based entities and it suffices to send the class
byte-code to the remote hosts. Hence, possible serialization
problems are avoided.

5.2.3 Synchronous Advice Execution

The default mode for advice execution is asynchronous
with respect to advice executions on remote hosts. How-
ever, when an advice is marked with the syncex modifier, it
needs to be executed synchronously, i.e., the host where the
joinpoint occurs, waits for this advice to be executed. As
such, the specified aspect precedence on the joinpoint host
is still guaranteed. The return value of the around advice
is sent back to the original joinpoint host and processed in
the regular around advice chain. A proceed to the original
behavior is however still a local proceed (likewise to proceed
in an asynchronous advice), which means that the joinpoint
proceeds on the host where the advice is executed and not
on the joinpoint host.

DJAsCo implements a synchronous advice execution by
generating a proxy aspect at the joinpoint host. This proxy
aspect is automatically generated and dynamically weaved
when an aspect, defining a synchronous advice execution,
is deployed. The proxy aspect’s advice delegates to the ap-
propriate execution host where the original advice is exe-
cuted. The JGroups framework is again employed for the
synchronous communication between the involved hosts.

5.2.4 State Sharing

The AWED language supports state sharing between dif-
ferent instances of the same aspect type regardless of the lo-
cation and/or VM where they are executed. In order to im-
plement local sharing, DJAsCo generates one master field
on every host for each locally shared aspect field. All aspect
instances of the aspect type on that host automatically refer
to that field using Java RMI. Field queries and updates are
automatically redirected to the shared field. This redirec-
tion takes place by employing another AWED aspect that is
dynamically generated and weaved when an aspect, defin-
ing a shared field, is being deployed. Visibility modifiers
for the fields (such as private) do not hinder the sharing
implementation because they can be overridden at run-time.

The global state sharing could be implemented in a sim-
ilar fashion, i.e., having one globally shared field. However,
this solution suffers from a serious robustness problem as all
aspect instances of the same type would rely on one specific

❛❧❧ ❛s♣❡❝t StateSharing {
2 ♣♦✐♥t❝✉t stateChanged(Object value):

set(myaspectname.myfieldname) && ❛r❣s(value) && !♦♥(❥♣❤♦st);
4

❛❢t❡r(Object value): stateChanged(value) {
6 myaspectname aspectinstance = myaspectname.apectOf();

aspectinstance.myfieldname=value; }
8 }

Figure 11: State sharing as a AWED aspect

host that holds the shared field. Therefore, the local master
fields are explicitly synchronized using yet another AWED
aspect that is automatically generated at deployment time.
Figure 11 illustrates a simplified version 3 of this global state
sharing aspect. The after advice is triggered for every state
change of the myfieldname field of the myaspectname as-
pect. The advice is executed on every host except on the
one that triggered the joinpoint. As such, the state change
is propagated to all other hosts. The advice implementa-
tion first fetches an aspect instance of the given type on the
host where it is executing and than changes the value to the
newly assigned value. Because all aspect instances on that
host refer to the same field, the new value is immediately
propagated to all aspect instances of the myaspectname type
on the host at hand.

5.2.5 Optimization of remote pointcuts

The JAsCo HotSwap and Jutta systems are compatible
with the DJAsCo architecture. Because all aspects are present
at every applicable host (even aspects that might execute
their advice elsewhere), the local HotSwap system still knows
where to insert traps. Aspects that do not define pointcuts
relevant for the local host are not deployed and are of no
interest to the HotSwap system as they do not induce newly
trapped joinpoints. Remote joinpoints are represented sim-
ilarly to local joinpoints. Hence, the Jutta system is still
able to generate and cache a code fragment for executing
the joinpoint locally. As such, apart from the network de-
lay and serialization/deserialization cost, no additional over-
head is required for remote pointcuts and distributed advice
executions.

5.3 Evaluation
To conclude this section we present results on two evalua-

tions using aspects with explicit distribution for refactoring
and extension of the standard replication strategy of JBoss.

5.3.1 Refactoring of JBoss replication code

In the motivation we have identified replication and trans-
action as two functionalities contributing to crosscutting
within JBoss cache. Transaction handling in JBoss Cache is
basically done using a two phase commit protocol. First the
transaction is executed locally, requiring, in particular, only
the acquisition of local locks. Once the commit method is
invoked in the current transaction, all the modifications are
replicated to all the nodes in a cache replication group: at
remote hosts a prepare phase is executed and, if successful in
all nodes, the transaction is committed. If a prepare phase
in any node fails, the transaction is rolled back at all nodes.

3Notice that this aspect has been simplified for presentation
purposes. For example, it does not cope with the fact that
aspect types might not be present on every host.

❛❧❧ ❛s♣❡❝t TransacReplication {
2 ...

♣♦✐♥t❝✉t remoteCommit(GlobalTransaction gtx, List modifs):
4 ❝❛❧❧(* org.emn.djasco.cache.ReplHelper.txReplication(

GlobalTransaction, List)) && ❛r❣s(gtx, modifs)
6 && !✇✐t❤✐♥(org.emn.djasco.cache.TransacReplication);

...
8 s②♥❝❡① ❛r♦✉♥❞(GlobalTransaction gtx, List modifications):

remoteCommit(gtx, modifications) && ♦♥(❥♣❤♦st) {
10 tr② { ♣r♦❝❡❡❞(); }

❝❛t❝❤ (Exception e) {
12 ReplHelper.getInstance().rollBack(gtx, modifications);

t❤r♦✇ e; } }
14

s②♥❝❡① ❛r♦✉♥❞(GlobalTransaction gtx, List modifs):
16 remoteCommit(gtx, modifs)

&& !♦♥(❥♣❤♦st, awed.hostselection.AllSucessfull) {
18 tr② {

ReplHelper.getInstance().preparePhase(gtx, modifs);
20 } ❝❛t❝❤ (Exception e) {

ReplHelper.getInstance().rollBack(gtx, modifications);
22 t❤r♦✇ e; }

♣r♦❝❡❡❞(); }
24 ...

}

Figure 12: Refactoring the JBoss replication code

1 ❛❧❧ ❛s♣❡❝t selectiveReplication {
♣♦✐♥t❝✉t cacheGet(String fqn):

3 ❝❛❧❧(* org.jboss.cache.TreeCache.get(String)) && ❛r❣s(fqn)
&& ♦♥(❥♣❤♦st) && !❝❢❧♦✇(* selectiveReplication.*(*));

5

♣♦✐♥t❝✉t replPolicy(String fqn, MethodCall mc):
7 replS: s❡q(s1: startSelectiveMode() -> s4 || s3 || s2,

s2: cacheGet(fqn) -> s4 || s3 || s2,
9 s3: cacheReplicate(mc) -> s4 || s3 || s2,

s4: termSelectiveMode() -> s1)
11

❜❡❢♦r❡(String fqn): st❡♣(replS, s2) { registerInterest(fqn); }
13 ...

}

Figure 13: Extending the JBoss replication code

Figure 12 shows (essential parts of) a re-implementation of
the transaction-guarded replication strategy of JBoss Cache.
AWED allows to cleanly modularize the transaction-guarded
replication protocol in a single aspect. The first advice real-
izes the protocol part of the host that initiates the transac-
tion: it handles data within the local cache through a call to
proceed and if something fails it rolls the transaction back.
The second advice executes replication handling at other
nodes through a remote call to preparePhase() and raises
an exception if something fails (the rollback functionality
for the remote hosts is implemented by another advice not
shown in the example).

5.3.2 Extension of the JBoss replication strategy

As a second evaluation, we realized an extension to the
JBoss standard replication strategy: data should only be
replicated to nodes that have explicitly requested it, i.e.,
new objects inserted in a cache group are not replicated
spontaneously.

Figure 13 shows the main parts of an appropriate aspect
definition using AWED (the complete implementation, ap-
prox. twice as large, is detailed in [9]). The implementa-
tion uses a sequence pointcut replS which implements a
distributed protocol: this protocol starts selective replica-

tion mode, followed by interception of get operations (which
explicitly indicate interest in some data) and cache replica-
tion operations, until a selective mode termination method
is called. Data which is to be replicated is selected through
the advice applied before get operations (step 2 in the se-
quence replS) which registers interest to the data.

5.3.3 Comparison to a JBoss-only solution

To conclude this evaluation, let us compare the two pre-
vious examples to an implementation based only on JBoss.
JBoss Cache implements transaction replication using three
main classes TreeCache, ReplicationInterceptor and Syn-

chronizationHandler. Reflection is used to (un)marshal
messages sent between nodes in the cluster. This archi-
tecture is augmented with a before-completion and after-
completion idiom that is present in different classes. Meth-
ods include code to hold a special state, which is used to
coordinate protocol stages. Tracing the default replication
behavior and integration of the proposed algorithm is far
from trivial due to the crosscutting these functionalities are
subject to.

Contrary to the tangled implementation of transaction
and replication code in JBoss Cache, our aspect refactor-
ing clearly separates replication and transactions (transac-
tions appear, apart from their setup, only in exception han-
dlers). Concretely, we have been able to refactor the scat-
tered replication functionality and the corresponding trans-
action handling which amounts to around 500 LOC in JBoss
into one aspect of around 100 LOC. Furthermore, our aspect
does not require any particular transaction management but
reuses the default transaction management of JBoss Cache.
Finally, the second example shows how extensions can be
easily integrated using AWED, in particular, because dis-
tributed protocols can concisely be expressed using sequence
aspects.

6. RELATED WORK
D [34] has been the first aspect language with means for

explicit distribution. This approach includes, in particular,
COOL, a synchronization sublanguage, and RIDL, a sub-
language for the definition of remote interfaces. The for-
mer essentially supports the declarative definition of mu-
tual exclusion relations between objects. The latter allows
to specify the semantics of remote method invocation be-
tween different execution spaces, in particular the argument
passing semantics. However, D does not provide equivalents
for most features of AWED, in particular, remote sequence
aspects, distributed advice and distributed aspects.

JAC [25] is a dynamic AOP-framework, which, in con-
trast with other AOP approaches, does not introduce a ded-
icated aspect language, but describes aspects in terms of
regular OO-abstractions. Their proposed framework is ex-
tended with the notion of a distributed pointcut definition.
This pointcut definition extends a regular pointcut with the
ability to specify a named host that delimits the context
in which the joinpoint should be detected. In contrast with
AWED, JAC does not provide support to delimit the context
in which distributed advices should be executed, nor does
it support remote sequences and instantiable distributed
aspects. In order to manage the distributed deployment
of aspects, JAC replicates its Aspect-Component manager,
which is similar to the DJAsCo connector registry, on the
involved remote hosts. A consistency protocol makes sure

that whenever aspects are weaved at one specific host, the
same aspects are also weaved at the other involved hosts.

DJcutter [24] is an extension of the AspectJ language,
which extends a subset of AspectJ’s constructs to make them
behave as remote pointcuts. Similar to JAC and AWED,
DJcutter introduces an explicit host pointcut designator that
allows to delimit the context in which joinpoints should be
detected. In addition, DJcutter supports distributed cflow
pointcuts if the base application is implemented using a cus-
tom socket implementation. Similar to AWED, the state
information of a joinpoint is exposed to an advice by us-
ing the args and target designators, from which by default,
the values are remotely transferred by copy. At the run-
time level, DJcutter proposes a centralized aspect-server.
This server gathers joinpoint information of remote point-
cut definitions and executes the related advices local to the
aspect-server. The advice server constitutes a bottleneck in
a large distributed systems and makes the implementation
of, e.g., cache replication much more complex compared to
AWED, because the aspect implementer is responsible to
manage and execute the appropriate methods on the dis-
tributed hosts.

There are some approaches which have essentially de-
veloped for the sequential case but provide some mecha-
nisms for AOP in distributed environments. CaesarJ [23]
and PROSE [27] are part of this class of approaches. They
mainly provide a sequential aspect model based on collab-
orations between aspects and classes but allow aspects to
be created on remote hosts. Concretely, CaesarJ allows the
host where an aspect is to be executed to be explicitly speci-
fied when the aspect is created. In contrast to our approach
no further means to explicitly refer to remote aspect inter-
actions are provided: they do not provide mechanisms for
sharing of aspect state, management of distributed aspect
instances as well as distributed advice execution.

Another important category of approaches applying AOP
to distributed applications,e.g., JBoss AOP [1], Spring AOP [3]
and several research approaches, such as that proposed by
Duclos et al. [17], essentially allow non-distributed aspects
to manipulate applications implemented using an existing
framework for distribution. While they integrate some fea-
tures which can be found in our system (such as dynamic
aspect application), they do not provide features for ex-
plicit specification of distribution issues in aspects. In con-
trast to our approach, replicating data in remote caches can
thus only be done, for instance, by an aspect which repeat-
edly calls existing methods for put operations on remote
caches. Similarly, Cohen and Gil [11] essentially preserve a
non-sequential AOP framework. They however propose an
extension to directly express aspects involving J2EE-based
crosscutting concerns between servers and clients through
so-called tier-cutting concerns using a remotecall construct.
They do not support any of our more advanced concepts,
such as remote sequences, distributed advice and distributed
aspects. Taking an application-oriented view, Colyer and
Clement [12] investigate the benefits of using AspectJ, also
a sequential AOP approach, to modify interfaces of Web-
sphere, IBM’s J2EE-based application server. All of these
approaches (as well as several AO frameworks for distributed
middleware, such as DAOP [26] and Lasagne [31]) do not
propose features for explicit distribution in the aspect lan-
guage, which are useful, as we have shown in this paper, also
for EJBs and similar frameworks.

Finally, there are some AOP approaches which investi-
gate concurrency issues and thus are also directly relevant
to some of the distribution issues we have considered. To cite
one example, Andrews [5] considers aspect weaving in a pro-
cess calculus relying on asynchronous communication, essen-
tially by aggregating fine-grained concurrent executions into
coarser-grained ones. While this technique should be in prin-
ciple applicable to distributed aspect languages, his work
does not provide explicit means to support distribution-
specific concerns, such as data replication.

7. CONCLUSION AND FUTURE WORK
In this paper we have provided evidence that current sys-

tems for AOP with explicit distribution are limited. We
presented AWED, a language including distributed sequence
pointcuts, remote advice execution, and distributed advice.
We also introduced DJAsCo, an implementation of AWED
based on the JAsCo AOP system. Finally, we provided ev-
idence that our concepts of explicit distribution in aspects
can be usefully applied to cache replication problems.

At the language level, AWED constitutes a first proposal
for a comprehensive aspect language for explicit distribu-
tion. However, a number of issues remain to be explored,
in particular, integrated means for synchronization of asyn-
chronous advice and finer-grained control of aspect deploy-
ment, instantiation and data sharing. The AWED imple-
mentation as a JAsCo extension should be improved by per-
formance optimizations specific for the distributed context.

Acknowledgements. We thank Jean-Marc Menaud for
our fruitful discussions on replicated caches and the anony-
mous reviewers for their valuable remarks.

8. REFERENCES

[1] JBoss AOP. http://jboss.com/products/aop.

[2] JBoss home page. http://jboss.com.

[3] Spring AOP. http://www.springframework.org/.

[4] C. Allan et al. Adding trace matching with free
variables to AspectJ. In R. P. Gabriel, editor, Proc. of
OOPSLA’05. ACM Press, Oct. 2005.

[5] J. H. Andrews. Process-algebraic foundations of
aspect-oriented programming. In Proc. of the 3rd
International Conference on Metalevel Architectures
and Separation of Crosscutting Concerns, volume 2192
of LNCS, pages 187–209, 2001.

[6] B. Ban. JGroups, a toolkit for reliable multicast
communication. http://www.jgroups.org/, 2002.

[7] B. Ban and B. Wang. JBossCache Reference Manual
V. 1.2. JBoss Inc., 2005.

[8] G. Barish and K. Obraczka. World wide web caching:
Trends and techniques. IEEE Communications
Magazine, May 2000.

[9] D. Benavides Navarro, M. Südholt, W. Vanderperren,
B. De Fraine, and D. Suvée. Explicitly distributed
AOP using AWED. Technical report, INRIA, Feb.
2006.

[10] S. Bouchenak, A. Cox, S. Dropsho, S. Mittal, and
W. Zwaenepoel. AOP-based caching of dynamic web
content: Experience with J2EE applications.
Technical Report RR-5483, INRIA, 2005.

[11] T. Cohen and J. Gil. AspectJ2EE = AOP + J2EE:
Towards an aspect based, programmable and

extensible middleware framework. In Proc. ECOOP
’04, volume 3086 of LNCS. Springer-Verlag, 2004.

[12] A. Colyer and A. Clement. Large-scale AOSD for
middleware. In Proc. of AOSD’04. ACM Press, 2004.

[13] B. De Fraine, W. Vanderperren, D. Suvée, and
J. Brichau. Jumping aspects revisited. In R. E.
Filman, M. Haupt, and R. Hirschfeld, editors,
Dynamic Aspects Workshop, pages 77–86, Mar. 2005.

[14] R. Douence, P. Fradet, and M. Südholt. A framework
for the detection and resolution of aspect interactions.
In Proceedings of GPCE’02, volume 2487 of LNCS,
pages 173–188. Springer-Verlag, Oct. 2002.

[15] R. Douence, P. Fradet, and M. Südholt. Composition,
reuse and interaction analysis of stateful aspects. In
Proc. AOSD’04. ACM Press, Mar. 2004.

[16] R. Douence, T. Fritz, N. Loriant, J.-M. Menaud,
M. Ségura-Devillechaise, and M. Südholt. An
expressive aspect language for system applications
with arachne. In Proc. AOSD’05. ACM Press, Mar.
2005.

[17] F. Duclos, J. Estublier, and P. Morat. Describing and
using non functional aspects in component based
applications. In Proc. of AOSD’02, pages 65 – 75.
ACM Press, 2002.

[18] L. Fan, P. Cao, J. M. Almeida, and A. Z. Broder.
Summary cache: a scalable wide-area web cache
sharing protocol. IEEE/ACM Transactions on
Networking, 8(3):281–293, 2000.

[19] ICP. Internet Cache Protocol. http://icp.ircache.net/.

[20] JAsCo. JAsCo website. http://ssel.vub.ac.be/jasco/.

[21] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten,
J. Palm, and W. G. Griswold. An overview of
AspectJ. In J. L. Knudsen, editor, Proc. ECOOP
2001, LNCS 2072, pages 327–353, Berlin, June 2001.
Springer-Verlag.

[22] G. Kiczales, J. Lamping, A. Mendhekar, et al.
Aspect-oriented programming. In M. Akşit and
S. Matsuoka, editors, Proc. ECOOP 1997, volume
1241 of LNCS, pages 220–242. Springer Verlag, 1997.

[23] M. Mezini and K. Ostermann. Variability
management with feature-oriented programming and
aspects. In Proc. ESEC/FSE’04, pages 127–136, 2004.

[24] M. Nishizawa, S. Shiba, and M. Tatsubori. Remote
pointcut - a language construct for distributed AOP.
In Proc. of AOSD’04. ACM Press, 2004.

[25] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin.
JAC: A flexible solution for aspect-oriented
programming in Java. In Proceedings of Reflection’01,
volume 2192 of LNCS. Springer-Verlag, Sept. 2001.

[26] M. Pinto, L. Fuentes, M. Fayad, and J. Troya.
Separation of coordination in a dynamic aspect
oriented framework. In Proc. of AOSD’02. ACM
Press, 2002. short paper.

[27] A. Popovici, T. Gross, and G. Alonso. Dynamic
weaving for aspect-oriented programming. In
G. Kiczales, editor, Proc. AOSD 2002, pages 141–147.
ACM Press, Apr. 2002.

[28] M. Ségura-Devillechaise, J.-M. Menaud, G. Muller,
and J. L. Lawall. Web cache prefetching as an aspect.
In Proc. of AOSD’03. ACM Press, 2003.

[29] S. Soares, E. Laureano, and P. Borba. Implementing

distribution and persistence aspects with AspectJ. In
Proceedings of OOPSLA’02, pages 174–190. ACM
Press, 2002.

[30] D. Suvée and W. Vanderperren. JAsCo: An
aspect-oriented approach tailored for component
based software development. In M. Akşit, editor, Proc.
AOSD 2003, pages 21–29. ACM Press, Mar. 2003.

[31] E. Truyen et al. Dynamic and selective combination of
extensions in component-based applications. In Proc.
ICSE 2003, May 2001.

[32] W. Vanderperren and D. Suvée. Optimizing JAsCo
dynamic AOP through HotSwap and Jutta. In
R. Filman, M. Haupt, K. Mehner, and M. Mezini,
editors, DAW: Dynamic Aspects Workshop, pages
120–134, Mar. 2004.

[33] W. Vanderperren, D. Suvee, M. A. Cibran, and
B. De Fraine. Stateful aspects in JAsCo. In Proc. of
Software Composition (SC’05), volume 3628 of LNCS.
Springer-Verlag, Apr. 2005.

[34] C. Videira Lopes. D: A Language Framework for
Distributed Programming. PhD thesis, College of
Computer Science, Northeastern University, 1997.

