Bruno Bouchard
email: bouchard@ceremade.dauphine.fr

Xavier Warin
email: xavier.warin@edf.fr

Monte-Carlo valorisation of American options: facts and new algorithms to improve existing methods

Keywords:

The aim of this paper is to discuss efficient algorithms for the pricing of American options by two recently proposed Monte-Carlo type methods, namely the Malliavian calculus and the regression based approaches. We explain how both technics can be exploded with improved complexity and efficiency. We also discuss several technics for the estimation of the corresponding hedging strategies. Numerical tests and comparisons, including the quantization approach, are performed.

Introduction

In the last decades, several Monte-Carlo type technics have been proposed for the numerical computation of American option prices, or more generally the evaluation of value functions associated to semi-linear parabolic equations, with possible free boundary, see e.g. the survey paper [START_REF] Bouchard | Discrete-Time Approximation of BSDEs and Probabilistic Schemes for Fully Nonlinear PDEs[END_REF]. The idea of combining Monte-Carlo methods with approximations of the expectation operator in backward induction schemes comes back to Carrière [START_REF] Carrière | Valuation of the Early-Exercise Price for Options using Simulations and Nonparametric Regression[END_REF] and was popularized by Longstaff and Schwartz [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares[END_REF]. This was the starting point of fruitful researches involving, in particular, a series of papers by Pagès and its co-authors, see e.g. [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF] or [START_REF] Bally | Printems : A quantization method for pricing and hedging multi-dimensional American style options[END_REF], on the quantization approach, Lions and Renier [START_REF] Lions | Calcul du prix et des sensibilités d'une option américaine par une méthode de Monte Carlo[END_REF], and Bouchard, Ekeland and Touzi [START_REF] Bouchard | On the Malliavin approach to Monte Carlo approximation of conditional expectations[END_REF][START_REF] Bouchard | Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations[END_REF] on the Malliavin calculus based formulation.

The aim of all the above mentioned papers is to compute prices for American or Bermudean options in (relatively) high dimensions, when purely deterministic technics (finite differences or finite elements for partial differential equations, approximating trees) are made inefficient by the so-called curse of dimensionality. The rationality behind the purely Monte-Carlo based approaches of [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares[END_REF] and [START_REF] Bouchard | Discrete-time approximation and Monte Carlo simulation of backward stochastic differential equations[END_REF] is that the convergence speed of the proposed schemes does not a-priori depend on the dimension of the problem. This is the usual justification for the use of such technics in numerical integration, although, like for any Monte-Carlo method, the dimension plays an import role at finite distance, usually through the variance of the estimation error or the complexity of the algorithm.

In the regression based approach of Longstaff and Schwartz [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares[END_REF], it appears in the choice of the basis of polynomials used for the numerical estimation of conditional expectations. Such a choice is made very difficult in practice when the dimension increases. Many papers are devoted to such an issue but most of them only discuss the performance of suitable choices for situations in which the payoff function is rather standard and the price can be computed with rather good efficiency by deterministic technics. It is therefore not clear whether the choice of the regression basis was optimized a-posteriori in order to give the best results for these particular cases. The question of choosing a good basis in a practical non-standard situation is completely open and is typically reduced to an arbitrary choice, leading to a numerical error out of any reasonable control.

In the Malliavin based approach, the dimension of the problem appears through an exploding variance of the estimators of the conditional expectation operators. This is due to the Skorohod integrals (usually called Malliavin weights) which enter into the representation of conditional expectations as the ratio of two unconditional expectations obtained by integrating by parts the Dirac mass which shows up when applying the Bayes' rule. The variance of these terms explodes with the dimension of the underlying factor and with the number of time steps. Another important issue is the complexity of the algorithm, which, a-priori, seems to be of order of the number of simulated paths N to the square: O(N 2). Since the variance explodes with the number of underlying factors and the number of times steps, a large number of simulated paths has to be used in order to achieve a good precision in high dimension. The above mentioned complexity thus makes this approach a-priori much too slow in practice.

The aim of this paper is to explain how both methods can be improved in order to circumvent the above mentioned criticisms. As for the non-parametric regression based method, we suggest to modify the purely non-parametric method of [START_REF] Gobet | A regression-based Monte-Carlo method to solve backward stochastic differential equations[END_REF] by adapting the support of the function basis to the density of the underlying factors. The main advantage of this approach is that the regression basis is not chosen a-priori but automatically adapted to the function of interest. Concerning the Malliavin based approach, we explain how an efficient algorithm with a reduced complexity can be constructed. We shall see in particular that the complexity of this algorithm is far from being of the order of the number of simulated paths to the square, as claimed in many papers. It is of order O(N ln(N) (d-1)∨1) where d is the dimension of the underlying factor.

For both methods, we will explain how, with essentially the same computation costs, two consistent estimators can be build at the same time. The first one corresponds to the approach of Longstaff and Schwartz [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares[END_REF], which consists in estimating the optimal exercise time. The second is based on the computation of the prices a each time through a pure backward induction procedure. Because, the estimator of the optimal excercise rule is by nature sub-optimal, the first price estimator is essentially biased from below. On the other hand, because of the convexity of the max operator, the second one is essentially biased from above. We suggest to consider the corresponding interval to test the accuracy of the estimations. This can be seen as a subsidy for the usual confidence interval in linear Monter-Carlo methods.

We shall also investigate different methods for the computation of the hedging strategy. In particular, we shall emphasize that the standard tangent process approach, widely used in the context of European type options, can be used for American options too. We will also consider Malliavin based technics, following the ideas of the seminal paper [START_REF] Fournier | Applications of Malliavin calculus to Monte Carlo methods in finance[END_REF].

The rest of the paper is organised as follows. In Section 2, we recall fundamental results on the pricing of American and Bermudean options. We discuss the error induced by the approximation of American option prices by their Bermudean counterparts. We also provide different representation for the hedging policy. In Section 3, we explain how these results can be exploited in order to build estimators of the price and the hedging strategy, assuming that we are given a way of approximating conditional expectations. Section 4 is dedicated to the presentation of improved versions of the regression based and the Malliavin based Monte-Carlo algorithms. Numerical experiments and comparisons, including the quantization approach of [START_REF] Bally | Printems : A quantization method for pricing and hedging multi-dimensional American style options[END_REF], are presented in Section 5.

All over this paper, elements of R d are viewed as column vectors and transposition is denoted by ′ .

Fundamental results for the construction of numerical algorithms

In this section, we review some fundamental results on the formulation of prices and the representation of hedging strategies that will be used in the algorithms described below.

All over this paper, we shall consider a d-dimensional Brownian motion W on a probability space (Ω, F, P) endowed with the natural (completed and right-continuous) filtration F = (F t) t≤T generated by W up to some fixed time horizon T > 0. We assume, for sake of simplicity, that the interest rate is zero and that there exists only one risk neutral measure, which is given by the original probability measure P (or at least P will be considered to be the pricing measure). The stock dynamics is modeled as the strong solution X = (X 1 , . . . , X d) of the stochastic differential equation:

X t = X 0 + t 0 σ(s, X s)dW s t ≤ T, (1)
where σ is a Lipschitz continuous function defined on [0, T]×R d and taking values in the set of d-dimensional square matrices. For sake of simplicity, we shall assume from now on that the stock price process X can be perfectly simulated on any finite time grid of [0, T], which is the case in most standard market models. These choices are made in order to simplify the presentation, but the above algorithms/results could clearly be extended to more general situations, see e.g. [START_REF] Bouchard | Discrete-Time Approximation of BSDEs and Probabilistic Schemes for Fully Nonlinear PDEs[END_REF] for convergence issues.

Definitions and facts

We recall in this section some well-know facts on the pricing of American and Bermudean options.

From now on, the payoff of the American option is defined as a deterministic measurable function g : [0, T] × R d → R, i.e. the seller pay g(t, x) at time t if the option is exercised at time t and the value of the underlying assets is x. We shall assume all over this paper that g has linear growth and is Lipschitz continuous.

Under the above assumption, it follows from standard arguments, see e.g. [START_REF] Karoui | Les aspects probabilistes du contrôle stochastique[END_REF], that the price at time t of the American option is given by a continuous supermartingale P satisfying

P t = ess sup τ ∈T [t,T] E [g(τ, X τ) | F t] for t ≤ T P -a.s. , (2)
where T [t,T] denotes the set of stopping times with values in [t, T].

Similarly, the price of a Bermundean option with the same payoff function, but which can be exercised only at times in

π := {0 = t 0 < t 1 < t 2 < • • • < t κ = T } , for some κ ∈ N,
is given by a làdcàg supermartingale P π satisfying

P π t = ess sup τ ∈T π [t,T] E [g(τ, X τ) | F t] for t ≤ T P -a.s. , (3)
where T π [t,T] denotes the set of stopping times with values in [t, T] ∩ π. It then follows from the Doob-Meyer decomposition, that we can find predictable processes φ and φ π as well as non-decreasing processes A and A π such that

E   T 0 |φ s | 2 + |φ π s | 2 ds   < ∞ , A 0 = A π 0 = 0 and P t = P 0 + t 0 φ ′ s dW s -A t , P π t = P π 0 + t 0 φ π s ′ dW s -A π t for t ≤ T P -a.s. (4
)
The processes φ and φ π are related to the hedging strategy of, respectively, the American and the Bermudean option. More precisely, the number of units of stocks to hold in the hedging portfolio are given by ψ ′ := φ ′ σ -1 (•, X) and ψ π ′ := φ π ′ σ -1 (•, X) whenever these quantities are well-defined. Moreover,

P t = E [g(τ t , X τt) | F t] and P π t = E g(τ π t , X τ π t) | F t for t ≤ T P -a.s. , (5)
where τt := inf {s ∈ [t, T] :

P s = g(s, X s)} and τ π t := inf {s ∈ [t, T] ∩ π : P π s = g(s, X s)} (6)
are the optimal exercise times, after t. In particular, P and P π are martingales on [t, τt] and [t, τ π t] respectively, for all t ≤ T .

From Bermudean to American options

Most numerical methods for the pricing of American options are based on the approximation by Bermudean options with time grid π with mesh |π| := max i<κ (t i+1 -t i) going to 0. The approximation is justified theorically by the following result, see [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF] and [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDE's[END_REF]. Theorem 1 The following holds: 4) .

max i≤κ E |P ti -P π ti | 2 1 2 ≤ O(|π| 1
If moreover there exists

ρ 1 : [0, T] × R d → R d+1 and ρ 2 : [0, T] × R d → R + such that |ρ 1 (t, x)| + |ρ 2 (t, x)| ≤ C L (1 + |x| C L) g(t, x) -g(s, y) ≤ ρ 1 (t, x) ′ (s -t, y -x) + ρ 2 (t, x)(|t -s| 2 + |x -y| 2) , ∀ x, y ∈ R d , t, s ∈ [0, T] . (7
)
for some constant C L > 0, then

max i≤κ E |P ti -P π ti | 2 1 2 + E   T 0 |φ s -φ π s | 2 ds   1 2 ≤ O(|π| 1
2) .

Note that the assumption [START_REF] Bouchard | On the Malliavin approach to Monte Carlo approximation of conditional expectations[END_REF] is satisfied by most payoffs in practice.

In view of this convergence result, it is enough to focus on the pricing of Bermudean options. We will therefore concentrate on this in the following. Remark 1 We refer to [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF] and [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDE's[END_REF] for the additional error due to the approximation of X by its Euler scheme. For a time step of size h > 0, It is of order O(h 1/4) in general, and of order O(h 1/2) under (7).

Delta representations

For practical purposes, the computation of the hedging strategy is as important as the estimation of the price process. As for European type options, at least three different methods can be used in practice. In this section, we restrict to the case of Bermudean options, recall the convergence results of Section 2.2.

Finite difference approach

The finite difference approach consist is estimating the price process for different initial conditions. More precisely, let P π,δ be defined as in (1)-(3) with X 0 replaced by X 0 + δ, δ ∈ R d . Then, following the standard approach for European options, one could approximate the i-th component of φ π 0 ′ σ(0, X 0) -1 by (P π,δi 0 -P π 0)/h or (P π,δi 0 -P π,-δi 0)/2h where δ i is the vector of R d defined by δ j i = h1 i=j and h > 0 is small. A large literature is available on this approach for European type options, see e.g. [START_REF] Detemple | Asymptotic Properties of Monte Carlo Estimators of Derivatives[END_REF] and the references therein. To our knowledge, no rigorous convergence result is available for American type options. However, in the case of Bermudean options, the results obtained for European options can still be applied at time 0 by considering the deterministic price function p π (t 1 , •), where p π is implicitly defined by p π (•, X •) = P π on [0, t 1], as a given terminal payoff at time t 1 .

Note that this requires the computation of two different values of the American option price, for two different initial conditions, which is, a-priori, much too time consuming in comparison to the technics proposed below. On the other hand the algorithms presented below, Algorithms A1, A2 and A2b, can be easily adapted to this context. Indeed, they produce (or can produce for Algorithm 1), simulated values of option prices on a grid of time corresponding to simulated values of the stock prices. If one starts the simulations of the stock prices at time -δ, δ > 0 small, they will thus produce values of the option price at time 0 for simulated, but close if δ is small, values of the stock prices. These can be used to compute the finite differences. Obviously there is no hope that this method will be convergent and the choice of the value of δ is not clear. We will therefore not test this approach here.

Tangent process approach

Assume that g, σ is C 1 b . Then, under a standard uniform ellipticity condition on σ and mild additional regularity assumptions, ensuring the usual smooth pasting property for the American option price on the associated free boundary, it is shown in [START_REF] Gobet | Revisiting the Greeks for European and American options[END_REF] that there exists a version of φ satisfying

φ ′ 0 = E [∇g(τ 0 , X τ0) ′ ∇X τ0] σ(0, X 0)
where ∇g denote the gradient of g with respect to its space variable and ∇X is the first variation (or tangent) process of X defined as the solution of

∇X t = I d + t 0 d j=1 ∇σ j (X r)∇X r dW j r
where I d is the identity matrix of M d , σ j is the j-th column of σ, and ∇σ j the Jacobian matrix of σ j . This is a natural extension of the well-known result for European options, see [START_REF] Broadie | Estimating security price derivatives using simulation[END_REF].

This result was then extended in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDE's[END_REF], see also [START_REF] Piterbarg | Risk sensitivities of Bermuda options[END_REF], to Bermudean options in terms of the Malliavin derivative process of X, without ellipticity condition. Here, we state it in terms of the first variation process ∇X, compare with Corollary 5.1 and see (5.3) in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDE's[END_REF]. Theorem 2 Assume that g, σ ∈ C 1 b then there exists a version of φ π satisfying

φ π t ′ = E ∇g(τ π t , X τ π t) ′ ∇X τt | F t (∇X t) -1 σ(t, X t) , t ≤ T . (8)
Remark 2 Note that the payoff function g is assumed to be C 1 b in the above assertion. However, it should be clear that it can be extended to many situations where g is only differentiable a.e. with bounded derivatives. In particular, for one dimensional put options with strike K, it is clear that X τ π t < K P-a.s. since g(t, K) = 0, at least under suitable ellipticity conditions on σ ensuring that P π > 0 on [0, T). Since K is the only point where the payoff function is not differentiable, the above representation can be easily extended.

Malliavin calculus approach

An extension of the formulation of the delta similar to the one introduced for European type options in the seminal paper [START_REF] Fournier | Applications of Malliavin calculus to Monte Carlo methods in finance[END_REF] was first proposed in [START_REF] Ma | Representations and regularities for solutions to BSDEs with reflections[END_REF]. However, it involves the non-decreasing process A (or A π) which is difficult to estimate in practice. In the case where we restrict to Bermudean options, then things simplify and the result of Proposition 5.1 in [START_REF] Bouchard | Discrete time approximation for continuously and discretely reflected BSDE's[END_REF], together with a standard integration by parts argument in the Malliavin calculus sense, leads to the following representation. Theorem 3 Assume that g, σ ∈ C 1 b and that σ is invertible with bounded inverse, Then there exists a version of φ π satisfying

φ π t ′ = 1 t i+1 -t E   P π ti+1 ti+1 t σ(s, X s) -1 ∇X s dW s | F t   ′ (∇X t) -1 σ(t, X t) , t ∈ [t i , t i+1), i ≤ κ . (9)
Since P π is a martingale on each interval [t, τt], it can alternatively be written in the following form. Theorem 4 Assume that g, σ ∈ C 1 b and that σ is invertible with bounded inverse, Then there exists a version of φ π satisfying

φ π t ′ = 1 t i+1 -t E   g(τ π t , X τ π t) ti+1 t σ(s, X s) -1 ∇X s dW s | F t   ′ (∇X t) -1 σ(t, X t) , t ∈ [t i , t i+1), i ≤ κ . (10)
Remark 3 In Black-Scholes type models, i.e. σ(t, x) = diag [x] σ(t) where diag [x] is the diagonal matrix with i-th diagonal component equal to x i and σ is deterministic with bounded inverse, then the above results still holds true. Also note that the payoff function g is assumed to be C 1 b in the above assertion. However, it should be clear that it can be extended to more general situations where g can be uniformly approximated by a sequence of C 1 b functions. This follows from standard stability results for reflected backward stochastic differential equations.

Abstract algorithms

Backward induction for the pricing of Bermudean options

It follows from the formulation (3) of P π in terms of an optimal stopping problem on a finite time grid, that the price process of the Bermudean option satisfies the so-called backward American dynamic programming equation:

P π T = g(T, X T) and P π ti = max g(t i , X ti) , E P π ti+1 | F ti for i = κ -1, . . . , 0 . (11)
or equivalently, thanks to the martingale property of P π on each interval [t, τ π t],

P π T = g(T, X T) and P π ti = max g(t i , X ti) , E P π τ π t i+1 | F ti for i = κ -1, . . . , 0 . (12)
Assuming that the involved conditional expectation can be perfectly estimated, this leads to two kind of possible algorithms for the computation of the price of the Bermudean option at time 0. In pratice, these operators have to be replaced by a numerical estimation. In what follows, we denote by Ê[• | F ti] an approximation of the true condition expectation operator E[• | F ti]. For Ê given, the corresponding approximation schemes are: Algorithm A1 [optimal exercise time estimation]:

1. Initialisation : Set τ 1,π κ := T . 2. Backward induction : For i = κ -1 to 0, set τ 1,π i := t i 1 A 1 i + τ 1,π i+1 1 (A 1 i) c
where

A 1 i := {g(t i , X ti) ≥ Ê[g(τ 1,π i+1 , X τ 1,π i+1) | F ti]}.
3. Price estimator at 0: P 1,π 0

:= Ê[g(τ 1,π 0 , X τ 1,π 0)].
Algorithm A2 [price process computation]:

1. Initialisation: Set P 2,π T := g(T, X T) 2. Backward induction: For i = κ -1 to 0, set P 2,π ti := max{g(t i , X ti) , Ê[P 2,π ti+1 | F ti]}. 3
. Price estimator at 0: P 2,π 0 . Note that the optimal exercise strategy can also be approximated in the Algorithm A2 as follows: Algorithm A2b [with optimal exercise time estimation]:

1. Initialisation: Set τ 2,π κ = T 2. Backward induction: For i = κ -1 to 0, τ 2,π i := t i 1 A 2 i + τ 2,π i+1 1 (A 2 i) c where A 2 i := {g(t i , X ti) = P 2,π ti }. 3. Price estimator at 0: P 2b,π 0 := Ê[g(τ 2,π 0 , X τ 2,π 0)].
The algorithm A1 corresponds to the approach of [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares[END_REF] in which the conditional expectation operators are estimated by non-parametric regression technics based on a suitable choice of regression polynomials.

The algorithm A2 corresponds to the approach of [START_REF] Lions | Calcul du prix et des sensibilités d'une option américaine par une méthode de Monte Carlo[END_REF] and [START_REF] Bouchard | On the Malliavin approach to Monte Carlo approximation of conditional expectations[END_REF] in which the conditional expectation operators are estimated by pure Monte-Carlo methods based on the representation of conditional expectations in terms of a suitable ratio of unconditional expectations obtained by using some Malliavin calculus technics, see below.

Note that, if we assume for a moment that the conditional expectation operators are conditionally unbiased, i.e.

E[Ê[• | F ti] | F ti] = E[• | F ti]
, then a backward induction argument combined with Jensen's inequality implies that E P 2,π 0 ≥ P π 0 . On the other hand, the fact that the estimated optimal exercise policy τ i,π 0 is suboptimal by definition, for i = 1, 2, implies that E P 1,π 0 ≤ P π 0 and E P 2b,π 0 ≤ P π 0 . It follows that, at least at a formal level:

E P 1,π 0 , E P 2b,π 0 ≤ P π 0 ≤ E P 2,π 0 . (13)
The above formal relation can then be used for the construction of confidence intervals for the true price of the Bermudean option: [P 1,π 0 , P 2,π 0] or [P 2b,π 0 , P 2,π 0]. If the computation of the conditional expectations is accurate, then the effect of the convexity bias should be small and therefore P 2,π 0 should be close to P π 0 . Similarly, the error in estimating the exact counterpart of the exercise regions A 1 i and A 2 i should be small and therefore the estimation of the optimal stopping times should be good, leading to P 1,π 0 and P 2b,π 0 close to P π 0 . Thus, a tiny confidence interval should reveal a good approximation of the exact price, while a large confidence interval should be a sign that the estimation was poor. In practice, it seems better to use the interval [P 2b,π 0 , P 2,π 0] as both quantities can be computed at the same time with almost no additional cost.

Hedging strategy approximation

As above, we restrict to the case of a Bermudean option. Recalling that the number of units ψ π of stocks to hold in the hedging portfolio is given by φ π ′ σ -1 (•, X), whenever this quantity is well-defined, one can estimate the hedging policy by using one of the representation of φ π presented in Section 2.3.

The finite difference approach mentioned in Section 2.3.1 can be combined with Algorithms A1 and A2 in an obvious manner.

As for the tangent process approach and the Malliavin calculus based one, we can also use Algorithms A1 and A2. Algorithms A1 and A2b provide an estimation of the optimal exercise strategy. Plugged into [START_REF] Bouchard | Discrete-Time Approximation of BSDEs and Probabilistic Schemes for Fully Nonlinear PDEs[END_REF] or [START_REF] Broadie | Estimating security price derivatives using simulation[END_REF] this leads to two possible approximations of the hedging strategy at time 0:

φ π 0 ′ ∼ Ê ∇g(τ π 0 , X τ π 0) ′ ∇X τ π 0 σ(0, X 0) (14)
or

φ π 0 ′ ∼ 1 t 1 Ê   g(τ π 0 , X τ π 0) t1 0 σ(s, X s) -1 ∇X s dW s   ′ σ(0, X 0) , (15)
with τ π 0 = τ 1,π 0 or τ 2,π 0 . Algorithm A2 provides an estimation of the price process at time t 1 . Plugged into (9) this leads to

φ π 0 ′ ∼ 1 t 1 Ê   P 2,π t1 t1 0 σ(s, X s) -1 ∇X s dW s   ′ σ(0, X 0) . (16)

Improved algorithms for the estimation of conditional expectations

As above, we focus on the pricing of Bermudean options. We shall also assume here that the process X can be perfectly simulated on the time grid π. If this is not the case, then it has to be replaced by its Euler scheme. The convergence results of Section 2.2 justify these approximations.

The regression based approach

We first address the basis function regression method and show how to numerically improve the methodology proposed by [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares[END_REF]. We compute the complexity of the method depending on the number of particules and the number of basis functions.

Generalities

The common fundamental idea in the regression based and the Malliavin based approach consists in using simulated paths of the stock prices (X (j)) j≤N and to apply one of the backward induction Algorithms A1, A2 (possibly A2b) described in Section 3.1 by using the simulations in order to estimate the involved conditional expectations.

In the context of Algorithm A1, the numerical procedure reads as follows:

Algorithm A1 with regression [optimal exercise time estimation]:

1. Initialisation : Set τ 1,π,(j) κ := T , j ≤ N 2. Backward induction : For i = κ -1 to 1, set τ 1,π,(j) i := t i 1 A 1,(j) i + τ 1,π,(j) i+1 1 (A 1,(j) i) c
where A 1,(j) i

:= {g(t i , X (j) ti) ≥ ÊN [g(τ 1,π i+1 , X τ 1,π i+1) | X ti = X (j)
ti]}, j ≤ N , 3. Price estimator at 0: P 1,π, 0

:= 1 N N j=1 g(τ 1,π,(j) 0 , X (j) τ 1,π,(j) 0
), where the estimation

F N (t i , X (j) ti) := ÊN [g(τ 1,π i+1 , X τ 1,π i+1) | X ti = X (j) ti]
of the true conditional expectation

F (t i , X (j) ti) := E[g(τ 1,π i+1 , X τ 1,π i+1) | X ti = X (j) ti]
is computed by regressing (g(τ

1,π,(ℓ) i+1 , X (ℓ) τ 1,π,(ℓ) i+1
)) ℓ≤N on (ψ 1 (X

(ℓ) ti), . . . , ψ M (X (ℓ)
ti)) ℓ≤N , where ψ 1 , . . . , ψ M are given functions, i.e.

F N (t i , x) := M k=1 αti,N k ψ k (x) where (αti,N k) k≤M minimizes N ℓ=1 g(τ 1,π,(ℓ) i+1 , X (ℓ) τ 1,π,(ℓ) i+1) - M k=1 α k ψ k (X (ℓ) ti) 2 over (α k) k≤M ∈ R M .
Clearly, the same ideas can be combined with Algorithm A2 (and its variation A2b).

We shall not discuss here the theoretical convergence of the method, we refer to [START_REF] Clément | An analysis of a least squares regression method for American option pricing[END_REF] for rigorous statements, but rather describe how it can be improved from a numerical point of view.

General comments on the regression procedure

Note that at each step of the above algorithm, we have to solve a quadratic optimization problem of the form

min α∈R M Aα -B 2 (17)
Different solutions are available. First, we can deduce the induced normal equations

A ′ Aα = A ′ B , (18)
and use a Choleski decomposition LL ′ of A ′ A to solve it. This method is the most efficient in term of computational time but is rather sensible to roundoff error. Besides, it is not memory consumming because the A matrix does not need to be constructed. A more stable approach consists in using a QR decomposition of A, i.e. write A as QR where Q is a Ndimensional orthonormal matrix and R is a N -dimensional upper triangular matrix, and solve Rα = Q ′ B. This is much more time consuming. Moreover, the N × M matrix A has to be stored. When using standard basis functions for the ψ k 's, it is typically full, which may become highly demanding in terms of memory when the number of basis functions is high.

In order to completely avoid roundoff errors, the Singular Value Decomposition can be used: write A = U W V ′ with U in R N × R N an orthogonal square matrix , V an orthogonal square matrix in R M × R M , and W a diagonal matrix in R N × R M with only positive or zero entries w i on the diagonal. Replacing 1/w i by zero if w i = 0, the solution to [START_REF] Fournier | Applications of Malliavin calculus to Monte Carlo methods in finance[END_REF] is given by

α = V [diag [1/w i]]U ′ B (19
)
Still this method suffers the same problem as the QR algorithm in term of memory needed to create the matrix A and is the most time consumming.

Drawbacks of polynomial regressions

The idea of taking ψ 1 , . . . , ψ M has polynomials, or more generally as functions with global support, was first introduced by [START_REF] Tsitsiklis | Optimal Stopping of Markov Processes: Hilbert Spaces theory, Approximations Algorithms and an application to pricing high-dimensional financial derivatives[END_REF], in the context of general optimal stopping problems, and then used to price American options by [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares[END_REF]. In [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares[END_REF], the authors use monomial basis functions and Laguerre polynomials. Most of the following papers have consisted in extending this approach to Hermite, Hyperbolic and Chebyshev polynomials (see [START_REF] Choudhury | Optimizations in Financial Engineering: The Least-Squares Monte Carlo method of Longstaff and Schwartz[END_REF] for example). Some basis may be choosen orthogonal in order to invert easily the associated normal equation [START_REF] Glasserman | Monte Carlo Method in Finance Engineering[END_REF]. Note however that it should then be orthogonal in the law induced by X and not with respect to the Lebesgue measure as usually chosen.

Although very easy to implement in practice, this kind of function basis has a major flaw. For a given number of particules it is not easy to find an optimal degree of the functional basis. Besides, an increase in the number of function basis often leads to a deterioration in the accuracy of the result. This is due to rare events that the polynomials try to fit, leading to some oscillating representation of the function.

Figure 1 below shows how the regression behaves at the first backward step for a put option in dimension one, for different choices of monomial basis functions. Clearly, the regression procedure could be improved by adding the payoff function at the first steps of the algorithm, when the price function should still be close to the payoff. However, the number of steps for which the payoff should be included in the basis is somehow arbitrary and difficult to determine in practice.

Note that, in the case where an explicit formula is available for the corresponding European option, one can replace the estimator Ê[P 2,π ti+1 | F ti] in Algorithms A2 and A2b by Ê[P 2,π ti+1 -P euro (t i+1 , X ti+1) | F ti] + P euro (t i , X ti) where P euro (t, x) denotes the price of the corresponding European option at time t if X t = x. The rationality behind this comes from the fact that the European price process P euro (•, X) is a martingale, and that it typically explains a large part of the Bermudean price. Alternatively, P euro (t i , •) could also be included in the regression basis.

The adaptative local basis approach

We propose to use a different technic. It essentially consists in applying a non-conform finite element approach rather than a spectral like method as presented above.

The idea is to use, at each time step t i , a set of functions ψ q , q ∈ [0, M M] having local hypercube support D i1,i2,..,i d where i j = 1 to

I j , M M = k=1,d I k , and {D i1,..i d } (i1,..,i d)∈[1,I1]ו••×[1,I d] is a partition of [min k=1,N X 1,(k) ti , max k=1,N X 1,(k) ti]× • • • ×[min k=1,N X d,(k) ti , max k=1,N X d,(k) ti
]. On each D l , l = (i 1 , .., i d), ψ l is a linear function with 1 + d degrees of freedom. This approximation is "non-conform" in the sense that we do not assure the continuity of the approximation. However, it has the advantage to be able to fit any, even discontinuous, function.

The number of degrees of freedom is equal to M M * (1 + d). In order to avoid oscillations, the support are choosen so that they contain roughly the same number of particules.

On Figure 2, we plot the solution of the previous regression problem (Fig. 1) obtained for a number of basis functions chosen so as to have the same number of degrees of freedom as when using polynomials.

Clearly, the method behaves much better than when the basis is made of monomials. Moreover, the normal equation is sparsed when using such local functions, and far better conditioned, leading to the possibility to use the Choleski method, which, as claimed above, is the most efficient for solving the regression problem. At the opposite, basis with global support, like polynomials, typically require the use of QR or SVD factorization, because the global resolution typically fails when a lot of particules are used.

Fig. 2. Regression with local function

Note that, in order to ensure that each hypercube approximately contains the same number of particules, it is necessary to "localize" them in order to appropriately define the support of the local functions. In dimension one, this can be achieved by using a quicksort procedure whose complexity is of order of O(N ln(N)). In dimension d, two methods are available : (i) Realize a quicksort in each direction and derive the support of the basis function so that each contains approximatively the same number of particules. This option is particularly efficient when the particules have rather independant coordinates. The operation is realized in O(N ln(N)). (ii) Use a Kd tree, see e.g. [START_REF] Preparata | Computational geometry (an introduction)[END_REF] and [START_REF] Berg | Computational geometry[END_REF], with depth d so that each node of depth i has I i+1 sons. Use a quicksort at each node of depth i to sort the particules following the coordinate i + 1, and use this sort to define the I i+1 sons. The complexity remains in O(N ln(N)).

Although the complexity of the two technics is the same, the first one uses only d quicksorts, while the second one uses 1 + l=2,d j<l I j calls to quicksort and is far more expensive.

On Figure 3, we have plotted an example of supports in the case of 16 = 4 × 4 local basis functions, in dimension 2.

Importantly, this approach allows to increase the number of basis functions without any instability in the resolution of the regression problem. The construction of the normal matrix A ′ A has a complexity of order O(N M) when storing only non zero elements, the resolution time is negligible (linear with M because of the sparsity of the matrix), and the reconstruction procedure is in O(N). The complexity of the global resolution is therefore of order of O(N (M + 1) + N ln(N)).

The alternative representation for conditional expectations

The idea of using Malliavin calculation to provide efficient estimators of conditional expectations first appeared in [START_REF] Fournier | Applications of Malliavin calculus to Monte Carlo methods in finance II[END_REF], and was then further used in [START_REF] Lions | Calcul du prix et des sensibilités d'une option américaine par une méthode de Monte Carlo[END_REF] and [START_REF] Bouchard | On the Malliavin approach to Monte Carlo approximation of conditional expectations[END_REF] to price American options. Given a measurable map f , the main idea consists in writing r(t i , x) :

= E f (X ti+1) | X ti = x as r(t i , x) = E δ x (X ti)f (X ti+1) E [δ x (X ti)] (20)
where δ x denotes the Dirac mass at x. Then, under suitable regularity and uniform ellipticity conditions on σ, a formal integration by parts in the Malliavin calculus sense allows to rewrite r(t i , x) as

r(t i , x) = E f (X ti+1)H x (X ti)δ ti+1 E H x (X ti)δ ti+1 (21)
where H x denotes the Heaviside function, H x (y) = 1 if y i > x i for all i ≤ d and H x (y) = 0 otherwise, and δ ti+1 is a Skorohod integral which depends only on the path of X on [0, t i+1], see [START_REF] Bouchard | On the Malliavin approach to Monte Carlo approximation of conditional expectations[END_REF] for details.

In the context of Algorithm A2 of Section 3.1, the numerical procedure reads as follows:

Algorithm A2 with Malliavin [price process computation]: 1. Initialisation: Set P 2,π,(j)

T := g(T, X (j)
T), j ≤ N . 2. Backward induction: For i = κ -1 to 0, set P 2,π,(j)

ti := max{g(t i , X (j) ti) , ÊN [P 2,π ti+1 | X ti = X (j)
ti]}, 3. Price estimator at 0:

P 2,π, (1) 0
, where the estimation

F N (t i , X (j) ti) := ÊN [P 2,π ti+1 | X ti = X (j) ti]
of the true conditional expectation

F (t i , X (j) ti) := E[P 2,π ti+1 | X ti = X (j) ti]
is computed by considering the Monte-Carlo counterparts of the numerator and denominator in [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], i.e.

F N (t i , x) := N j=1 H x (X (j) ti) P 2,π,(j) ti+1 δ (j) ti+1 N j=1 H x (X (j) ti)δ (j) ti+1 (22)
where δ (j) ti+1 is the Skorohod integral associated to the path X (j) , and where we use the convention 0/0 = 0. One can similarly combine this approach with Algorithm A1, by using the approximation

E[g(τ ti+1 , X τt i+1) | X ti = X (j) ti] ∼ N j=1 H x (X (j) ti)g(τ (j) ti+1 , X (j) τt i+1)δ (j) ti+1 N j=1 H x (X (j) ti)δ (j) ti+1 (23)
Here again, we shall not discuss the theoretical convergence of the method, we refer to [START_REF] Bouchard | On the Malliavin approach to Monte Carlo approximation of conditional expectations[END_REF] for rigorous statements, but rather describe how this method should be implemented in practice so as to be efficient.

General comments

First, it can be shown that the variance of the Skohorod integral δ ti+1 is of order of (min{t i , t i+1 -t i }) -d , see [START_REF] Lions | Calcul du prix et des sensibilités d'une option américaine par une méthode de Monte Carlo[END_REF] below as an example. As will be explained below in the Gaussian case, it can be partially compensated by incorporating a localization function. Still, this method will in general perform rather badly when the length of the time interval between two dates of possible exercise in small. In particular, if we are interested by the approximation of American option prices by their Bermudean counterparts, then a large number of simulations will be required in order to compensate for the explosion of the variance of the estimator as the time step goes to 0.

Second, we should note that the term E H x (X ti)δ ti+1 in (21) is just the density of X ti at x. If it is known, it can be used directly instead of being estimated. In practice, it turns out that that the fact that both the numerator and the denominator in [START_REF] Jaja | Space Efficient and Fast Algorithms for Multidimensional Dominance Reporting and Counting[END_REF] are influenced by the δ (j) ti+1 's leads to numerical compensations which seem to stabilize the algorithm.

In most applications, natural upper and lower bounds are known for the true price process P π is terms of deterministic functions of X. They can be used to truncate the numerical results obtained at each step of the algorithm, in order to stabilize it.

The computation of the Skorohod integrals involved in the above estimators is rather tricky in general, even when X is replaced by its Euler scheme. This is due to the (possible) dependence of the different components of X with respect to the different components of the Brownian motion. However, if up to a suitable transformation and possibly a deterministic time change, we can reduce to the case where X = W , then things simplify significantly, as will be shown in the next section.

Simplifications in the Gaussian case

In the case where we can reduce to W = X, for instance in the Black-Scholes model, the Skorohod integrals entering in the representation (21) can be taken in the form

δ ti+1 = k≤d W k i t i - W k i+1 -W k i t i+1 -t i (24)
In order to reduce the variance of the estimator, we can also incorporate a localization function as explained in [START_REF] Bouchard | On the Malliavin approach to Monte Carlo approximation of conditional expectations[END_REF]. Given a smooth bounded function ϕ on R + such that ϕ(0) = 1, r(t i , x) can also be written with δ ti+1 (x) in place of δ ti+1 in [START_REF] Graf | Foundations of quantization for probability distributions[END_REF], where

δ ti+1 (x) := k≤d ϕ(W k ti -x k) W k ti t i - W k ti+1 -W k ti t i+1 -t i -ϕ ′ (W k ti -x k)
In such a class of functions, it was shown in [START_REF] Bouchard | On the Malliavin approach to Monte Carlo approximation of conditional expectations[END_REF] that the one that minimizes the integrated variance of the numerator and the denominator is of exponential type, ϕ(y) = exp(-ηy) with η > 0. The parameter η should be theorically of order of 1/ min{t i , t i+1 -t i }.

Note that the numerator in (21) could be simplified by using δti+1 (x) instead of δ ti+1 (x), where

δti+1 (x) := k≤d ϕ(W k ti -x k) W k ti t i -ϕ ′ (W k ti -x k)
because the increments of the Brownian motion are independent. However, we have noticed from our tests that it is better to use the same integration weigths at the numerator and denominator so as to play with possible numerical compensations.

Improved numerical methods

A crude application of the algorithm described in Section 4.2.1 leads, at each time step, to the computation of N sums composed of N terms each. This leads to a complexity of order N 2 , which makes this procedure completely inefficient in practice.

However, it should be noted that the above calculation problem for the numerator and the denominator of our estimator can be reduced to the following one: Given N point y 1 , . . . , y N in R d , and N real numbers

f 1 , . . . , f N , Compute q i := j≤N H yi (y j)f j , for each i ≤ N . (25
)
It is clear that both terms in [START_REF] Jaja | Space Efficient and Fast Algorithms for Multidimensional Dominance Reporting and Counting[END_REF] are of this form with y j = X (j) ti and f j = P 2,π,(j)

ti+1 δ (j) ti+1 or f j = δ (j)
ti+1 . Even, if δ ti+1 is replaced by δ ti+1 (•) this remains the case, whenever δ ti+1 (•) is defined with respect to an exponential localizing function:

δ ti+1 (x) = k≤d e -η(W k t i -x k) W k ti t i - W k ti+1 -W k ti t i+1 -t i + ηe -η(W k t i -x k) =   k≤d e ηx k   k≤d e -ηW k t i W k ti t i - W k ti+1 -W k ti t i+1 -t i + η ,
where the only terms which depends on x, k≤d e ηx k , can be added at the end of the procedure. Note that, when the same weights are used for the numerator and the denominator, these terms actually compensate.

We now discuss how Problem (25) can be solved efficiently.

The one dimensional case. In the one dimensional case, the main idea is to reduce to the situation where y 1 > y 2 > . . . > y N , assuming that none of them are equal for simplicity. Indeed, in this case, the q i 's can be computed in N steps by induction: q 1 = 0, q i+1 = q i + f i for i = 1, . . . , N -1. In order to reduce to the case where the y i 's are sorted, it suffices to use a quicksort algorithm whose complexity is of order of N ln(N). Hence, the complexity of Problem [START_REF] Longstaff | Valuing American options by simulation: A simple least-squares[END_REF] is O(N ln N) and not O(N 2).

The two dimensional case. In dimension two, it is no more possible to sort the datas. However, Problem (25) is related to the well-documented "dominance reporting problem", which was solved efficiently in dimension two by [START_REF] Bentley | Divide-and-Conquer in multidimensional space[END_REF] with the classical divide and conquer algorithm. The algorithm is based on the construction of two dimensional K-d tree that stores the points, see [START_REF] Berg | Computational geometry[END_REF]. Its construction is achieved in O(N ln N), and a query for reporting dominance over one point can be achieved in O(√ N), see [START_REF] Preparata | Computational geometry (an introduction)[END_REF] and [START_REF] Berg | Computational geometry[END_REF]. The global dominance reporting problem for a set of N points can thus be solved in O(N √ N). We modify this algorithm in the sequel such that our problem can be solved O(N ln N).

To show how the algorithm works, imagine for example that N = 8 as on figure 4. After a sort according to the first coordinate, we split the points into two groups with the same cardinality : points 6,2,5 and 4 define the first set, 3,1,8,7 the second set. All points of the first set can be dominated1 by all points of set two but no point of the second set is dominated by a point of set one.

We then compare the points from the second set with the points of the first set according to the second coordinate, while keeping the partial summation, say psum. The algorithm is initialized with psum = 0. Then, point 7 has the highest second coordinate of set 2 and dominates all points of set 1: add f 7 to psum.

The second one, point 1 dominates all points of set one: add f 1 to psum. The third one, point 8, does not dominate points 2 and 4 of set one : add psum to q 2 and q 4 , then add f 8 to psum. The last point, point 3, does not dominate any point of set one: add psum to q 5 and q 6 . We have achieved the last point of set 1, we thus stop the algorithm. Graphically, the algorithm can be understood as follows. Draw a horizontal line crossing the vertical axis at the level of the highest second coordinate of the two sets, then lower down this line. Each time the line crosses a point x j of set 2, add the corresponding f j value to psum, each time the line crosses a point x k of set 1, add psum to the corresponding q k . In a second step, we split the first set into two sets (set 3 and 4) and the second set into two sets (set 5 and 6), see figure 5. We apply the same procedure as before on these new pair of sets. For example for set one, we first set psum = 0. Then, the point of set 4 with the highest second coordinate is number 4 and it does not dominate point 2 of the set 3 : add f 4 to psum. The second one, point 5, does the same : add f 5 to psum. Then add psum to q 6 which has the lowest second coordinate.

Algorithm 1 Merge algorithm M erge1D(Y, f, isort1, isort2, nbp1, nbp2) sp = 0, ip = nbp2 for i = nbp1 to 1 do ipoint2 = isort2(ip) ipoint1 = isort1(i) while Y (ipoint2) >= Y (ipoint1) do sp = sp + f (ipoint2) ip = ip -1 if ip = 0 then Break end if ipoint2 = isort2(ip) end while q(ipoint1) = sp if ip = 0 then for j = 1 to i -1 do ipoint1 = isort1(j) q(ipoint1) = sp end for Break end if end for return q
report geomatrically which point dominates another.This implies that it is possible to reduce drastically the number of operations by using a similar structure as k-D trees.

It turns out that the generalisation of the previous algorithm is indeed rather straightforward. We use the same divide and conquer algoritm in the first dimension. This reduces the problem to merging the points in dimension d -1. Using once again a binary tree in a new merge function, we are then able to compare the two sets of points generated by the Divide and Conquer algorithm. To do this, we use recursively the merge algorithm with a divide and conquer approach in order to decrease the dimension of the final merge to dimension one. The idea of dominance merge is described page 367 of [START_REF] Bentley | Divide-and-Conquer in multidimensional space[END_REF]. For example in dimension three, the main divide and conquer, see Algorithm 3, is identical to the two dimensional algorithm. The only difference is that it asks for a merge in dimension 2.

Divide and conquer algorithm Divide3D: We are given one set of points (x j) j≤nbp . X, Y and Z are the arrays corresponding to the first, the second and the third coordinates, X(j) := x 1 j , Y (j) := x 2 j and Z(j) := x 3 j . The arrays isortX, isortY and isortZ are tables of indexes so that (X(isortX(j)) j≤nbp , (Y (isortY (j)) j≤nbp and (Z(isortZ(j)) j≤nbp are sorted increasingly. The input of this function is the range of indexes corresponding to the set of points to be sorted. The result is a table of indexes. The output of the global algorithm is the array q, q(j) = q j . The merge in dimension 2 is given by Algorithm 4. It is a recursive algorithm that calls the Merge1D, Algorithm 1. Two sets A and B in dimension 2 with associated second and third coordinates are used as input. Due to the divide and conquer part, we know that potentially each point in B dominates the points in A, because they have bigger first coordinates. A split is achieved on A∪B according to the second coordinate leading to four subsets A 1 , A 2 , and B 1 , B 2 , see figure 6. Then a call to the Merge2D function is achieved on A 1 and B 1 and on A 2 and B 2 . All point of B 2 dominate the points of A 1 according to the second coordinate. It only remains to check in the third direction, which is performed by a Merge1D on B 2 and A 1 according

ipoint = isortY (i) if X(ipoint) <= xmed) and (iy1 < imed) then isortY 1 (iy1) = ipoint iy1 = iy1 + 1 else isortY 2 (iy2) = ipoint iy2 = iy2 + 1 end if
end for// sort datas according to the second coordinate in each subset Divide2D(X, Y, f, isortX 1 , isortY 1 , imed) Divide2D(X, Y, f, isortX 2 , isortY 2 , imedp) // recursive call to Divide2D on each subset qloc = M erge1D(Y, f, isortY 1 , isortY 2 , imed, imedp) // call of M erge1D on the two subsets for i = 1 to imedp do ipoint1 = isortX 1 (i) q(ipoint1) = q(ipoint1) + qloc(ipoint1) end for// update of q In table 1, we apply the algorithm and compute the time spent for different dimensions and different numbers of particules. In dimension 1 and 2, we effectively observe that the complexity is the same and that the time spent divided by N ln(N) is constant. For dimension 4, it appears numerically that the time spent is between O(N ln(N) 2) and O(N ln(N) 3). For dimension 9, we observe that the time spent is in O(N (ln N) 6). Our numerical results thus show a complexity slightly better than the theorical one.

Numerical experiments

In this part, we produce some numerical tests for the pricing of American options associated to different payoffs.

Model and payoffs

We now set the interest rate to r = 5% annually. This means that we have to add a drift term in [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF] and take discounting into account in all our algorithms.

All the assets are non correlated and follow a Black and Scholes type dynamics with annual volatility σ = 20%, and initial value equal to 1:

X i t = 1 + t 0 rX i s ds + t 0 σX i s dW i s , i ≤ d .
We consider three different Bermudean options with maturity one year and 11 equally distributed possible exercise dates:

Option 1: a geometrical put option with strike K = 1 and payoff (K -d i=1 X i t) + , Option 2: a geometrical digital put option with strike K = 0.9 and payoff 1 K> d i=1 X i t , Option 3: a basket put option with strike K = 1 and payoff (K -

1 d d i=1 X i t) + . 20
Note that the two first payoffs involve the process d i=1 X i which can be identified to a one-dimensional non standard exponential Brownian motion. This implies that the pricing of both Bermudean options reduces to a one dimensional optimal stopping problem which can be efficiently solved by PDE technics. This will serve as a benchmark. Obviously, we do not use this trick when applying our algorithms.

In the figures below, estimated prices and deltas for Options 1 and 2 are normalized by their true value computed by PDE technics. Since no easily accessible benchmark are available for Option 3, results will be presented in absolute values.

Numerical results on prices

In the different tests, we compare: 1. Algorithm A1 and Algorithm A2 for the regression based approach of Sections 4.1.1 and 4.1.4 with a number of meshes equal to 8 d , 2. Algorithm A1 and Algorithm A2 for the Malliavin based approach, recall (22)- [START_REF] Kohatsu-Higa | Variance reduction methods for simulation of densities on Wiener space[END_REF]. We use an exponential parameter η = 1/ √ ∆t in the localization function, with ∆t = 1/10. 3. We also compare our results with the quantization method, see [START_REF] Bardou | Optimal quantization for the pricing of swing options[END_REF], [START_REF] Bally | Error analysis of the quantization algorithm for obstacle problems[END_REF], [START_REF] Pagès | Optimal quadratic quantization for numerics: the Gaussian case[END_REF], [START_REF] Bally | Printems : A quantization method for pricing and hedging multi-dimensional American style options[END_REF], [START_REF] Pagès | Functional quantization for numerics with an application to option pricing[END_REF]. The quantization method is a recombining tree method where the nodes are optimally calculated, see [START_REF] Pagès | Optimal quadratic quantization for numerics: the Gaussian case[END_REF]. Once a time discretization has been fixed, a number of quantization points at each time step is chosen according to [START_REF] Bally | Printems : A quantization method for pricing and hedging multi-dimensional American style options[END_REF]. The quantization points are calculated off line and are available on the website http://www.quantize.mathsfi.com. Once the quantization points have been chosen a Monte Carlo approach is used to calculated the transition probabilities linking nodes in the tree. This technic being time consuming, we use the Principal Axis Tree method, see [START_REF] Mcnames | A Fast Nearest-Neighbor Algorithm Based on a Principal Axis Search Tree[END_REF], to accelerate the computations. The number of Monte Carlo simulations used to calculate the probabilities is fixed to 4 millions. Results does not change with more than 10 millions.

For each option, dimension and number of simulated paths, we apply the different algorithms with the same set of particules. For all the methods, no special knowlegde on the payoff has been used: no control variate (which could be used for each method and is very efficient in practice), no special guess of the regression function.

For Option 1, results are given on figure 7 for d = 1 to 6 for the Malliavin and Regression based approaches depending on the ln of the number N of particules used. We do not provide the results obtained with the Malliavin approach for large values of N because it is too time consuming. For instance, in dimension 6, the last option price calculated with 2 millions particules takes more than two hours to be calculated. It is clearly a limitation to this approach. Recall however that no (even natural) control variate technic has been used here. We observe that Algorithm A2 generally provides results above the exact value of the option while the results obtained with Algorithm A1 are slightly below the analytic value as expected, see Section 3.1. The Malliavin approach gives very good results for dimension 1 to 3. The regression based method seems to exhibit a very small bias which is due to the fact that the number of basis function is limited. From dimension 4, the convergence is becoming slow and the time needed becomes prohibitive, especially for the Malliavin based approach.

In table 8, we give the time spent for the different calculation with different dimensions. 2We observe that the cost of the regression approach is linear with respect to the number of particules (instead of the expected N ln(N) due to the sort algorithm).

If we compare the two methods for Option 1 and Algorithm A1 (the most accurate), we can conclude that for a given level of accuracy: -the Malliavin approach is more attractive in dimension 1 (similar cost but more accurate).

-the Malliavin approach seems to be more attractive in dimension 2 too. For example, with 32.000 particules and a cost of 0.45 secondes, the Malliavin approach provides the same accuracy as the regression approach with 258.000 particules and a cost of 1.8 secondes (the relative error is of order of 0.2%). -the regression approach seems to become more attractive for dimensions greater or equal to 3. For instance, in dimension 3, with 2 millions particules and a cost of 41 secondes, it provides the same accuracy as the Malliavin approach with 500.000 particules and a cost of 70 secondes (the relative error is of order of 0.2%).

On figure 9, we provide the results obtained with the quantization approach for Option 1 depending on the number of global quantization points. We use two different approaches: -The backward approach: it consists in applying Algorithm A2 to the quantized process.

-The forward approach: we first apply the backward Algorithm A1 to the quantized process so as to compute an estimation Ĉπ of the continuation region C π := {(t, x) ∈ π × (0, ∞) d : p π (t, x) > g(t, x)}, where p π (t, x) is the price of the Bermudean option at time t if the stock price is x. We then simulate forward N paths, (X (j)) j≤N , of the stock price process X and approximate the Bermudean option price by N -1 j≤N g(τ

(j) 0 , X (j) τ (j) 0
) where τ (j) 0 := min{t ∈ π : (t, X

t) / ∈ Ĉπ }. We use 4 millions particules.

In dimension 1, the quantization method requires 1.600 points3 for an accuracy of 0.2%. Once probabilities have been calculated, the backward and the forward resolutions are achieved in 0.02 seconds. An equivalent accuracy can be obtained with the regression approach in 0.350 seconds. It takes 0.050 seconds with the Malliavin approach. Obviously this does not take into account the time spend to compute the transition probabilities, nor the construction of the quantization tree.

In dimension 2, we could only obtain an error of 0.8% with a total of 6.400 quantization points and a quantization of the last time step of 815 points. With 25.600 points, the maximum accuracy was 2% in dimension 3, 8% in dimension 4, 15% in dimension 5, and 22% in dimension 6, when only using Algorithm A2. Algorithm A1 combined with a forward Monte-Carlo simulation provides better results. Overall, the method is converging and is certainly the less time consuming once a grid and the associated transition probabilities have been computed. However, the grids proposed on the website http://www.quantize.mathsfi.com are not thin enough to provide accurate results.

On figures 10 and 11, we give our results for the digital put. All the methods have difficulties to converge. Algorithm A1 always gives better results than Algorithm A2. For dimensions equal or greater to 4, only the regression method provides good results. In dimension 3, for a given number of particules, the results obtained by the Malliavin and the regression approach are similar for Algorithm A1. Because of the difference in computation time, the regression approach is more appropriate. In dimension 2, the Malliavin approach combined with Algorithm A1 seems to be more attractive but it is not clear in dimension 1.

In dimension 1, the quantization approach only achieves an accuracy of 1.2% for the finest meshes while the regression and Malliavin approaches achieves a 0.3% error. In dimensions 2 and 3, it provides good results but the accuracy of the two other approaches is much better. Results in dimension greater than 4 shows that far more quantization points are needed.

On figures 12 and 13, we provide the results obtained for the Bermudean basket put option. It confirms

Fig. 1 .

 1 Fig. 1. Regression with global function

Fig. 3 .

 3 Fig. 3. Support of 2D function basis

Fig. 4 .

 4 Fig. 4. First step to calculate g

Algorithm 2

 2 Divide and conquer algorithm Divide2D(X, Y, f, isortX, isortY, nbp) imed = nbp/2 imedp = nbp -imed xmed = (X(isortX(imed)) + X(isortX(imed + 1)))/2 // compute the median point which deliminates set 1 (first coordinate lower than xmed) and set 2 (first coordinate bigger than xmed) isortX 1 = isortX(1 : imed) // sort datas according to the first coordinate in set 1 isortX 2 = isortX(imed + 1 : nbp) // sort datas according to the first coordinate in set 2 iy1 = 0 iy2 = 0 for i = 1 to nbp do

Fig. 6 .

 6 Fig. 6. 2D merge for two subsets A and B to the third coordinate. The cost c(N) of the merge with N points can be decomposed in: -some operation with linear cost in N , -two merges in dimension 2 with N/2 points, -one merge in dimension one with N/2 points realized in O(N /2). Hence, c satisfies c(N) = 2c(N/2) + O(N), which leads to a global cost c(N) = O(N ln N).The divide and conquer algorithm with cost D(N) achieves : -two divide an conquer with N/2 points,

 The same procedure can be used in dimension d ≥ 3. The call of the merge function in dimension d at a father node with N/2 p particules leads to -some work with linear cost O(N/2 p), -two calls of the merge at the son node with N/2 p+1 particules, in dimension d, -a call of the merge fonction with N/2 p+1 particules in dimension d -1. So the complexity of the merge function c d can be calculated recursively. A merge for N particles in 3D satisfies c 3 (N) = 2c 2 (N/2) + O(N/2 ln(N/2)) which leads to a complexity c 3 (N) = O(N (ln N) 2). Similarly a merge in dimension d, d > 2, will lead to c d (N) = O(N (ln N) d-1). So the divide and conquer algorithm with cost D d (N), d > 2, achieves : -two divide and conquer with N/2 points with cost 2D d (N/2), -one merge in dimension d -1 with N points and a cost in O(N (ln N) d-2), -some extra work with linear cost O(N). Hence, we have D(N) = 2D(N/2) + O(N (ln N) d-2) leading to a global cost of D(N) = O(N (ln N) d-1) .

Fig. 7 .

 7 Fig. 7. Comparison between the regression and the Malliavin based methods for the Bermudean geometric put option

Fig. 8 .Fig. 9 .Fig. 10 .Fig. 11 . 29 (Fig. 12 .Fig. 13 .Fig. 14 . 32 (Fig. 15 .

 891011291213143215 Fig. 8. Time spent for calculation of the Malliavin and Regression based approaches for different numbers of particules

 thousands of particules 8 256 256 1024 256 2000 250 2000 500 2000 1000 2000 ln number of particules 8.98 12.45 12.45 13.84 12.45 14.50 12.42 14.50 13.12 14.50 13.81 14.50 Regression 0.025 0.80 0.38 6.6 2.45 20.8 3.3 28. 10. 39.2 36. 65.

	Malliavin	0.020 0.95 1.03 23.5 31. 360. 256. 2782 694 4010 3650. 9080.

Hereafter, we say that a point x j dominates a point x k if x i j > x i k for all i ≤ d.

For all the computations, we use a core i7 2,9 GHz processor.

Here and below, the number of points corresponds to the sum of the numbers of points used at each time step. There are distributed according to[START_REF] Bally | Printems : A quantization method for pricing and hedging multi-dimensional American style options[END_REF]

We iterate the procedure until each subset contains only one point. Below, we provide the algorithm for the dimension 2. It is composed of two functions : -a one dimensional merge function given by algorithm 1, -a recursive Divide and Conquer function given by algorithm 2.

Merge algorithm M erge1D: We are given two sets. The first set has dimension nbp1, and the second has dimension nbp2. We are also given sorting tables of indexes isort1 and isort2 so that (x isort1(j)) j≤nbp1 (resp. (x isort2(j)) j≤nbp2) corresponds to the sequence of points of set 1 (resp. set 2) sorted increasingly with respect to the second coordinate. The array Y in the algorithm below corresponds to the second coordinate of the points (x j) j≤N , i.e. Y (j) := x 2 j . The other input is the array f of the values (f j) j≤N , f (j) := f j . The output are the updated values of q, q(j) = q j , for the values of the index j corresponding to set 1. Divide and conquer algorithm Divide2D: We are given one set of points (x j) j≤nbp . X and Y are the arrays corresponding to the first and second coordinates, X(j) := x 1 j and Y (j) := x 2 j . The arrays isortX and isortY are tables of indexes so that (X(isortX(j)) j≤nbp and (Y (isortY (j)) j≤nbp are sorted increasingly. The input of this function is the range of indexes corresponding to the set of points to be sorted. The result is a table of indexes. The output of the global algorithm is the array q, q(j) = q j . The divide and conquer leads implicitly to the construction of a binary tree of depth O(ln(N)/ ln(2)). At each father node at depth p of this tree corresponds a subtree which contains N/2 p points. The cost of the Divide and Conquer function is linear, and we merge the points corresponding to the son nodes with a linear cost (as seen in the Merge algorithm). At depth p, we have 2 p father nodes, so the cost of merging all subtrees and spent in the Divide and Conquer function at depth p is O(N) = 2 p O(N/2 p). Since the length of the tree is O(ln(N)/ ln(2)), the global cost of the algorithm O(N ln(N)). This is the cost of the calculation of the conditional expectation in dimension 2.

Greater dimensions. In [START_REF] Makris | Algorithms for three dimensional domiannce searching in linear space[END_REF] some specific algoritm based on binary trees has been developped for the 3D problem. The query time is said to be equal to O(ln N + k) where k is the number of point to report. Recently in [START_REF] Jaja | Space Efficient and Fast Algorithms for Multidimensional Dominance Reporting and Counting[END_REF], an algorithm generalizing the previous approach and using a fusion tree of a certain degree, instead of a binary tree, was proved to solve one query search in O(ln N/ ln ln N + k). All the geometric algorithm suffers the same flaw: for our problem the number of points dominating another is on average N 2 d so the global answer remains in O(N 2). The key point in the calculation of q is to try to keep information about the partial summation in order to Algorithm 3 Divide and conquer algorithm Divide3D(X, Y, Z, f, isortX, isortY, isortZ, nbp) For N points, the algorithm has a complexity of order N (ln N) 2 . our previous observations.

Numerical results on hedging policies

In figures 14 and 15, we provide the results obtained by combining the regression and the Malliavin approach with the representations (8) and [START_REF] Broadie | Estimating security price derivatives using simulation[END_REF] for the Bermudean geometric put option. We provide the results obtained by using the representation [START_REF] Broadie | Estimating security price derivatives using simulation[END_REF] for the digital option. We only provide the results for prices computed with Algorithm A1, Algorithm A2 being less accurate.

In the figures, we use the following terminology: -Regression algorithm A1 means that prices are computed by using algorithm A1 and the regression based technic.

-Malliavin algorithm A1 means that prices are computed by using algorithm A1 and the Malliavin based representation of conditional expectations.

-equation (8), resp. [START_REF] Broadie | Estimating security price derivatives using simulation[END_REF], means that we then use the representation of the delta given in (8), resp. [START_REF] Broadie | Estimating security price derivatives using simulation[END_REF].

Note that the problem is symmetric in the different components, so that only one figure is provided. For more clarity, we normalize our result by dividing the estimation by the true value computed by analytical methods.

Both representations seem to provide equally good results.