
HAL Id: hal-00486839
https://hal.science/hal-00486839v1

Submitted on 26 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulator Generation Using an Automaton Based
Pipeline Model for Timing Analysis.

Rola Kassem, Mikaël Briday, Jean-Luc Béchennec, Yvon Trinquet, Guillaume
Savaton

To cite this version:
Rola Kassem, Mikaël Briday, Jean-Luc Béchennec, Yvon Trinquet, Guillaume Savaton. Simulator
Generation Using an Automaton Based Pipeline Model for Timing Analysis.. International Multicon-
ference on Computer Science and Information Technology (IMCSIT), International Workshop on Real
Time Software (RTS’08)., Oct 2008, Wisla, Poland. pp.657-664. �hal-00486839�

https://hal.science/hal-00486839v1
https://hal.archives-ouvertes.fr


Simulator Generation Using an Automaton Based

Pipeline Model for Timing Analysis

Rola Kassem, Mikaël Briday, Jean-Luc Béchennec, and Yvon Trinquet

IRCCyN, UMR CNRS 6597

1, rue de la Noë - BP92101

44321 Nantes Cedex 3 - France

firstname.name@irccyn.ec-nantes.fr

Guillaume Savaton

ESEO

4, rue Merlet de la Boulaye - BP30926

49009 Angers Cedex 01 - France

guillaume.savaton@eseo.fr

Abstract—Hardware simulation is an important part of the
design of embedded and/or real-time systems. It can be used to
compute the Worst Case Execution Time (WCET) and to provide
a mean to run software when final hardware is not yet available.
Building a simulator is a long and difficult task, especially
when the architecture of processor is complex. This task can
be alleviated by using a Hardware Architecture Description
Language and generating the simulator. In this article we focus
on a technique to generate an automata based simulator from the
description of the pipeline. The description is transformed into an
automaton and a set of resources which, in turn, are transformed
into a simulator. The goal is to obtain a cycle-accurate simulator
to verify timing characteristics of embedded real-time systems.
An experiment compares an Instruction Set Simulator with and
without the automaton based cycle-accurate simulator.

I. INTRODUCTION

S
Imulation of the hardware platform takes place in the

final stage of development. It can be used for 2 tasks.

The first task is the evaluation of WCET to compute the

schedulability of the application [9]. The second task is the test

of the application using scenarios before final testing on the

real hardware platform. This test is useful because simulation

allows an easy analysis of the execution. In both cases, a

cycle accurate model of the hardware platform must be used

to insure that timings of the simulation are as close as possible

to timings of the execution on the real platform.

A common approach for the hardware modelling [5] is

based on an hardware centric view; in this approach, the

processor is usually modelled by a set of functional blocks.

The blocks communicate and synchronise with each other

in order to handle the pipeline hazards. A pipeline can be

modelled with this approach by designing a functional block

for each stage of the pipeline (a SystemC [8] module for

instance). This approach is very useful in the design process

as it allows synthesis generation. However, simulators that are

generated from these kind of models are slow because of the

block synchronisation cost. In our approach, we propose to use

an Architecture Description Language (ADL) to describe the

pipeline and the instruction set of the target architecture. The

goal of the pipeline description is to focus on the effects of

dependencies and device usage on the timing. This description

This work is supported by ANR (French National Research Agency) under
Grant Number ADEME-05-03-C0121.

is transformed into a finite state automaton, which is then

transformed into the simulator source code by adding the

instruction behaviour (see figure 1). The aim of the automaton

is to provide a faster - yet accurate - simulator because

hazards of the pipeline are not computed at execution time

but at generation time instead. This paper focuses on pipeline

modelling and does present the pipeline description in our

ADL: HARMLESS [7] (Hardware ARchitecture Modelling

Language for Embedded Software Simulation) but the method

presented may be extended to include the modelling of other

parts of the architecture like branch prediction or cache

memories.

II. RELATED WORK

Pipeline and resource scheduling have been studied widely

in instruction schedulers, that are used by compilers to ex-

ploit the instruction level parallelism and to minimise the

program execution time. In [12], Müller proposes to use one

or more finite state automata to model the pipeline and build

a simulator. Then the simulator is used by the instruction

scheduler to compute the execution time of instruction se-

quences. The automata can be quite large and minimisation

techniques may be used to alleviate them. In [13], Proebsting

and Fraser use the same approach but a different algorithm

which produces directly a minimal automaton. In [1], Bala and

Rubin improve the algorithm on [12] and [13] by allowing

to replace instructions in already scheduled sequences and

present the BuildForwardFSA algorithm which is used to build

the automaton. In these works, only structural hazards are

taken into account. It makes sense for instruction schedulers.

Other works have been done to build simulator for WCET

analysis using an ADL. In [10], Li and al. use the EXPRES-

SION ADL to build an executions graph and express pipeline

hazards. The hazards are resolved at run-time. In [14], Tavares

and al. use a minimal ADL to generate a model based on

Proebsting and Fraser work.

In [2], another kind of pipeline modelling using coloured

Petri Nets is presented, but functional behaviour is not taken

into account. The simulator cannot execute a real binary code.

In the work presented hereafter, we extend the BuildFor-

wardFSA algorithm to take into account the data hazards (data

dependency), the control hazards and the resources which can



pipeline model 

(automaton)

A2CPP

C++
C++C++ C++ 

compiler

Fast Cycle

Accurate

Simulator 

C++
C++C++Harmless 

compiler

Harmless 

description

(pipeline + 

instruction set 

description)
pipeline 

spec

P2A

Fig. 1. Development chain. Tools presented in this paper include p2a and a2cpp to transform a pipeline description into a fast simulator, using an automaton
model.

be held by external hardware devices that are not modelled

using one automaton.

The paper is organised as follow: Section III presents how

the pipeline is modelled. The two kind of resources and

their usage are described. Instruction classes are introduced.

Section IV explains the automaton generation algorithm. In

section V, a brief description of HARMLESS ADL with a

focus on pipeline description, is given. Section VI presents

examples. Section VII presents the simulation result provided

by our approach. Section VIII explains the relation between

simulation and WCET. At last, section IX concludes this paper.

III. PIPELINE MODELLING

Sequential pipelines are considered in this paper (i.e. there

are no pipelines working in parallel nor forking pipelines).

An automaton is used to model the pipeline behaviour where

a state of the automaton represents the pipeline state at a

particular time (see figure 2).

At each clock cycle, the pipeline goes from one state to

another according to hazards. They are classified into three

categories:

• Structural hazards are the result of a lack of hardware

resource;

• Data hazards are the result of a data dependancy between

instructions;

• Control hazards that occurs when a branch is taken in

the program.

Control hazard are resolved in the simulator at runtime:

instructions that are in the delay slot of a branch instruction

are dynamically replaced by NOP instructions, if the branch

is found to be taken. Constraints resulting from structural and

data hazards are used to generate this automaton and modelled

using resources.

A. Resources

Resources are defined as a mechanism to describe temporal

constraints in the pipeline. They are used to take into account

structural hazards and data hazards in the pipeline.

state 1

state 2

state 3

state 4

...

..
.

D

F

E

W

E

D

W

W

D

F

E

D

F

F

...

...

D E W

F D E WD

F D E

F D

F D E W

F D E W

F ...

i-1

i-2

t-4t-5

s
ta

te
 1

s
ta

te
 2

s
ta

te
 3

s
ta

te
 4

s
ta

te
 1

W

E

D

F

s
ta

te
 1

...

i

i+2

i+1

i+3

instructions

time
 

(cycles)

t-3 t-2 t-1 t t+1 t+2

Fig. 2. A state of the automaton represents the state of the pipeline at a
given time. In this example with a 4-stages pipeline, three instructions are in
the pipeline at time t, and the ’D’ stage was stalled at time t-1. The automaton
highlights the pipeline sequence, assuming that there is only one instruction
type (this restriction is only made for clarity reason).



Two types of resources are defined, internal and external

resources, that model constraints respectively statically and

dynamically.

1) Internal resources: can be compared to “resources” in

[12]. They model structural hazards.

As the pipeline state is known (i.e. the instructions are

defined for each stage of the pipeline), then the state of

each internal resource is fully defined (taken or available).

In that case, when the automaton is built (and then the

simulator), constraints described by internal resources are

directly resolved when the set of next states is built.

Internal resources are designed to describe structural haz-

ards inside a pipeline. As these resources are taken into ac-

count at build time (static approach), no computation overhead

is required to check for this type of constraint at runtime.

For example, each pipeline stage is modelled by an internal

resource. Each instruction that enters in a stage takes the

associated resource, and releases that resource when it leaves.

The resulting constraint is that each pipeline stage gets at

most one instruction. Another example of internal resource

is presented in section VI.

2) External resources: represent resources that are shared

with other hardware components such as timers or memory

controllers. It is an extension of internal resources to take

into account resources that must be managed dynamically

(i.e. during the simulation). For instance, in the case of a

memory controller, the pipeline is locked if it performs a

request whereas the controller is busy. Otherwise, the pipeline

stage that requests the memory access takes the resource.

If an external resource can be taken by instructions in

more than one pipeline stage, a priority is set between stages.

For example, at least two pipeline stages may compete for

a memory access using a single pipelined micro-controller

without instruction cache nor data cache.

One interesting property of the external resources is that it

allows to check for data hazards. An external resource is used,

associated to a data dependancy controller. In this section, we

suppose that the first stages of the pipeline are a fetch stage,

followed by a decode stage that reads operands.

The data dependancy controller works as presented in

algorithm 1 when instructions in the pipeline are executed.

An instruction that is in the Fetch stage sends a request to

the controller to check if all of the operands, that will be taken

in the next stage (Decode), are available. If at least one of the

register is busy (because it is used by one or more instructions

in the pipeline), the request fails and the associated external

resource is set to busy.

When the transition’s condition is evaluated to get the

next automaton state, the transition associated with this new

condition (the transition’s condition depends of the state of

external resources) will lead to a state that inserts a stall in

the pipeline. It allows the instruction that is in the fetch stage

to wait for its operands, and resolves the data dependancy.

Algorithm 1: Instructions and data dependancy controller
interaction during simulation.

if there is an instruction in the fetch stage and the instruction
will need operands in the decode stage then

- The instruction sends a request to the controller;
if at least one register is busy then

- the request fails: the external resource associated is
set to busy;

else
- the request success: the external resource associated
is set to available;

else
- the request success: the external resource associated is set
to available;

B. Instruction class

To reduce the automaton state space, instructions that use

the same resources (internal and external) are grouped to build

instruction classes.

The number of instruction classes is limited to 2Rext+Rint

(Rext and Rint are the number of respectively external and

internal resources in the system), but this maximum is not

reached because some resources are shared by all instructions,

like pipeline stages, which leads to get a lower number of

instruction classes.

IV. GENERATING THE FINITE AUTOMATON

The automaton represents all the possible simulation sce-

narios of the pipeline. A state of the automaton represents a

state of the pipeline, which is defined as the list of all pair

(instruction classes, pipeline stage) in the pipeline at a given

time. For a system with c instruction classes, there are c+ 1
possible cases for each pipeline stage s of the pipeline (each

instruction class or a stall). The automaton is finite because

it has at most (c+ 1)s states. The initial state is the one that

represents an empty pipeline. A transition is taken at each

clock cycle and its condition depends only on:

• the state of the external resources (taken or available);

• the instruction class of the next instruction that can be

fetched in the pipeline.

Internal resources are already resolved in the generated au-

tomaton and does not appear in the transition’s condition.

Other instructions in the pipeline are already known for a

given automaton state, thus only the next instruction that will

be fetched is necessary. This transition’s condition is called

basic condition. As many different conditions can appear to

go from one state to another one, the transition’s condition is

a disjunction of basic conditions.

The number of possible transitions is limited to at most

c×2Rext for each state (c is the number of instruction classes

and Rext is the number of external resources in the system).

It implies that there are at most (c + 2)s × 2Rext transitions

for the whole automaton.

The automaton generator algorithm is presented in algo-

rithm 2 and is based on a breadth-first exploration graph to

prevent stack problems. The basic idea of the algorithm is



that from the initial state, it computes all the possible basic

conditions. From the current state, each possible transition is

taken to get the set of next automaton states. The algorithm

is then reiterated for each state that have not been processed.

Algorithm 2: Generation of the automaton pipeline model.

- Create a list that contains the initial automaton state;
- Create an automaton, with the initial automaton state;
while list is not empty do

- Get an automaton state in the list (start state);
- Generate all the possible basic conditions (combinations
of external resources, combined with the instruction class
of the next instruction fetched);
for each basic condition do

- Get the next automaton state (this is a deterministic
automaton), using the basic condition and the start
state;
if the state is not yet included in the automaton then

- Add the new automaton state (target state) in the
list;
- Add the new automaton state in the automaton;

if the transition does not exist then
- Create a transition, with an empty condition;

- Update the transition’s condition, by adding a basic
condition (disjunct);

- Remove automaton start state from the list;

The central function of this algorithm is the one that can

get the next automaton state, when a basic condition is known.

From a generic pipeline model, this function computes the next

state of an automaton, taking into account all the constraints

brought by resources (internal and external). A pipeline is

modelled as an ordered list of pipeline stages, where each

pipeline stage is an internal resource. In the algorithm 3, the

pipeline stages in the loop are taken from the last to the first,

because the pipeline stage that follows the current one must

be empty to get a new instruction.

This algorithm allows to detect sink states in the automaton

(not shown in the algorithm 3, for clarity reason). A sink state

corresponds to a wrong pipeline description.

Algorithm 3: Function that gets the next automaton state, from
a given state, with a known basic condition.

for each pipeline stage, from the last to the first do
if there is an instruction class in the current stage then

if resources required by the instruction class can be
taken in the next pipeline stage then

- Instruction class releases resources in the current
pipeline stage;
if there is a next pipeline stage then

- Instruction class is moved in the next
pipeline stage;
- Resources required in the next pipeline stage
are taken;

- Instruction class is removed from the current
stage;

Combinatorial explosion The increase in complexity of the

pipeline to model leads to get a combinatorial explosion. As

presented above, the automaton is limited to (c + 1)s states

and (c + 2)s × 2Rext transitions. The maximum size of the

automaton increases exponentially with the pipeline depth and

the number of external resources, and in a polynomial way

with the number of instruction classes. We can discern three

types of processors:

• short pipelines (5-6 stages) that can be found in simple

processors, generally used in embedded systems (4 stages

on the Infineon C167). There is no combinatorial explo-

sion due to the short pipeline;

• processors with a single deep pipeline, called super-

pipelines (8 stages with the MIPS R4000). There have

both a deep pipeline and many instruction classes. To

reduce the complexity of the automaton, These long

pipelines can be cut in two parts to genarate two smaller

automata that are synchronized using an external re-

sources;

• processors with a pipeline that has many branches: each

branch of pipeline may be modelled by a separate au-

tomaton as introduced in [12]. Instruction are dispatched

among different branches, thus each branch has less in-

struction classes. This kind of processor can be modelled

with several automata. Splitting a complex pipeline into

different branches will be studied in future work.

V. A BRIEF DESCRIPTION OF HARMLESS

The HARMLESS ADL allows to describe a hardware

architecture using different parts:

• the instruction set;

• the hardware components used by the instructions like

memory, registers, ALU, . . . ;

• the micro-architecture;

• the pipeline;

• the peripherals like timers, input/output, . . .

A component, in HARMLESS ADL, allows the func-

tional description of a hardware component. It may contain

one or many methods. A method allows an instruction to

access a function offered by a component.

The micro-architecture is described in an architecture

section. It forms the interface between a set of hardware

components and the definition of the pipeline. It allows to

express hardware constraints having consequences on the

temporal sequence of the simulator. It may contain many

devices to control the concurrency between instructions to

access the same component. Every device in the architecture

is related to one component. The different methods of a

component can be accessed by a port that allows to control

the competition during access to one or many methods. A port

may be private to the micro-architecture or shared (ie the port

is not exclusively used by the micro-architecture). The next

section shows two examples that illustrate these notions.

VI. EXPERIMENT

Two examples are presented in this section. The first one is

a very simple example which leads to a very small automaton.

The second one is a more complex example with a 6 pipeline



stages inspired by a DLX simple pipelined architecture [6],

using the Freescale XGate instruction set [4].

A. A simple example

Let’s consider an example with a 2 stages pipeline, with

only 1 instruction (Nop), 1 component (the Memory) and one

temporal constraint (the memory access in the fetch stage).

Using the HARMLESS ADL, this pipeline can be described

as follow:

architecture Generic {
device mem : Memory {

shared port fetch : getValue;

}
}

pipeline pFE maps to Generic {
stage F {

mem : fetch;

}
stage E {
}

}

In the description above, two objects are declared: the

architecture named Generic and the pipeline

named pFE.

the architecture contains one device (mem) to control the

concurrency to access the Memory component. In this de-

scription: at a given time, the method getValue, that get the

instruction code from the memory, can be accessed one time

using the fetch port. We suppose this access can be made

concurrently by other bus masters. So the port is shared.

The pipeline pFE is mapped to the Generic architecture.

The 2 stages of pipeline are listed. In stage F, an instruction

can use the fetch port.

A shared port is translated to an external resource M. When

M is available the Memory can be accessed through the fetch

port. Since there is only one instruction in this example, there

is only one instruction class. The instruction class depends on

the external resource M to enter in stage F.

This description leads to generate the 4 states automa-

ton shown in figure 3. For each state, the pipeline state is

defined at a given time: ’N’ represents an instruction class

and ’-’ represents an empty stage. A transition’s condition

is composed of an instruction that could be fetched, and the

state of the external resource. ’M’ and ’/M’ mean that the

external resource is respectively available or busy. An ’X’ for

the instruction class or an external resource means that the

parameter is irrelevant for the transition’s condition.

The initial state, on the left, represents an empty pipeline.

At the next clock cycle, two transitions may be taken. In both

transition’s conditions, the instruction class is irrelevant (as

there is only one). A transition is taken depending on the state

of the external resource. If the resource is busy (transition

labelled X,/M), the memory controller access is not allowed

and no instruction can be fetched, the pipeline remains in the

--

X, /M

N-

X, M

-N

X, /M

X, M

X, /M

NN

X, M X, /MX, M

Fig. 3. 4 states automaton generated for the very simple example.

same state. If the external resource is available, an instruction

of class ’N’ is fetched. The new state of the pipeline is N-.

B. A more realistic example

The second example is more realistic and considers a

pipeline with 6 stages. The pipeline is composed of a Fetch

stage to get the instruction code in memory, a Decode stage

which decodes the instruction, reads operands and performs

branch instructions, 2 Execute stages, a Memory access

stage and a WriteBack stage that performs write accesses on

the register bank. 88 instructions are available in this example.

The concurrency constraints are:

• the registers file is able to perform 3 reads and 2 writes

in parallel;

• an Harvard architecture (separate program and data mem-

ories) is used;

• the computation in the ALU requires 2 stages and is not

pipelined;

Using the HARMLESS ADL, this 6 stages pipeline can be

described as follow:

architecture Generic {
device gpr : GPR {

port rs1 : read;

port rs2 : read;

port rs3 : read;

port rd1 : write;

port rd2 : write;

}
device alu : ALU {

port all;

}
device mem : Memory {

shared port fetch : read;

shared port loadStore : read or write;

}
device fetcher : FETCHER {

port branch : branch;

}
}

pipeline pFDEAMWB maps to Generic {
stage Fetch {

MEM : fetch;



}
stage Decode {

fetcher : branch;

gpr : rs1, rs2, rs3, rd1, rd2;

}
stage Execute1 {

alu release in Execute2 : all;

}
stage Execute2 {
}
stage Memory {

mem : loadStore;

}
stage WriteBack {

gpr : rd;

}
}

In the same way, this description declares two objects :

architecture and pipeline. In the architecture,

many devices are declared. Port loadStore allows the

access to 2 methods. the keyword ’or’ is equivalent to the

exclusive or. loadStore allows to access the method read

or write. At a given time, if an instruction uses read

in a stage of pipeline, the second method write becomes

inaccessible, and the associated resource is set to busy.

Sometimes, using any method of a component makes it

unavailable. Instead of forcing the user to give the list of all

methods, an empty list is interpreted as a all methods list. Here

the alu device uses this scheme.

When using a port in a pipeline stage, it is implicitly taken

at the start of the stage and released at the end. If a port

needs to be held for more than one stage, the stage where it is

released is explicitly given. Here port all of alu is taken in

the Execute1 stage and released in the Execute2 stage.

As in the previous example, shared ports loadStore and

fetch are translated to external resources. One is associated

with the data memory controller. The other one is associated

to the program memory controller. A third external resource

is used to check for data dependancies during the simulation

(see section III-A2).

Other ports may or may not have an associated internal

resource. For instance, the gpr device offers enough ports to

satisfy the needs of the instruction set. So no internal resource

is used to constrain the accesses to GPR’s methods.

Instruction classes group instructions that use the same

resources (internal or external) as presented in section III-B.

In this example, 10 resources are used:

• 6 internal resources for the pipeline stages;

• 1 internal resource for the ALU management: alu;

• 2 external resources for the memory accesses: fetch

and loadStore;

• 1 external resource to check data dependancies:

dataDep.

As each instruction depends on the fetch resource and the

pipeline stages, only three resources can differentiate instruc-

tions: there may be a maximum of 23 = 8 instruction classes.

We can notice that an architecture without the ALU structural

constraint, the maximum of instruction classes would be

reduced to 4. Instructions used in the example (a Fibonacci

sequence) are displayed in table I. It uses 5 instruction classes.

The 3 remaining instruction classes correspond to impossible

configurations.

TABLE I
INSTRUCTIONS USED IN THE EXAMPLE WITH THE XGATE. INSTRUCTIONS

THAT USES THE SAME RESOURCES ARE IN THE SAME INSTRUCTION

CLASS.

opcode Alu loadStore dataDep Inst. class

LDW (load) X X 1

STW (store) X X 1

LDH (load) X 2

LDL (load) X 2

MOV X 3

BGT (branch) X 3

BRA (branch) 4

ADDL X X 5

ADD X X 5

CMP X X 5

This example is executed on an Intel Core 2 Duo @ 2.4

GHz processor with 2 GB RAM. The results are the following:

21.3 s are required to compute the whole simulator. This

elapsed time is split in 7.7 s to generate the automaton from

the pipeline description, 3.1 s to generate C++ files from the

automaton and 10.6 s to compile the C++ files (using GCC

4.0). About 30 MB of RAM are required to generate the

automaton. The generated automaton has 43 200 states and

325 180 transitions. 2 030 401 pipeline states were calculated

and the generated C++ files represent 4.7 MB in 79 800 lines

of code. The simulator generation is fast enough to model

realistic processors.

VII. SIMULATION RESULT

We present in this section the simulation result provided by

our tool from the example presented in section VI-B:

• each line represents an instruction that is executed in the

pipeline. The instruction that follows a branch instruction

(-) points out that it is a dummy instruction that is fetched

before the branch detection in the decode stage (1). No

behaviour is associated with the instruction because the

branch instruction is taken;

• each column represents one processor cycle. Numbers

from 0 (Fetch) to 5 (Write Back) represent the

pipeline stage number in which the instruction is.

From this short example, we can get both the functional

behaviour (registers and memory are updated for each in-

struction) and the temporal behaviour. This short example of

temporal behaviour shows that:

• the four instructions LDW (x2), ADD and STW are data

dependent, and only one instruction is executed at each

time in the pipeline. No bypass circuitry is included in

our description;



MOV R6,R0 012345

LDL R6,#0x2c 012345

CMP R6,R7 0 12345

BGT 1 0 12345

- 012345

MOV R6,R7 012345

LDW R2,(R5,R6+) 0 12345

LDW R3,(R5,R6+) 0 12345

ADD R4,R2,R3 0 12345

STW R4,(R5,R6) 0 12345

ADDL R7,#0x2 012345

BRA -12 012345

Fig. 4. Execution trace produced by the generated simulator on the Fibonacci sequence

• the BGT instruction (line 4) is delayed for 2 cycles

because it needs the ALU result from the previous

instruction (comparison);

The temporal behaviour is required to compute the Worst Case

Execution Time (WCET) of real time applications.

VIII. FROM SIMULATION TO WCET

The automaton sequencing is directly linked to the processor

clock. Thus, the time required to execute an instruction block

depends directly on the number of transitions that are taken

during the simulation. This property can be integrated in a

static WCET approach, for instance using an Implicit Path

Enumeration Technique (IPET) approach [11]. In that case,

the simulator has in charge to give the execution time of basic

blocks on which the IPET algorithm is based to determine the

WCET. Additionally, it can give the pipeline state after the

execution of the basic block, directly obtained from the last

automaton state. Our tool is being integrated with the OTAWA

tool [3]: Otawa is a Framework for Experimenting WCET

Computations.

On the real example presented in the previous section, it

takes 23.9 s to simulate 100 million instructions (requiring 270

million cycles), on an Intel Core 2 duo@2.4GHz. This cycle

accurate simulation tool is fast enough to be integrated in such

static WCET analysis tools. As a comparison, the Instruction

Set Simulator required 6.3 s for the same scenario, but without

any temporal information. So the increase factor for computing

timing properties is less than 4.

We have focus our study in the pipeline modelling, but other

components may significantly influence computation timings,

such as caches (branch, instructions or data). Additional delays

(that model a cache miss) can be taken into account using

external resources, see section III-A2

IX. CONCLUSION

This paper has presented the method used in HARMLESS

to generate a Cycle Accurate Simulator from the description

of a pipeline and its hazards. The method uses an improved

version of the BuildForwardFSA algorithm to handle the data

and control hazards as well as the concurrent accesses to

devices that are not managed statically by the automaton.

This improvement is done by using external resources at the

cost of a larger automaton. The results look promising. By

adding cycle-accurate pipeline simulation to an Instruction Set

Simulator, the simulation time is only increased by a factor

less than 4. Another important part of this work is the design

of an Architecture Description Language HARMLESS [7]. A

small part of this language is briefly presented here.. It is a

very important part because it considerably simplify the design

of a simulator - and so the execution time computation - for

a particular target processor. Future work will focus on the

minimisation of the automaton, the use of multiple automata to

reduce the global size of the tables, and to model and simulate

superscalar processors. How to model dynamic superscalar

processors, including speculative execution is also planned.

REFERENCES

[1] Vasanth Bala and Norman Rubin. Efficient instruction scheduling
using finite state automata. In MICRO 28: Proceedings of the 28th

annual international symposium on Microarchitecture, pages 46–56, Los
Alamitos, CA, USA, 1995. IEEE Computer Society Press.

[2] Frank Burns, Albert Koelmans, and Alexandre Yakovlev. Wcet analysis
of superscalar processors using simulationwith coloured petri nets. Real-

Time Syst., 18(2-3):275–288, 2000.

[3] Hugues Cassé and Pascal Sainrat. Otawa, a framework for ex-
perimenting wcet computations. In European Congress on Em-

bedded Real-Time Software (ERTS), page (electronic medium),
ftp://ftp.irit.fr/IRIT/TRACES/6278 ERTS06.pdf, janvier 2006. SEE. 8
pages.

[4] Freescale Semiconductor, Inc. XGATE Block Guide, 2003.

[5] Ashok Halambi, Peter Grun, and al. Expression: A language for
architecture exploration through compiler/simulator retargetability. In
European Conference on Design, Automation and Test (DATE), March
1999.

[6] John L. Hennessy and David A. Patterson. Computer Architecture A

Quantitative Approach-Second Edition. Morgan Kaufmann Publishers,
Inc., 2001.

[7] R. Kassem, M. Briday, J.-L. Béchennec, G. Savaton, and Y. Trinquet.
Instruction set simulator generation using harmless, a new hardware
architecture description language. Unpublished.

[8] Kevin Kranen. SystemC 2.0.1 User’s Guide. Synopsys, Inc.

[9] J.Y.T. Leung, editor. Handbook of Scheduling. Chapman & Hall, CRC
Press, 2004.



[10] Xianfeng Li, A. Roychoudhury, T. Mitra, P. Mishra, and Xu Cheng.
A retargetable software timing analyzer using architecture description
language. In ASP-DAC ’07: Proceedings of the 2007 conference on

Asia South Pacific design automation, pages 396–401, Washington, DC,
USA, 2007. IEEE Computer Society.

[11] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of
embedded software using implicit path enumeration. In Workshop on

Languages, Compilers, & Tools for Real-Time Systems, pages 88–98,
1995.

[12] Thomas Müller. Employing finite automata for resource scheduling. In

MICRO 26: Proceedings of the 26th annual international symposium on

Microarchitecture, pages 12–20, Los Alamitos, CA, USA, 1993. IEEE
Computer Society Press.

[13] Todd A. Proebsting and Christopher W. Fraser. Detecting pipeline
structural hazards quickly. In POPL ’94: Proceedings of the 21st ACM

SIGPLAN-SIGACT symposium on Principles of programming languages,
pages 280–286, New York, NY, USA, 1994. ACM Press.

[14] Adriano Tavares, Carlos Couto, Carlos A. Silva, and José Lima, C.
S. Metrôlho. WCET Prediction for embedded processors using an ADL,
chapter II, pages 39–50. Springer Verlag, 2005.


