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A Watermarking-Based Method for Informed
Source Separation of Audio Signals

with a Single Sensor
Mathieu Parvaix,Student Member, IEEE, Laurent Girin, and Jean-Marc Brossier

Abstract—In this paper, the issue of audio source separation
from a single channel is addressed,i.e. the estimation of several
source signals from a single observation of their mixture. This
challenging problem is tackled with a specific two levels coder-
decoder configuration. At the coder, source signals are assumed
to be available before the mix is processed. Each source signal
is characterized by a set of parameters that provide additional
information useful for separation. We propose an original method
using a watermarking technique to imperceptibly embed this
information about the source signals into the mix signal. Atthe
decoder, the watermark is extracted from the mix signal to enable
an end-user who has no access to the original sources to separate
these signals from their mixture. Hence, we call this separation
process Informed Source Separation (ISS). Thereby, several
instruments or voice signals can be segregated from a single
piece of music to enable post-mixing processing such as volume
control, echo addition, spatialization, or timbre transformation.
Good performances are obtained for the separation of up to
four source signals, from mixtures of speech or music signals.
Promising results open up new perspectives in both under-
determined source separation and audio watermarking domains.

Index Terms—under-determined source separation, water-
marking, audio processing, speech processing.

I. I NTRODUCTION

DURING the past twenty years, source separation has
become one of the most challenging problems in signal

processing. It can be stated as follows: source separation aims
at estimatingI unknown source signals,si[n], i ∈ [1, I], from
J observations of their mixturesxj [n], j ∈ [1, J ]. Blind source
separation (BSS) [1] [2], where very little knowledge about
the sources and the mixture configuration is available, has
been intensively studied since the early 90’s. The generality of
the blind approach makes BSS techniques relevant for many
application areas such as medical engineering [3] [4], commu-
nications [5], or antenna processing [6]. The (over)determined
case, i.e. when J ≥ I, is generally processed using the
assumption of mutual independence of sources.

The under-determined (or degenerate) case, where fewer
observations than sources are available, is of particular interest
in audio processing since, in the typical mono or stereo
configuration, many instruments and voices are to be separated
from only two channels. To achieve source separation when
J < I, many relevant techniques are based on the use of sparse
representations of signals [7] [8] [9] [10] [11]. The basic idea
is that in each localized region of the time-frequency (TF)
plane, one single source is supposed to be more active than
the other sources. Therefore, most methods are based on the

transformation of the mixture signals in the TF domain where
the separation is processed. Short-time Fourier transformwere
used in [11] before estimating the mixing matrix in the sparse
transformed domain using a potential-function-based method.
The separation method for non-stationnary signals introduced
in [12] is based on TF distribution with the assumption that
source signals are disjoint in the TF domain. Specific pointsof
the TF plane corresponding to a single source are isolated and
used to estimate the TF distribution of this source, from which
sources waveforms are reconstructed. The DUET (Degenerate
Unmixing Estimation Technique) BSS method was proposed
in [7] to separate a large number of speech sources using
a 2-channel mixture. The disjointness of source signals in
the TF plane enables to determine the mixing parameters,
and then to perform a relevant masking of the mixture’s
decomposition in the TF domain to estimate the source signals.
This technique is assumed to be adapted to speech signals,
particularly sparse in the TF domain. Another sparsity-based
approach is introduced in [8] which addresses the problem
of BSS of convolutive speech mixtures with a two-stage
process. Hierarchical clustering is first used to estimate the
mixing system, before sources are estimated under L1-norm
minimization constraints. In [9], a Bayesian method was used
to model the source signals using a sparse linear combination
of Modified Discrete Cosine Transform (MDCT) atoms and
a Markov hierarchical modeling to recreate the harmonic
structure of sound signals. Note that, the under-determined
case is also processed using the Computational Audio Scene
Analysis (CASA) approach (see, e.g., [13] for an overview).

In the present study, we focus on audio source separation of
linear instantaneous mixtures in a very specific configuration:
in addition to the (single channel) observation of the (linear)
mixture signal at the separation level (so-called here the
decoder), source signals are assumed to be available at the
mixing level (so-called here the encoder). This is quite an
original and, at first sight, surprising configuration in the
source separation framework, but not unnatural, since in some
key audio applications, mixing and demixing can be processed
separately by cooperative users. For instance, we address the
audio-CD configuration: in a recording studio, the different
tracks (corresponding to the different instruments and singing
voice(s)) are recorded separately, and are then mixed in a very
controlled way. At home, an end-user only has the mix signal
available on a CD (actually, two stereo channels are available
but the exploitation of stereo is not considered in the present
paper). The objective is there to enable the separation of the



SUBMITTED TO IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING. 2

different elements of the audio scene, so that they can be
manipulated separately: for example, the volume, the color
and the spatialization of an instrument can be modified. This
is an old dream of music lovers, that can be referred to as
active listening.

In this paper, we propose a first approach to address this
original problem at both coder and decoder levels. This method
is based on the original combination of source separation
with another major domain of signal processing, namely
watermarking. Audio watermarking consists of embedding
extra information within a signal in an inaudible manner. It
is mainly dedicated to Digital Right Management (DRM).
For instance, data identifying the designer or the owner of
a digital media can be embedded by watermarking [14].
Extracting the watermark enables to prove the authenticity
of the media. Since malicious users may try to remove or
modify the watermark to appropriate the media, the embedding
process is specifically designed to be robust against attacks
such as compression, scaling or filtering [15] [16]. More
recently, another type of watermarking emerged, using a signal
as a channel for data transmission [17]. Properties of the host
signal, known at the transmitter, can be used to increase the
performances of the watermark detection at the decoder: the
watermark is fitted to the host signal to optimize the data
transmission rate while remaining inaudible. New applications
of watermarking for data transmission have appeared, such as
audio signal indexation [18], improvement of transmissionsys-
tems [19] or document identification for broadcast monitoring
[20]. Constraints on robustness and embedding capacity of the
watermark are here different from DRM watermarking.

In the present study, we are closer to watermaking for data
transmission than to watermarking for media protection. We
take advantage of the knowledge of source signals at the
encoder to extract a set of descriptors from these signals (see
Fig. 1). These descriptors consist in parameters that describe
the structure of the source signals, or their contribution to the
mixture. This information is embedded into the mix signal
using a high-capacity watermarking process. This technique
exploits the defaults of the human hearing system to insert
the information into TF coefficients of the mix signal. At
the decoder, the source descriptors are extracted from the
mix signal, and then used for the separation process. Since
the method exploits the knowledge of unmixed signals, the
corresponding framework can be labeled as "informed source
separation" (ISS), as opposed to BSS.

This paper is organized as follows. Section II is a general
overview of the method. In Section III a deepened description
of the technical implementation is given, for each functional
block of the system. Results of speech and music signals
separation are given in Section 3. Finally, some perspectives
are presented in Section 4.

II. GENERAL OVERVIEW OF THE SYSTEM

As already mentioned in the introduction and seen on Fig. 1,
the general principle of the proposed ISS method is based on
two main structures, a coder and a decoder. A more detailed
functional schema is given on Fig. 2. In this section, a general

overview of the entire system is given before presenting each
functional block in details in the next section.

At the coder, the source signalssi [n] , i ∈ [1, I] are assumed
to be available, in addition to the mix signalx [n]. Therefore,
characteristic parameters can be extracted from each source
signal si [n] and coded (block 4). These parameters are re-
ferred to asdescriptors (as introduced in Section I), and they
will be accurately defined in Section III-D. These descriptors
are then embedded into the mix signal (block 5), using a "high-
capacity" quantization-based watermarking technique (Section
III-C). At the decoder, only the (watermarked) mix signal
xW [n] is available. The descriptors are extracted fromxW [n]
using quantization again and decoding (blocks 11 and 12),
before being used to separate each source signal from the
mix signal (block 13). This is the heart of the process that
will be described in details in Section III. Since the source
signals generally strongly overlap in the time domain (TD),
the separation process has to take place in a much sparser
domain, i.e. a domain where each source is described by
a sparse representation, that enables much less inter-source
overlapping. This is the purpose of the time-frequency (TF)
decomposition at the inputs of the coder (blocks 1 and 1’)
and at the input of the decoder (block 8). The dual operation,
TF-to-TD synthesis, is done at the output of the coder (block
6) to provide the time samples of the watermarked mix signal.
These samples are converted to the audio-CD format (16-
bits uniform quantization at block 7, see Section III-C). The
synthesis is also done at the outputs of the decoder (blocks
14) to reconstruct the estimated source signals from separated
TF coefficients. The TF decomposition/resynthesis processes
are described in Section III-A. Because of the need for a
high embedding capacity and for a compact representation
of descriptors, the TF coefficients are gathered into groups
of neighboring coefficients: this is the molecular groupingof
blocks 3, 3’ and 10 (described in Section III-B and exploitedin
Section III-D). Finally, the role of the additional quantization
blocks 2 and 9 will be detailed in the following. It can
be seen from this general overview that the source signals
characterization, the watermarking process, and the separation
process are all carried out in the transformed domain.

III. T HE INFORMED SOURCE SEPARATION

In this section, we describe in details each functional block
of the proposed ISS system. Note that when the role of a
block is similar at the coder and at the decoder, it will only
be described once for concision. The articulation between
blocks has been given in the previous section.

A. Sparse decomposition

The signals to be segregated are issued from several
voices and/or instruments playing a piece of music, and as
a consequence, the different source signals that compose
the additive mixture generally strongly overlap in the time
domain. Also, audio sources can be non-stationary and
have a large spectral variability, so that their respective
contributions in the mix strongly depend on both time and
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Fig. 1: Basic principle of the proposed watermarking-basedsource separation method.

Fig. 2: Detailed Coder/Decoder structure.

frequency. A relevant transform domain is thus necessary
to facilitate the separation process. As mentioned before,
sparse decompositions such as TF decompositions appear
to be particularly adapted to the case of under-determined
audio source separation. Remind that we address here
an extreme under-determined configuration with a single
observation of the mixture available. For all these reasons,
a TF decomposition is first applied to all signals. At the
encoder, this decomposition is separately applied to each
source signal (blocks 1’ of Fig. 2) and to the mix signal
(block 1) in order to extract the descriptors of each source
and to embed them into the mixture. At the decoder, the
decomposition is applied to the mix signal (block 8) to extract
the descriptors and process the separation.

The Modified Discrete Cosine Transform (MDCT) [21]
has been selected as the TF decomposition, for its ability to
concentrate the energy of audio signals into limited regions
of the TF plane,i.e. into few coefficients. This property,
already exploited in audio coding, is expected to be useful
for source separation. Since the MDCT is a linear transform,
the source separation problem initially stated in the time

domain is directly transposed in the transformed domain
(i.e. the mixture remains linear). The chance sources have
disjoint supports in the transformed domain is increased by
the sparsity of this representation.

The MDCT is a discrete cosine transform applied on short
overlapping signal frames. For a block ofW consecutive
samples of a signalx [n] (beginning att × W/2, t being an
integer denoting the time frame index), the MDCT transform
results inW/2 frequency samplesmx

t [f ]:

mx
t [f ] =

W−1
∑

n=0

x [n + tW/2]wa [n] cos

(

2π

W
(n + n0)

(

f +
1

2

))

(1)
where f ∈ [0, W/2 − 1], n0 = (W/2 + 1)/2, and wa is
the time analysis window of lengthW . For a time signal
of N samples, with 50%-overlap between two consecutive
frames, the MDCT decomposition results in a matrixMx =
{mx

t [f ]} , f ∈ [0, W/2 − 1] , t ∈ [0, 2N/W ], 2N/W+1 being
the number of time frames (see Fig. 3). We chose forwa a
Kaiser-Bessel derived (KBD) window ofW = 512 samples
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corresponding to 32ms of signal for a sampling frequency
fe = 16kHz and about 12ms iffe = 44.1kHz. W is chosen
to follow the dynamics of speech/audio signals and to have a
frequency resolution suitable for the separation. The MDCT
is an invertible transform, and a block ofW time samples
can be recovered from theW/2 coefficientsmx

t [f ] by inverse
MDCT (IMDCT):

x̃ [n + tW/2] = ws [n]
4

W

W/2−1
∑

f=0

mx
t [f ] cos

(

2π

W
(n + n0)

(

f +
1

2

))

(2)
wherews is the synthesis window chosen here to be identical
to wa. The complete signal is reconstructed by the overlap-
add of successive frames. This process is applied at block 6
of Fig. 2 to generate the watermarked mixture signal from
watermarked MDCT coefficients, and it is applied at block 14
for source signals reconstruction.

Fig. 3: Schematic representation of the time-frequency decom-
position and molecular grouping.

If the MDCT is relevant to obtain a sparse representation
of signals, it is non-realistic to assume that this decomposition
will be sufficient to separate sources completely. Many regions
of the TF plane remain where several sources overlap. Differ-
ent methods have been proposed to address this problem within
the multichannel case (using MDCT or other decomposition
techniques), e.g., [22] [23] [24] [25]. As previously mentioned,
the method developed in the present paper specifically ad-
dresses this problem by using extra information on source
signals that can be inserted into the mixture.

B. Molecular grouping

The embedding of descriptors information into the mixture
signal is made in the TF domain. As further detailed in Section
III-D, the descriptors of source signals used for separation
generally require a large embedding capacity from the host
signal to be encoded with enough precision. Because of that,
both the descriptors and embedding process cannot be defined

at the level of a single MDCT coefficient. In other words,
the contribution of the different sources to a given MDCT
coefficient cannot be embedded into this MDCT coefficient
alone. Therefore, we propose to gather MDCT coefficients
into what is here referred to asmolecules, after [26], [27]
and [28]. A molecule of a signalx is a group of MDCT
coefficientsmx

t [f ] located in the same neighborhood in the
TF plane. Following the notations of Section III-A, a molecule
Mx

pq located at the so-calledmolecular frequency and time
bins (p, q) in the TF plane is defined by:

Mx
pq = {mx

t [f ]}f∈P=[(p−1)F,pF−1]
t∈Q=[(q−1)T,qT−1]

(3)

where T and F are the size ofMx
pq in time bins t and

frequency binsf , respectively (see Fig. 3). Hence, a molecule
is the elementary pattern from which the source signals
descriptors used in the separation process are defined and com-
puted. Molecular grouping is thus applied to each source signal
(blocks 3’). A molecule is also chosen to be the elementary
support of the watermark process. Molecular grouping is thus
also applied to the mixture signal (block 3 of the encoder
and block 10 of the decoder). In other words, the description,
watermarking, and separation processes are all carried outon
MDCT coefficients at the molecule level. The larger a mix
signal molecule is, the larger is its watermarking capacity,
and thus, the more information on source descriptors can be
inserted into this molecule. Conversely, too large molecules
cannot provide a good resolution for the description and thus
the separation of overlapped source signals. Therefore a trade-
off between watermarking capacity, descriptors accuracy,and
quality of source separation needs to be found when setting
the values ofT andF .

C. Watermarking process

Even though watermarking is used in an original way in ISS,
it has to verify the following basic principles: being impercep-
tible to human ear, being exactly retrievable at the decoder,
and being resistant to attacks. In the specific context of ISS,
for instance for the audio-CD application, we consider that
the system does not have to cope with intentional malicious
attacks. Since the purpose of the inserted watermark is to help
to separate source signals, a user has no interest in damaging
the watermark, contrary to the DRM case. The conversion to
the audio-CD format is the only "attack" to be considered. This
conversion corresponds to a 16-bits linear quantization ofthe
time samples of the watermarked mixture signal (block 7 of
Fig. 2). This leads to a slight modification of the corresponding
MDCT coefficients and thus a possible damaging of the
watermark1. Even though it must be taken into account, this
attack has very limited effects in comparison to classical
attacks against DRM watermarks. That is why we focus on
a (low robustness) high embedding rate method, to encode
the source signal descriptors. We selected a quantization-based
watermarking method inspired by [29], in which the inserted
message is carried by a modification of quantization levels of

1For the same reason, the proposed method is not suitable for compressed
signals.
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the host signal. The performances of this technique approach
the theoretical bounds established in [30].

In the present study, the quantization principle is appliedto
the MDCT coefficients of the mixture signal. We take advan-
tage of the fact that MDCT coefficients can be quantized with a
quite coarse resolution without noticeable deteriorationof the
perceptual quality of the resulting time signal. This principle
is exploited in compression algorithms such as MPEG [31]. In
the proposed method, the watermark is embedded into MDCT
coefficients using two uniform scalar quantizers, denotedQ1

and Q2. Actually, only Q2 is used for practical quantization
of MDCT coefficients in the system (as shown in Fig. 2,
block 5). Q1 is used as a virtual reference to simplify the
presentation. We remind that a scalar quantizer is defined by
two parameters: its resolutionR, directly related to the number
2R of quantization levels, and its scale factorA which is the
maximum amplitude of the signal to encode. The quantization
step between two successive levels is∆ = 2A/2R, and the
value of thekth level is−A+k×∆, k ∈

[

0, 2R − 1
]

. Q1 and
Q2 have respective resolutionsR1 < R2, and a common scale
factor A (actually, the gridsQ1 and Q2 are intertwined, as
illustrated on Fig. 4). As the behavior of MDCT coefficients
appears to be particularly dependent on their spectral location,
the quantizers are defined for every frequency binf . They are
also updated everyL time frames of signal (typically every
1.5 seconds, hence we takeL=256), to take into account the
non-stationarity of audio signals. Therefore, in the following,
all quantizer parameters are functions off andl which indexes
the currentL-block of time frames.

Watermarking a MDCT coefficient consists in the following
process: the coefficient is first virtually quantized using the
reference gridQ1(l, f). The watermarking corresponds to the
modification of the reference level to an arbitrary "up-level"
on the grid Q2(l, f) within the close neighborhood of the
reference level ("sub-sampling" from gridQ2(l, f) to Q1(l, f)
must lead to retrieve the reference level). This up-level is
completely determined by the watermark code, as illustrated
on Fig. 4. Hence, the embedding capacity of each MDCT
coefficient at frequencyf and within thelth block is given
by:

C(l, f) = R2(l, f) − R1(l, f). (4)

This capacity does not depend ont (within the currentL-
block). The capacity of aT × F moleculeMx

pq is thus:

CM (l, p) = T ×
∑

f∈P

C(l, f), P = [(p − 1)F, pF − 1] . (5)

Eq. (4) clearly shows that, to maximizeC(l, f), R1(l, f) has
to be minimized andR2(l, f) has to be maximized. However,
the inaudibility of the watermark induces a lower bound for
R1(l, f), and the robustness to audio-CD format conversion
induces an upper bound forR2(l, f). R1(l, f) has indeed
to be high enough so that theQ1-quantization of MDCT
coefficients has no consequence on the audio quality of the
mixture. To ensure this quality, the scale factorA(l, f) is
determined for each frequency binf and each time blockl

from the maximum absolute value of the MDCT coefficients
on the block:mx

max(l, f) = maxt∈[(l−1)L,lL−1](|m
x
t [f ] |).

This ensures optimal dynamics of the signal inside the quan-
tization grid. Given this adaptive scale factor, the reference
resolution R1(l, f) is set to a fixed value in the present
study, for simplicity purpose. To set this resolution, extensive
listening tests were processed on a large set of various speech
and music signals.8-bits quantization of MDCT coefficients
proved to have no audible consequences on the quality of
resynthesized time signals, and provided signal-to-quantization
noise ratios of about 40dB for speech and music signals.
Therefore, we choseR1(l, f) = R1 = 8 bits for every
frequency binf (and every blockl). Note that this resolution
is quite comfortable regarding the standards used in transform-
based compression algorithms, like MPEG for example. This
suggests the possibility for a significant improvement of the
embedding capacity in a future work. An adaptive resolution
R1(l, f) may be determined for each signal frame using a
psychoacoustic model since less precision is needed for high
frequencies than for low frequencies.

As for the Q2-quantization, it has to be resistant to the
audio-CD format conversion. Indeed we remind that the time
waveform of the watermarked signal is quantized using a 16-
bits uniform quantizer at the final block of the coder. For the
watermark to be correctly retrieved, theQ2-quantization of the
MDCT coefficients of the watermarked signal (block 11 of the
decoder in Fig. 2) must provide the same result as theQ2-
quantization of the MDCT coefficients at the coder (block 5
in Fig. 2, i.e. before the 16-bits time-domain quantization).
This results in an upper limit forR2(l, f). This conversion
can indeed be considered as the addition of a uniform additive
noise in the time domain. In the MDCT domain, this noise is
observed to be approximately white Gaussian, in compliance
with the central limit theorem. Its standard deviationσ16 is
independent off (and t), and it has been determined on a
large database of music and speech signals. We assume that
the amplitude of the maximum deviation of MDCT coefficients
caused by the time-domain quantization remains lower than
4σ16. For the watermark to be preserved after audio-CD format
conversion, the quantization step∆2(l, f) = 2A(l, f)/2R2(l,f)

has to verify:

4σ16 <
∆2(l, f)

2
(6)

Hence the following condition onR2(l, f):

2R2(l,f) <
A(l, f)

4 σ16
(7)

As shown in the result section, this condition generally enables
significant embedding capacity, since the power of the 16-bits
quantization noise is low.

Contrary to audio coding algorithms, in the proposed source
separation method the quantizer parameters are not transmitted
to the decoder, although they are necessary for the extraction
of the source descriptors. As shown below, the quantizers
parameters can be retrieved from the watermarked mix signal,
despite of the modification of the MDCT coefficients by the
watermark. This enables to allocate all the embedding capacity
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to the source signals descriptors. Actually, only the scalefactor
A(l, f) has to be retrieved sinceR1 is fixed andR2(l, f) is
specified by (7). To ensure that the decoding of the watermark
is correct, for each frequency binf and each time blockl,
A(l, f) has to be the same at the coder and at the decoder.
However, the value ofmx

max(l, f), which determinesA(l, f),
is modified by the watermarking process, as any other MDCT
coefficient. A solution to this problem is to use a scale factor
quantizerQA(f), at both the coder (block 2 of Fig. 2) and the
decoder (block 9) levels. This quantizer has a lower resolution
than Q2(l, f) so that theQA-quantization ofmx

max(l, f) is
robust to the watermark. The result of this quantization is used
as the scalar factor. Thus, a 6-bits quantizerQA(f) is chosen,
which is, i) known at both the encoder and the decoder, ii)
defined for each frequency binf , but independent of time, and
iii) insensitive to the watermarking process.QA(f) has been
determined from a large set of music and speech signals (about
1 000 speech files from TIMIT [32] and about 10 minutes of
music signals of various musical styles extracted from audio-
CDs).

Fig. 4: Q1- and Q2-quantizers.A(l, f) is provided by the
quantization ofmx

max(l, f) usingQA(f).

D. Source signals descriptors and their use for separation

In the method described throughout this paper, the water-
mark embedded into the mix signal contains descriptors of the
source signals which are used for the separation process. The
descriptors are defined at the molecule level. Two differentsets
of descriptors are used to describe a molecule of source signal
depending on the embedding capacity of the corresponding
molecule of the host mix signal (i.e. the molecule with same
coordinates in the TF plane). In the case of a poor capacity,
the descriptor of a given source is a single parameter that char-
acterizes the local contribution of this source to the mixture,
in terms of energy. In the case of a larger embedding capacity,
the descriptors are a set of parameters directly encoding the
source signal independently of the mixture. In the following
we specify the descriptors definitions in both cases.

In the case of a poor capacity, the descriptor of the source
signalsi is defined as the energy ratio between a molecule of
si and the corresponding molecule of the mixx:

Esi/x(p, q) =

∑

(f,t)∈{P×Q}

|msi

t [f ] |2

∑

(f,t)∈{P×Q}

|mx
t [f ] |2

(8)

This ratio is quantized tǒEsi/x(p, q) using a scalar quantizer
and the resulting index is embedded as watermark information
into the mix moleculeMx

pq (block 5 of Fig. 2) usingQ2(l, f).
At the decoder, the descriptor is extracted and decoded at
blocks 11 and 12. The moleculeM si

pq of the source signal
si is then reconstructed (block 13) by the corresponding mix
moleculeMx

pq weighted by (8) according to:

M̂ si

pq = Mx
pq ×

√

Ěsi/x(p, q) (9)

This is done for each molecule of each source signal.
Therefore, the separation is based here on molecular energy
segregation2. Note that the resolutions of descriptor quantizers
are determined using the bit allocation tables presented inthe
next subsection. The scale factors are quantized using a 6 bits
uniform quantizer known at both coder and decoder. The result
is transmitted via watermarking because this information char-
acterizes individual source signals, and it cannot be retrieved
from the mix MDCT coefficients at the decoder. The cost
of this additional embedding is assumed to be very low in
comparison to the cost of descriptors, since those parameters
are encoded only once in a givenL-block of signal.

In the case several sources overlap, theshape3 of the mix
molecule can be quite different from the shape of the source
molecule it is supposed to reconstruct. For this reason, if
CM (l, p) is large enough, additional information describing
the shape of source molecules is embedded. Coding the
shape of a molecule would ideally correspond to code the
amplitude of each of its MDCT coefficients. However, the
required capacity is much larger thanCM (l, p). Hence, we
usevector quantization techniques (actually matrix quantiza-
tion techniques) [33]: molecule prototypes are used as shape
descriptors to strongly reduce the coding cost of these de-
scriptors (compared to individual MDCT coefficient coding).
Codebooks of (matrix) prototype shapes have been designed
for each molecular frequency binp using the Linde-Buzo-Gray
algorithm [34] applied on a large training database of signal
molecules (see Section IV-A). Note that these codebooks are
adapted to a given instrument, or a given type of voice,
using a corresponding database for training. This is expected
to provide an improvement of separation results as in, e.g.,
[35]. For each kind of source signal (i.e. each voice and
each instrument) a set of codebooksDi = {Dr

i (p)} , i ∈
[1, I] , r ∈ [6, 10] , p ∈ [1, W/2F ] of different sizes2r is
computed for each molecular frequency binp. The shape
descriptor of a source molecule is the closest prototype shape
in the corresponding codebook, according to the Euclidean
distance. The codebooks are assumed to be known at the

2A similar constant-power processing on regions of MDCT coefficients has
been considered in the Gaussian models-based source separation method of
[24], but on the frequency axis only, hence sub-bands processing, instead of
TF molecules.

3The shape of a molecule is defined as the normalized set of amplitudes
of the MDCT coefficients composing this molecule.
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decoder, and the index of the prototype in the codebook is
embedded as shape information (blocks 4 and 5). To increase
the coding efficiency in term of quality/bitrate ratio, molecules
are normalized before coding (hence, all codebooks contain
normalized prototype molecules). A moleculeM si

pq with mean
(across the MDCT coefficients of the molecule)µsi

pq and
standard deviation (idem)σsi

pq is normalized by:

Nsi

pq =
M si

pq − µsi
pq

σsi
pq

(10)

Additional descriptorsµsi
pq and σsi

pq are encoded separately,
as in e.g. [36], to providěµsi

pq and σ̌si
pq. This is done using

scalar quantizers similar to those used to encode the energy
descriptor (8) in the case of a poor capacity. As was done
for the energy descriptor, the parameters of the additional
mean/standard deviation quantizers are transmitted via water-
marking once for eachL-block. At the decoder, if̌Nlq denotes
the molecule of the shape codebookDr

i (p) closest toNsi
pq,

M si
pq is estimated by (blocks 12 and 13):

M̂ si

pq = σ̌si

pq × Ňlq + µ̌si

pq. (11)

Note that in this case, the decoding and estimation of a source
molecule is a single process.

Finally, the source signals are reconstructed from the esti-
mated source molecules by applying inverse MDCT (block 14,
see Section III-A).

E. Bit allocation

Distributing the embedding capacity (5) among the different
descriptors is a complex optimization problem. It depends on
the number of sources to separate, their nature (an instrument
and a speech signal may not need the same amount of data
to be accurately described), the nature of the descriptors,and
their required coding accuracy. Moreover, limits to the size
of codebooks must be taken into account, since too small a
codebook cannot efficiently represent the shape of a molecule,
while too large a codebook would considerably increase the
coding/decoding computational cost. In the present study,a
series of bit allocation tables were determined empirically for
different separation configurations, and validated by listening
tests. For each configuration, the number of sources to separate
from the mixture is fixed for the entire mixture signal. This
number, as well as the corresponding bit allocation tables,are
assumed to be known at both the encoder and the decoder.

Table I is an example of bit allocation tables designed for
the separation of two, three, or four signals with molecules
of size 2 × 4. Note that the allocation is given per molecule
and per source, and each source signal is allocated the same
resource. This table illustrates the switch between different
coding configurations depending on the embedding capacity.
When the embedding capacity is within the range 3–7 bits
(for 2 signals) or 3–6 bits (for 3 or 4 signals), the ratio (8) is
quantized (below 3 bits, the coding accuracy is too poor and
it is better to directly use the mix molecule for source signal
reconstruction). For a high capacity, within the range 14–26
bits (for 2 signals), 14–20 bits (for 3 signals), or 12–16 bits (for
4 signals), the mean-gain-shape (MGS) descriptors of (11) are

quantized. The upper bound results from the limitation of both
the shape codebooks size and the total embedding capacity.
Between 7 or 8 and 11 or 13 bits, it was found relevant to
split each2 × 4 molecule into two1 × 4 molecules and to
allocate half of the embedding capacity to encode an energy
ratio descriptor for each of the two sub-molecules.

Note finally that the streaming of embedded data among the
MDCT coefficients of a molecule is a trivial task and is not
detailed here.

TABLE I: Bit allocation tables (per source) for the separation
of 2 to 4 signals with molecules of size2 × 4. M, G and
S, stand for the mean, the gain (standard deviation), and the
shape in (11), respectively. When (8) is used, it is also denoted
by G. In the case of molecule split, G is the energy ratio for
the sub-molecule with lower frequency, and G’ is the energy
ratio for the sub-molecule with higher frequency. NS is the
number of source signals to separate.

2 signals 3 signals 4 signals
CM /NS S G G’ M S G G’ M S G G’ M

1 - - - - - - - - - - - -
2 - - - - - - - - - - - -
3 - 3 - - - 3 - - - 3 - -
4 - 4 - - - 4 - - - 4 - -
5 - 5 - - - 5 - - - 5 - -
6 - 6 - - - 6 - - - 6 - -
7 - 7 - - - 4 3 - - 4 3 -
8 - 4 4 - - 4 4 - - 4 4 -
9 - 5 4 - - 5 4 - - 5 4 -
10 - 5 5 - - 5 5 - - 5 5 -
11 - 6 5 - - 6 5 - - 6 5 -
12 - 6 6 - - 6 6 - 6 3 - 3
13 - 7 6 - - 7 6 - 6 4 - 3
14 6 4 - 4 6 4 - 4 7 4 - 3
15 7 4 - 4 7 4 - 4 8 4 - 3
16 7 4 - 5 7 4 - 5 9 4 - 3
17 7 5 - 5 8 4 - 5 - - - -
18 8 5 - 5 9 4 - 5 - - - -
19 8 5 - 6 9 5 - 5 - - - -
20 8 6 - 6 10 5 - 5 - - - -
21 9 6 - 6 - - - - - - - -
22 9 6 - 7 - - - - - - - -
23 9 7 - 7 - - - - - - - -
24 10 7 - 7 - - - - - - - -
25 10 7 - 8 - - - - - - - -
26 10 8 - 8 - - - - - - - -

IV. EXPERIMENTS AND RESULTS

A. Data and performance measurements

Tests have been processed with both 16kHz-speech signals
and 44.1kHz-music signals with voice+voice mixtures,
and singing voice+instruments mixtures, with a number of
sources varying from two to four. Speech signals are from
the TIMIT database. Two male and two female English
speakers were used for the tests. Ten sentences for each
of 279 speakers (122 females, 157 males) were used to
build the codebooks. For the music signals, instruments
are a bass guitar, a piano, and drums (one track for the
overall drum set), and the singing voice is from a female
singer. Six pieces of music played together by all four
sources (recorded separately in studio conditions) were
used. Four of them were used to build the codebooks, and
excerpts from the two remaining pieces were used to test
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the separation (a slow piece and a fast one were chosen to
ensure diversity of test signals). Details about the training
data are given in Table II (note that the difference in data
durations between instruments results from the suppression
of silent sections). The ratio between the size of training
data and the maximum size of the codebooks, is assumed
to be always greater than 100. In all the following,NI+1S
denotes a music mixture signal ofN instruments + 1 singing
voice, andMS denotes a speech mixture signal ofM speakers.

TABLE II: Characteristics of the training corpus used to
compute the shape codebooks.

source signal
duration size corpus size

(minutes) (number of molecules) / codebook size

bass guitar 18.1 186732 182.3

female singer 10.8 109568 107.1

drums 16.7 171080 161.1

piano 15.1 154836 151.2

female speech 64.1 239961 234.3

male speech 80.1 300580 293.5

The quality of separated sources has been assessed by both
listening tests in anechoic chamber and ISNR measures, as
defined in [37]. ISNR is the difference (Improvement) of log-
Signal-to-Noise power ratios between input and output of the
separation process, where Signal is the source signalsi to be
separated, at the input Noise is the sum of all other signals
in the mixture

∑I
k=1,k 6=i sk, and at the output Noise is the

difference between the original signalsi and estimated source
signal ŝi:

SNRi
in = 10log10

(

∑

n(si [n])2
∑

k 6=i

∑

n(sk [n])2

)

(12)

SNRi
out = 10log10

( ∑

n(si [n])2
∑

n(si [n] − ŝi [n])2

)

(13)

and for each source

ISNR = SNRout − SNRin. (14)

B. Molecule size, embedding capacity and bit allocation

Concerning the size of a molecule, a trade-off has to be
found between a sufficient capacity that enables to encode
descriptors properly, and a correct resolution in the TF domain.
Table III shows the separation results obtained for 5 different
sizes of molecule, containing from 8 to 16 MDCT coefficients.
For this experiment, only the unquantized version of (8) was
used as a source descriptor, since we only test the "separation
power" of the molecular decomposition. A2×4 molecule size
appears to be the best trade-off. Results are slightly lowerfor
a 4 × 2 molecule, which confirms the importance of spectral
dynamics for audio signals.

The top figure of Fig. 5 gives an example of embedding
capacity (4) for each MDCT coefficient as a function of
frequency binf , obtained on aL-block of signal (L ≈
1.5s), in the case of a mixture of four musical source signals.

TABLE III: Separation results vs. molecule size for 3 mix
signals : 2 speakers (2S), 4 speakers (4S), and 3 instruments
+ 1 singing voice (3I+1S).

Mix
ISNR (dB)

2x4 4x2 3x4 4x3 4x4

2S 10.05 10.02 9.52 9.38 9.15

4S 10.40 10.17 9.93 9.88 9.65

3I+1S 14.97 14.50 14.54 14.27 14.11

The figure below gives the resulting capacity (5) of a2 × 4
molecule. As for many music signals, most of the energy of
the mixture is located in a specific frequency range, mostly the
low frequencies. This results in a large embedding capacity,
up to about 60 bits per molecule. In higher frequencies, fewer
bits are available to insert the watermark (although in this
example energy and capacity have a local raise around 9kHz).
In high frequencies, the human ear is less sensitive, and source
signals can be represented with a lower accuracy. Thus, the
ratio between the accuracy of the separation information tobe
embedded and the embedding capacity is satisfying along all
frequency bins.

Fig. 5 also shows the corresponding results of the bit
allocation for the descriptors, in the case of the separation
of three signals from the 4-sources mixture, using the bit
allocation table of Table I (note that the three sources are
allocated the same amount of bits; in a future work, bit
allocation may be adapted to each kind of source signal). As
a result of the energy distribution, shape codebooks are used
to describe low frequencies molecules, here from 0 to 2kHz
(molecular frequency bin 12), and also the medium frequencies
around 8 to 10kHz (molecular frequency bin 47 to 58). From 2
to 8kHz and then from 10 to 16.5kHz the embedding capacity
only allows to encode the gain of1 × 4 sub-molecules (see
Section III-E). From 16.5 to 19.5kHz (bin 96 to 114), only
the gain of full 2 × 4 molecules can be encoded, and for
higher frequencies, no information on the source signals can
be embedded. Above 15kHz, it is likely that signal components
are very low and thus inaudible, hence source separation may
not be necessary.

Table IV shows the total capacity for several music and
speech mixtures, summed over frequencies, and averaged over
time. Hence, we obtainaverage watermarking bitrates. Rates
of about 140 to 180 kbits/s are obtained for music and rates
over 70 kbits/s are obtained for speech mixtures4. Those rates
confirm the possibility to embed a large amount of information
into audio signals.

TABLE IV: Embedding capacity for several music and speech
mixtures.

mixture 3I+1S 3I 2I+1S 2I 1I+1S 4S 3S 2S

capacity (kbits/s) 177.5 159.6 181.4 178.6 144.0 73.0 72.3 73.3

4Note that the capacity does not necessarily increase with the number of
sources because mixture signals are normalized in amplitude within [−1, 1[.
Adding a source to an existing mixture may lead to actually decrease the
energy of some TF regions after renormalization.
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Fig. 5: Example of embedding capacity (per MDCT coefficient
and per molecule for the two top figures) and bit allocation
(per source) for a mixture of a bass guitar, a female singer,
a piano, and a drum set, for the separation of 3 sources with
molecules of size2 × 4.

C. The complete separation system

In this section we report separation results obtained with the
complete system. Note that it was verified that watermarking
MDCT coefficients withQ2(l, f) does not impair the audio
quality of the mix signal (this is not surprising since it was
the case withQ1(l, f) in which Q2(l, f) is entwined). A
first series of tests were processed to quantify the effects
of using codebooks on separation results. A comparison was
made between two configurations: in the first one, only the
energy ratio descriptor (8) is used for all molecules, even
if the embedding capacity is high (the ratio is then simply
quantized with more accuracy). In the second configuration,all
descriptors defined in (8) and (10) are used, and the embedding
capacity is allocated according to Table I. Table V provides
the results obtained for these two configurations (energy ratio
(ER) vs. mean-gain-shape (MGS)), for the separation of four
music signals from their mixture, and for the separation of two
speech signals from a mixture of two female and two male
speakers. In each case, two different test signals were used,
with a duration of approximately 8s each. Table V exhibits
ISNR scores from about 7dB up to about 20dB depending on
the configuration, hence a good separation of both speech and
instrument source signals. Listening tests performed in the ER
configuration reveal remaining interferences on the separated
sources. Table V proves the significant improvement obtained
by using shape codebooks, with an average ISNR increase
across configurations of 4.5dB (from +2.2dB for the piano
which is the instrument with the "sparsest playing", to +7dB
and +7.2dB for the drums and the bass respectively). This

gain results in a very significant improvement in the quality
of separated signals.

TABLE V: Performances for the separation of 4 signals in a
4-sources music mixture and 2 signals in a 4-sources speech
mixture in the ER and MGS configurations.

Mix Signals
ISNR (dB)

ER MGS

Music

Bass 9.6 16.8

Voice 7.3 11.7

Drums 12.7 19.7

Piano 12.1 14.3

Speech
Female1 12.0 15.0

Male1 9.3 12.1

Now that the interest of using codebooks has been
clearly assessed, we present extended results within the
functional configuration of the proposed system (variable
MGS allocation using Table I). Table VI gives the separation
performance of the presented method for different settings.
Two to four signals are separated among mixtures of three or
four source signals. Hence, this table illustrates the influence
of the number of sources in the mixture and the number of
sources to separate. Note that the more numerous are source
signals in a mixture, the lower is their input SNR, and the
bigger is the risk these sources overlap in the TF plane.
For the mixture of three sources, the input SNR is−1.9dB,
−5.8dB, and−1.8dB, for the bass guitar, the drums and the
piano, respectively, but when the singing voice is added with
an input SNR of−1.1dB, the input SNRs of the other sources
decrease to−5.8dB, −9.0dB and−5.7dB, respectively.

The main result emerging from Table VI is a good
separation for all sources and from every mixture, including
the most challenging case of 4 sources from a 4-sources
mixture. In this latter case, ISNRs range from 11.7dB for the
singing voice (this lowest ISNR is mainly due to a relatively
high input SNR compared to other sources) to 19.7dB for the
drums (which have the lowest input SNR). ISNR scores for
the other instruments are 14.3dB and 16.8dB. For the case of
3 sources to be separated from the same 4-sources mixture,
ISNR scores range within 15–22.3dB. The noticeable increase
for both output SNRs and ISNRs from the separation of 4
sources to the separation of 3 sources (from 3I+1S) reveals
the influence of sharing the embedding capacity between
sources. Altogether, those results demonstrate a substantial
separation, despite the difficulty of the task. Obviously, this is
made possible by the informed aspect of the separation which
ensures a good coding of the source signals, as opposed to
usual source separation systems. An additional illustration is
given in Fig. 6, which provides the 4 original and separated
waveforms in the "4 out of 4" configuration. This figure
shows that the separated waveforms are very close to the
corresponding original waveforms.

The good separation is confirmed by listening tests, that
show a very good rejection of competing sources: each
instrument is clearly isolated. Of course, the quality is not
perfect, and some level of musical noise remains (more or
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less significant, depending on the source signal and on the
number of sources to separate: for instance, the musical
noise is lower for 3 sources than for 4 sources to separate).
However, those results provide a very promising basis for
the active listening application: separate signals can be added
(up to a reasonable extend) and even subtracted from the
mixture, directly in the time domain. The resulting qualityof
the "remastered" mixture is quite encouraging even if it is
still far from transparency (i.e., as it would result from direct
remastering of original source signals). The isolated source
signals can be clearly enhanced or canceled, and the musical
noise appears to be partly masked by the mixture. Sound
samples for both "3 out of 4" and "4 out of 4" configurations
(and also "2 out of 4", see below) can be downloaded at
http://www.icp.inpg.fr/∼girin/WB-ISS-demo.rar.
The package includes original and watermarked mixtures,
and original and separated source signals. All signals are
correctly scaled so that the interested reader can directly
process its own remastering using the mixture signal and
separated sources.

As for the other settings, analyzing Table VI into more
details shows an improvement of the ISNR scores from the
extraction of 2 or 3 sources from a 3-sources mixture (3I) to
the extraction of the same sources from a 4-sources mixture
(3I+1S). This is mainly due to a drop of input SNRs with
a larger number of sources within the mixture (see above).
On the other hand, output SNRs are approximately the same
for the separation of 2 or 3 sources from 3I+1S and from 3I.
Observations made during the tests provide two explanations
for this latter result: either the embedding capacities for
the 3I+1S mixture and the 3I mixture are similar, or the
embedding capacity for 3I+1S is larger but the descriptors
coding accuracy reaches an upper limit (e.g., the limitation
in codebooks size). This also explains the currently low (but
real) increase of output SNRs, and corresponding modest
increase in signal quality, from the separation of 3 sourcesto
the separation of 2 sources (see Table VI and the samples).
This suggests that using larger codebooks, or more refined
coding schemes, when the number of sources to separate is
small compared to the overall embedding capacity would
result in better separation results. Note that in the case of
the audio-CD application, the separation of more than 2 or 3
sources is targeted. Hence, we do not focus on improving the
separation quality of a small number of source signals, but
we rather tend to increase the number of sources to separate.
However, the large room for improvement in the "2 out of
4" case is a very encouraging and reassuring point within
the audio-CD framework, since a very basic way to exploit
stereophony would be for example to embed one different
pair of sources in each channel and use the knowledge of the
mixture process to control the contribution of each source
signal in both channels, leading to 4 high-quality separate
source signals. This principle is valid for a larger number
of sources as long as their single-channel coding quality is
satisfying. This is part of our future works.

TABLE VI: Separation results for music mixtures in term of
ISNR (dB).

sources to separate
mix of 4 sources (b,s,d,p) mix of 3 sources (b,d,p)

SNRout ISNR SNRout ISNR

bass guitar (b) 11.1 16.8 - -

female singer (s) 10.6 11.7 - -

drums (d) 10.7 19.7 - -

piano (p) 8.6 14.3 - -

bass guitar (b) 13.1 18.9 13.1 15.0

female singer (s) 14.4 15.0 - -

drums (d) 13.2 22,3 13.1 18.9

piano (p) - - 10.3 12.1

bass guitar (b) 13.4 19.1 13.4 16.3

piano (p) 11.3 17.0 11.3 14.0

female singer (s) 15.1 15.7 - -

drums (d) 14.7 23.7 - -

Fig. 6: Waveforms of 4 original and separated signals from
the 3I+1S mixture (the mixture is in the center plot).

V. CONCLUSION

The separation approach described in this paper does not
belong to classical source separation methods. Contrary to
the BSS framework, in the Informed Source Separation,
source signals are available before the mix is processed,
and specific (but important) applications such as audio-CD
"active-listening" are targeted. In the present study, promising
preliminary results on speech and music signals separation
from a single-channel mixture have been reported.

Many improvements can be made to the proposed method.
Future work will first focus on a larger range of music in-
struments to separate. In the audio-CD application, codebooks
could be learned using the source signals later mixed into the



SUBMITTED TO IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING. 11

tracks of the CD (i.e. training data = test data), whereas in the
present study, test signals were not included in the codebooks
training set. A better reconstruction of each source signalis
then expectable. Also, the use of refined TF decomposition
algorithm such as Molecular Matching Pursuit [27] [28] and/or
multi-resolution decomposition will also be considered to
better take benefit of both the audio signals sparsity and the
properties of the auditory system, and provide a more accurate
separation. Those decomposition techniques can be combined
with refined strategies for source signal coding (including
variable bit allocation among the sources) depending on the
local composition of the mixture in the TF plane and not only
on the local capacity, as was the case in the present work.
As for the watermarking part, a psychoacoustic model will
also be used to determine the resolution of quantizerQ1(l, f)
for every L-block of the mixture signal. This is expected
to significantly increase the embedding capacity. Finally,the
ISS framework can be extended to the multi-channel source
separation framework, beginning with the stereo case for the
audio-CD application. Beyond the basic schema mentioned
at the end of Section IV-C, the combination of the proposed
source coding/watermarking method with spatial processing
inspired from, e.g., [7] [11] [25] is a promising trail that is
currently being investigated.
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