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A Watermarking-Based Method for Informed
Source Separation of Audio Signals
with a Single Sensor

Mathieu ParvaixSudent Member, |EEE, Laurent Girin, and Jean-Marc Brossier

Abstract—In this paper, the issue of audio source separation transformation of the mixture signals in the TF domain where
from a single channel is addressed.e. the estimation of several the separation is processed. Short-time Fourier transfeene
source signals from a single observation of their mixture. his used in [11] before estimating the mixing matrix in the spars

challenging problem is tackled with a specific two levels caat- . . . )
decoder configuration. At the coder, source signals are asswed transformed domain using a potential-function-based oteth

to be available before the mix is processed. Each source s@n The separation method for non-stationnary signals inredu

is characterized by a set of parameters that provide additinal in [12] is based on TF distribution with the assumption that
information useful for separation. We propose an original nethod  source signals are disjoint in the TF domain. Specific paifits
using a watermarking technique to imperceptibly embed this 1,6 TE plane corresponding to a single source are isolated an
information about the source signals into the mix signal. Atthe . Lo . .
decoder, the watermark is extracted from the mix signal to eable used to estimate the TF distribution of this source, fromalvhi

an end-user who has no access to the original sources to seatar sources waveforms are reconstructed. The DUET (Degenerate
these signals from their mixture. Hence, we call this sepation  Unmixing Estimation Technique) BSS method was proposed
process Informed Source Separation (ISS). Thereby, sevéra jn [7] to separate a large number of speech sources using
instruments or voice signals can be segregated from a single 3 5_channel mixture. The disjointness of source signals in

piece of music to enable post-mixing processing such as vale the TF ol bles to det ine th .. X
control, echo addition, spatialization, or timbre transformation. e plane enables o determine the mixing parameters,

Good performances are obtained for the separation of up to and then to perform a relevant masking of the mixture’s
four source signals, from mixtures of speech or music signal decomposition in the TF domain to estimate the source signal
Promising results open up new perspectives in both under- This technique is assumed to be adapted to speech signals,
determined source separation and audio watermarking domats. particularly sparse in the TF domain. Another sparsityebas
approach is introduced in [8] which addresses the problem
Index Terms—under-determined source separation, water- of BSS of convolutive speech mixtures with a two-stage
marking, audio processing, speech processing. process. Hierarchical clustering is first used to estimhge t
mixing system, before sources are estimated under L1-norm
l. INTRODUCTION minimization constraints. In [9], a Bayesian method wasduse
URING the past twenty years, source separation hasmodel the source signals using a sparse linear combmatio
become one of the most challenging problems in signef Modified Discrete Cosine Transform (MDCT) atoms and
processing. It can be stated as follows: source separatims aa Markov hierarchical modeling to recreate the harmonic
at estimating/ unknown source signals;[n],: € [1, I], from structure of sound signals. Note that, the under-detemnine
J observations of their mixtures;[n], j € [1, J]. Blind source case is also processed using the Computational Audio Scene
separation (BSS) [1] [2], where very little knowledge abouAnalysis (CASA) approach (see, e.g., [13] for an overview).
the sources and the mixture configuration is available, hasin the present study, we focus on audio source separation of
been intensively studied since the early 90’s. The gengmai linear instantaneous mixtures in a very specific configarati
the blind approach makes BSS techniques relevant for manyaddition to the (single channel) observation of the @ine
application areas such as medical engineering [3] [4], cammmixture signal at the separation level (so-called here the
nications [5], or antenna processing [6]. The (over)deieesh decoder), source signals are assumed to be available at the
case,i.e. when J > I, is generally processed using thamixing level (so-called here the encoder). This is quite an
assumption of mutual independence of sources. original and, at first sight, surprising configuration in the
The under-determined (or degenerate) case, where fewesource separation framework, but not unnatural, since nmeso
observations than sources are available, is of particotarést key audio applications, mixing and demixing can be proaksse
in audio processing since, in the typical mono or steresparately by cooperative users. For instance, we address t
configuration, many instruments and voices are to be segghraaudio-CD configuration: in a recording studio, the diffdren
from only two channels. To achieve source separation whracks (corresponding to the different instruments andism
J < I, many relevant techniques are based on the use of spamsiee(s)) are recorded separately, and are then mixed imya ve
representations of signals [7] [8] [9] [10] [11]. The bagiea controlled way. At home, an end-user only has the mix signal
is that in each localized region of the time-frequency (TFvailable on a CD (actually, two stereo channels are auvailab
plane, one single source is supposed to be more active tham the exploitation of stereo is not considered in the prese
the other sources. Therefore, most methods are based onphper). The objective is there to enable the separationeof th
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different elements of the audio scene, so that they can teerview of the entire system is given before presentindneac
manipulated separately: for example, the volume, the colimmctional block in details in the next section.
and the spatialization of an instrument can be modified. ThisAt the coder, the source signals[n] , € [1, I] are assumed
is an old dream of music lovers, that can be referred to tsbe available, in addition to the mix signaln]. Therefore,
active listening. characteristic parameters can be extracted from each esourc
In this paper, we propose a first approach to address thkignal s; [n] and coded (block 4). These parameters are re-
original problem at both coder and decoder levels. This ptkthferred to asdescriptors (as introduced in Section 1), and they
is based on the original combination of source separatiarill be accurately defined in Section 1lI-D. These descripto
with another major domain of signal processing, namebre then embedded into the mix signal (block 5), using a “high
watermarking. Audio watermarking consists of embeddingapacity” quantization-based watermarking techniquet{@e
extra information within a signal in an inaudible manner. Iil-C). At the decoder, only the (watermarked) mix signal
is mainly dedicated to Digital Right Management (DRM)xyy [n] is available. The descriptors are extracted from [n]
For instance, data identifying the designer or the owner oging quantization again and decoding (blocks 11 and 12),
a digital media can be embedded by watermarking [14jefore being used to separate each source signal from the
Extracting the watermark enables to prove the authenticityix signal (block 13). This is the heart of the process that
of the media. Since malicious users may try to remove wiill be described in details in Section Ill. Since the source
modify the watermark to appropriate the media, the embegddisignals generally strongly overlap in the time domain (TD),
process is specifically designed to be robust against attatthe separation process has to take place in a much sparser
such as compression, scaling or filtering [15] [16]. Mordomain,i.e. a domain where each source is described by
recently, another type of watermarking emerged, usingraasiga sparse representation, that enables much less interesour
as a channel for data transmission [17]. Properties of tls¢ hoverlapping. This is the purpose of the time-frequency (TF)
signal, known at the transmitter, can be used to increase ttecomposition at the inputs of the coder (blocks 1 and 1’)
performances of the watermark detection at the decoder: #red at the input of the decoder (block 8). The dual operation,
watermark is fitted to the host signal to optimize the dafBF-to-TD synthesis, is done at the output of the coder (block
transmission rate while remaining inaudible. New appitrst 6) to provide the time samples of the watermarked mix signal.
of watermarking for data transmission have appeared, ssichTdaese samples are converted to the audio-CD format (16-
audio signal indexation [18], improvement of transmissgs-  bits uniform quantization at block 7, see Section IlI-C).eTh
tems [19] or document identification for broadcast monitgri synthesis is also done at the outputs of the decoder (blocks
[20]. Constraints on robustness and embedding capacityeof tL4) to reconstruct the estimated source signals from segghra
watermark are here different from DRM watermarking. TF coefficients. The TF decomposition/resynthesis pr@aess
In the present study, we are closer to watermaking for daee described in Section IlI-A. Because of the need for a
transmission than to watermarking for media protection. Waegh embedding capacity and for a compact representation
take advantage of the knowledge of source signals at thidescriptors, the TF coefficients are gathered into groups
encoder to extract a set of descriptors from these signeés (sf neighboring coefficients: this is the molecular groupafg
Fig. 1). These descriptors consist in parameters that itbesciblocks 3, 3’ and 10 (described in Section 111-B and exploited
the structure of the source signals, or their contributmthe Section IlI-D). Finally, the role of the additional quargtion
mixture. This information is embedded into the mix signdblocks 2 and 9 will be detailed in the following. It can
using a high-capacity watermarking process. This tectmighe seen from this general overview that the source signals
exploits the defaults of the human hearing system to insettaracterization, the watermarking process, and the astpar
the information into TF coefficients of the mix signal. Atprocess are all carried out in the transformed domain.
the decoder, the source descriptors are extracted from the
mix signal, and then used for the separation process. Since 1. THE INFORMED SOURCE SEPARATION

the method exploits the knowledge of unmixed signals, theIn this section, we describe in details each functional bloc

corresponding framework can be labeled as "informed SOUIGE h e proposed 1SS system. Note that when the role of a

separation” (ISS), as opposed to BSS. block is similar at the coder and at the decoder, it will only

Th|§ paper is organized as f(?”OWS' Section Il is a 9ENCIZL described once for concision. The articulation between
overview of the method. In Section Il a deepened descmpu%loCks has been given in the previous section

of the technical implementation is given, for each funciion
block of the system. Results of speech and music signals
separation are given in Section 3. Finally, some perspextiv
are presented in Section 4. A. Sparse decomposition
The signals to be segregated are issued from several
voices and/or instruments playing a piece of music, and as
a consequence, the different source signals that compose
As already mentioned in the introduction and seen on Fig.the additive mixture generally strongly overlap in the time
the general principle of the proposed ISS method is based domain. Also, audio sources can be non-stationary and
two main structures, a coder and a decoder. A more detailealve a large spectral variability, so that their respective
functional schema is given on Fig. 2. In this section, a gainecontributions in the mix strongly depend on both time and

Il. GENERAL OVERVIEW OF THE SYSTEM
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Fig. 1: Basic principle of the proposed watermarking-basmarce separation method.
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Fig. 2: Detailed Coder/Decoder structure.

frequency. A relevant transform domain is thus necessatgmain is directly transposed in the transformed domain

to facilitate the separation process. As mentioned befofee. the mixture remains linear). The chance sources have

sparse decompositions such as TF decompositions appdigjoint supports in the transformed domain is increased by

to be particularly adapted to the case of under-determinge sparsity of this representation.

audio source separation. Remind that we address here

an extreme under-determined configuration with a singleThe MDCT is a discrete cosine transform applied on short

observation of the mixture available. For all these reasomserlapping signal frames. For a block ®F consecutive

a TF decomposition is first applied to all signals. At theamples of a signal [n] (beginning att x W/2, ¢ being an

encoder, this decomposition is separately applied to eaaleger denoting the time frame index), the MDCT transform

source signal (blocks 1' of Fig. 2) and to the mix signalesults inW/2 frequency samples:f [f]:

(block 1) in order to extract the descriptors of each source

and to embed them into the mixture. At the decoder, the W-1 5 )

decomposition is applied to the mix signal (block 8) to estra ;s [] = Z [+ tW/2 wq [n] cos <_7T (n +no) <f + _>>

the descriptors and process the separation. 0 w 2

The Modified Discrete Cosine Transform (MDCT) [21] 1)

has been selected as the TF decomposition, for its abilitywhere f € [0,W/2 —1], ng = (W/2 + 1)/2, and w, is

concentrate the energy of audio signals into limited regiothe time analysis window of lengthl”. For a time signal

of the TF plane,i.e. into few coefficients. This property, Of N samples, with 50%-overlap between two consecutive

already exploited in audio coding, is expected to be usefiikmes, the MDCT decomposition results in a matkix, =

for source separation. Since the MDCT is a linear transforyi [f1}. f € [0, W/2 — 1]t € [0,2N/W], 2N/W +1 being

the source separation problem initially stated in the tinf@e number of time frames (see Fig. 3). We choseugra
Kaiser-Bessel derived (KBD) window df = 512 samples
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corresponding to 32ms of signal for a sampling frequeney the level of a single MDCT coefficient. In other words,
fe = 16kHz and about 12ms if, = 44.1kHz. W is chosen the contribution of the different sources to a given MDCT
to follow the dynamics of speech/audio signals and to havecaefficient cannot be embedded into this MDCT coefficient
frequency resolution suitable for the separation. The MDCalone. Therefore, we propose to gather MDCT coefficients
is an invertible transform, and a block &F time samples into what is here referred to awolecules, after [26], [27]
can be recovered from tH&/2 coefficientsm? [f] by inverse and [28]. A molecule of a signat is a group of MDCT
MDCT (IMDCT): coefficientsm? [f] located in the same neighborhood in the
TF plane. Following the notations of Section IlI-A, a molécu
M, located at the so-calletholecular frequency and time

w/2—1 : ! .
i[n+tW/2] = w, [n] 4 Z m¥ [f] cos (2_” (n + no) <f +bll’§5)p7 q) in the TF plane is defined by:
w s w 2
(2) My, = {mi [f]} rep=[(p-1)FpF—1] (3
wherew; is the synthesis window chosen here to be identical teQ=[(¢—1)T,qT—1]

to w,. The complete signal is reconstructed by the overlaphere T and I are the size ofM, in time bins¢ and
add of successive frames. This process is applied at blockréquency binsf, respectively (see Fig. 3). Hence, a molecule
of Fig. 2 to generate the watermarked mixture signal froim the elementary pattern from which the source signals
watermarked MDCT coefficients, and it is applied at block ldescriptors used in the separation process are defined and co
for source signals reconstruction. puted. Molecular grouping is thus applied to each souragasig
(blocks 3’). A molecule is also chosen to be the elementary
» f : L : support of the watermark process. Molecular grouping is thu
4 1 : : also applied to the mixture signal (block 3 of the encoder

A
v

and block 10 of the decoder). In other words, the description
watermarking, and separation processes are all carriedrout
MDCT coefficients at the molecule level. The larger a mix
: signal molecule is, the larger is its watermarking capacity
IF and thus, the more information on source descriptors can be
‘ inserted into this molecule. Conversely, too large molesul
cannot provide a good resolution for the description and thu
the separation of overlapped source signals. Therefosda-tr
off between watermarking capacity, descriptors accuracy,
quality of source separation needs to be found when setting
the values ofl" and F.

~

~

v v

| |
T T

q

o LA LN L, e veermaring process
w

Even though watermarking is used in an original way in ISS,
it has to verify the following basic principles: being impep-
tible to human ear, being exactly retrievable at the decoder
and being resistant to attacks. In the specific context of ISS
. . for instance for the audio-CD application, we consider that

If the MDCT is relevant to obtain a sparse representatiQfe system does not have to cope with intentional malicious
of signals, it is non-realistic to assume that this decontions ;44 cks. Since the purpose of the inserted watermark islfo he
will be sufficient to separate sources completely. Manyaesi y, separate source signals, a user has no interest in dagnagin
of the TF plane remain where several sources overlap. Biffgfo watermark, contrary to the DRM case. The conversion to
ent methods have been proposed to address this problemwith, 5,gio-CD format is the only "attack” to be consideredsTh
the multichannel case (using MDCT or other decompositiqy,ersion corresponds to a 16-bits linear quantizatiothef
techniques), e.g., [22] [23] [24] [25]. As previously ma@mted, ime samples of the watermarked mixture signal (block 7 of
the method developed in the present paper specifically g4y 5) This leads to a slight modification of the corresgingd
dresses this problem by using extra information on SOUr§EyCT coefficients and thus a possible damaging of the

Fig. 3: Schematic representation of the time-frequencyatec
position and molecular grouping.

signals that can be inserted into the mixture. watermark. Even though it must be taken into account, this
attack has very limited effects in comparison to classical
B. Molecular grouping attacks against DRM watermarks. That is why we focus on

The embedding of descriptors information into the mixtur (low robusiness) high embedding rate method, to encode

signal is made in the TF domain. As further detailed in Sectid"® source_signal descr_ipto_rs. we selectgd a q_uantizb_ﬂead
[lI-D, the descriptors of source signals used for Sepanatigvatermarklng method inspired by [29], in which the inserted

generally require a large embedding capacity from the hdBessage is carried by a modification of quantization levels o

signal to be enCOded with enOUQ_h precision. Because of tIﬂllaﬁ’For the same reason, the proposed method is not suitablefgpressed
both the descriptors and embedding process cannot be defisigthls.
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the host signal. The performances of this technique approdoom the maximum absolute value of the MDCT coefficients
the theoretical bounds established in [30]. on the block:my, ,.(I, f) = maziciq—1yrio—1(Im§ [f]]).

In the present study, the quantization principle is appl@d This ensures optimal dynamics of the signal inside the quan-
the MDCT coefficients of the mixture signal. We take advartization grid. Given this adaptive scale factor, the refeese
tage of the fact that MDCT coefficients can be quantized withrasolution R, (I, f) is set to a fixed value in the present
quite coarse resolution without noticeable deterioratdbthe study, for simplicity purpose. To set this resolution, exige
perceptual quality of the resulting time signal. This pihe listening tests were processed on a large set of variouglspee
is exploited in compression algorithms such as MPEG [31]. Bnd music signalss-bits quantization of MDCT coefficients
the proposed method, the watermark is embedded into MD@Toved to have no audible consequences on the quality of
coefficients using two uniform scalar quantizers, dendped resynthesized time signals, and provided signal-to-qzaiidn
and Q». Actually, only Q5 is used for practical quantizationnoise ratios of about 40dB for speech and music signals.
of MDCT coefficients in the system (as shown in Fig. 2Therefore, we chosd?,(l,f) = R; = 8 bits for every
block 5). @, is used as a virtual reference to simplify thdrequency binf (and every block). Note that this resolution
presentation. We remind that a scalar quantizer is defined ibyguite comfortable regarding the standards used in toamsf
two parameters: its resolutid®, directly related to the numberbased compression algorithms, like MPEG for example. This
2% of quantization levels, and its scale factérwhich is the suggests the possibility for a significant improvement & th
maximum amplitude of the signal to encode. The quantizatiembedding capacity in a future work. An adaptive resolution
step between two successive levelstis= 24/2%, and the R;(l, f) may be determined for each signal frame using a
value of thek!” level is—A+kx Ak € [O, 2R 1}. @, and psychoacoustic model since less precision is needed fbr hig
Q> have respective resolutiorfy < R5, and a common scale frequencies than for low frequencies.
factor A (actually, the grids®; and @, are intertwined, as  As for the Q»-quantization, it has to be resistant to the
illustrated on Fig. 4). As the behavior of MDCT coefficientsiudio-CD format conversion. Indeed we remind that the time
appears to be particularly dependent on their spectratiota waveform of the watermarked signal is quantized using a 16-
the quantizers are defined for every frequency hiThey are bits uniform quantizer at the final block of the coder. For the
also updated every, time frames of signal (typically every watermark to be correctly retrieved, the-quantization of the
1.5 seconds, hence we take256), to take into account the MDCT coefficients of the watermarked signal (block 11 of the
non-stationarity of audio signals. Therefore, in the foilog, decoder in Fig. 2) must provide the same result as@he
all quantizer parameters are functionsfadnd/ which indexes quantization of the MDCT coefficients at the coder (block 5
the currentlL-block of time frames. in Fig. 2, i.e. before the 16-bits time-domain quantization

Watermarking a MDCT coefficient consists in the followingThis results in an upper limit foR:(, f). This conversion
process: the coefficient is first virtually quantized usihg t can indeed be considered as the addition of a uniform aéditiv
reference gridl; (I, ). The watermarking corresponds to thenoise in the time domain. In the MDCT domain, this noise is
modification of the reference level to an arbitrary "up-léve observed to be approximately white Gaussian, in compliance
on the grid Q2(l, f) within the close neighborhood of thewith the central limit theorem. Its standard deviation; is
reference level ("sub-sampling” from grigh(, ) to Q:1(l, f) independent off (and¢), and it has been determined on a
must lead to retrieve the reference level). This up-level iarge database of music and speech signals. We assume that
completely determined by the watermark code, as illugdratthe amplitude of the maximum deviation of MDCT coefficients
on Fig. 4. Hence, the embedding capacity of each MDGJaused by the time-domain quantization remains lower than
coefficient at frequency and within thel*” block is given 4016. For the watermark to be preserved after audio-CD format

by: conversion, the quantization stép (I, f) = 2A(1, f) /27201
has to verify:
4 ’ 6
This capacity does not depend en(within the currentL- 716 < (©)
block). The capacity of &' x F' moleculeMy, is thus: Hence the following condition oz (I, f):
Al f)
Ra(L,f) )
Cullp) =T x S CUf), P=[(p—1)EpF—1]. (5) S "
fep

As shown in the result section, this condition generallybdes

Eqg. (4) clearly shows that, to maximiz&(l, ), Ri1(l, f) has significant embedding capacity, since the power of the 16-bi
to be minimized and?: (I, f) has to be maximized. However,quantization noise is low.

the inaudibility of the watermark induces a lower bound for Contrary to audio coding algorithms, in the proposed source
Ri(l, f), and the robustness to audio-CD format conversi@eparation method the quantizer parameters are not trasedmi
induces an upper bound faRs(l, f). Ri(l, f) has indeed to the decoder, although they are necessary for the eximacti
to be high enough so that th@;-quantization of MDCT of the source descriptors. As shown below, the quantizers
coefficients has no consequence on the audio quality of thaerameters can be retrieved from the watermarked mix signal
mixture. To ensure this quality, the scale factd(l, f) is despite of the modification of the MDCT coefficients by the
determined for each frequency bjhand each time block watermark. This enables to allocate all the embedding égpac
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to the source signals descriptors. Actually, only the sfzdtor

A(l, f) has to be retrieved sincB; is fixed andRz(l, f) is . 2;3 [y [f117
specified by (7). To ensure that the decoding of the watermark Es,/2(p,q) = uy )?:XQ} EAGIE (8)
mi

is correct, for each frequency bifi and each time block,
A(l, f) has to be the same at the coder and at the decoder. 3
However, the value ofnZ,,. (I, f), which determinesi(l, f), This ratio is quantized tdv,, ;. (p, ¢) using a scalar quantizer

is modified by the watermarking process, as any other MDGIhd the resulting index is embedded as watermark informatio
coefficient. A solution to this problem is to use a scale factinto the mix moleculeM;, (block 5 of Fig. 2) usingQa(l, f).
quantizerQ 4 (f), at both the coder (block 2 of Fig. 2) and theAt the decoder, the descriptor is extracted and decoded at
decoder (block 9) levels. This quantizer has a lower reiwiut blocks 11 and 12. The molecul®/,; of the source signal
than Q»(l, f) so that theQ 4-quantization ofmZ,,.(I, f) is s; is then reconstructed (block 13) by the corresponding mix
robust to the watermark. The result of this quantizatiorsisci molecule M, weighted by (8) according to:

as the scalar factor. Thus, a 6-bits quanti@er(f) is chosen,

which is, i) known at both the encoder and the decoder, ii) ]\7[;; =M} x\/Es, 12(p,q) 9)

defined for each frequency bjfy but independent of time, and L ,
This is done for each molecule of each source signal.

i) insensitive to the watermarking proce<3.(f) has been .
determined from a large set of music and speech signals (abb{ierefore, the separation is based here on molecular energy

1 000 speech files from TIMIT [32] and about 10 minutes O?egregatio?l Note that the resolutions of descriptor quantizers
.are determined using the bit allocation tables presentdiein

music signals of various musical styles extracted from audi _ : X .
CDs). ne?(t subsecnqn. The scale factors are quantized using & 6 bi
uniform quantizer known at both coder and decoder. Thetresul
is transmitted via watermarking because this informatioare
acterizes individual source signals, and it cannot beeawdd
from the mix MDCT coefficients at the decoder. The cost
of this additional embedding is assumed to be very low in
comparison to the cost of descriptors, since those parasnete
are encoded only once in a givénblock of signal.
In the case several sources overlap, shape® of the mix
10 molecule can be quite different from the shape of the source
molecule it is supposed to reconstruct. For this reason, if
Cun(l,p) is large enough, additional information describing
00 the shape of source molecules is embedded. Coding the
shape of a molecule would ideally correspond to code the
—AQ f) amplitude of each of its MDCT coefficients. However, the
C) Q2(L, f) watermark required capacity is much larger thar, (I, p). Hence, we
Fig. 4: Q- and Q2-quantizers.A(l, f) is provided by the usevector quantization techniques (actually matrix quantiza-
quantization ofmZ,,. (I, f) usingQ(f). tion techniques) [33]: molecule prototypes are used aseshap
descriptors to strongly reduce the coding cost of these de-
scriptors (compared to individual MDCT coefficient coding)
Codebooks of (matrix) prototype shapes have been designed
for each molecular frequency binusing the Linde-Buzo-Gray

In the method described throughout this paper, the watégorithm [34] applied on a large training database of signa
mark embedded into the mix signal contains descriptorsef t1olecules (see Section IV-A). Note that these codebooks are
source signals which are used for the separation process. #Hapted to a given instrument, or a given type of voice,
descriptors are defined at the molecule level. Two diffesetg USing a corresponding database for training. This is expect
of descriptors are used to describe a molecule of sourcalsiglf Provide an improvement of separation results as in, e.g.,
depending on the embedding capacity of the correspondisgl- For each kind of source signal.¢ each voice and
molecule of the host mix signal.¢. the molecule with same €ach instrument) a set of codebooRs = {Dj(p)},i €
coordinates in the TF plane). In the case of a poor capacity; .7 € [6,10],p € [1,W/2F] of different sizes2" is
the descriptor of a given source is a single parameter treat cteomputed for each molecular frequency hin The shape
acterizes the local contribution of this source to the miagu descriptor of a source molecule is the closest prototyppesha
in terms of energy. In the case of a larger embedding capacify the corresponding codebook, according to the Euclidean
the descriptors are a set of parameters directly encodiag fistance. The codebooks are assumed to be known at the
source signal independently of the mixture. In the follagvin

(f:)e{PxQ}

~—

(o

A(ly f) - Al(lz f)

ALS) | AP 716

11

01

H

D. Source signals descriptors and their use for separation

2A similar constant-power processing on regions of MDCT ficiehts has

we specify the descriptors definitions in both cases. been considered in the Gaussian models-based source ta@panathod of
In the case of a poor capacity the descriptor of the sour?,'é]' but on the frequency axis only, hence sub-bands psingsinstead of
! molecules.

signals; is defined as t.he energy ratio bEtWG_en a molecule Obrpe shape of a molecule is defined as the normalized set ofitades
s; and the corresponding molecule of the mix of the MDCT coefficients composing this molecule.
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decoder, and the index of the prototype in the codebookdsiantized. The upper bound results from the limitation dhbo
embedded as shape information (blocks 4 and 5). To incredise shape codebooks size and the total embedding capacity.
the coding efficiency in term of quality/bitrate ratio, moldes Between 7 or 8 and 11 or 13 bits, it was found relevant to
are normalized before coding (hence, all codebooks contajlit each2 x 4 molecule into twol x 4 molecules and to
normalized prototype molecules). A molecul€;: with mean allocate half of the embedding capacity to encode an energy
(across the MDCT coefficients of the moleculg), and ratio descriptor for each of the two sub-molecules.

standard deviation (idemy, is normalized by: Note finally that the streaming of embedded data among the
Ao s, MDCT coefficients of a molecule is a trivial task and is not
NS pa Hpq (10) detailed here.
prq O.Si
prq

Additional descriptors3;, and o3 are encoded separaterTABLE I: Bit allocation tables (per source) for the sepaati

as in e.g. [36], to providg:®: aﬁé 55 This is done usin 'of 2 to 4 signals with molecules of siz2x 4. M, G and
9. [20], 10 providegr,, pa’ 9 s stand for the mean, the gain (standard deviation), and the
scalar quantizers similar to those used to encode the ener Yoei : : o
descriptor (8) in the case of a poor capacity. As was dogere N (11), respectively. When (8) is used, it is also thho
' bY G. In the case of molecule split, G is the energy ratio for

for the energy descriptor, the parameters of the additio . -
. . ; e sub-molecule with lower frequency, and G’ is the energy
mean/standard deviation quantizers are transmitted viarwa__ . . . .
ratio for the sub-molecule with higher frequency. NS is the

marking once for eacli-block. At the decoder, ifV; denotes X
a number of source signals to separate.

the molecule of the shape codebofK (p) closest toN,.,

M;; is estimated by (blocks 12 and 13): 2 signals 3 signals 4 signals
Cu/NS| S|G|G[M|[S[G|G[M|S[G[G[M
TSI =8 o N -5 1 - - - T T-T-T--1-1T-1-
Mg = g X Nig + fiyg- (11) 2 : : :
Note that in this case, the decoding and estimation of a soure i i i i
molecule is a single process. 5 5 5 5
Finally, the source signals are reconstructed from the esti__ 6 6 6| - 6| -
mated source molecules by applying inverse MDCT (block 14—~ L s B
see Section IlI-A). 9 5| 4 51 4 5| 4
10 5[5 55 5[5
. . 11 6 5 6 5 - 6 5 -
E. Bit allocation 12 6] 6 6| 6 63| -3
Distributing the embedding capacity (5) among the differer S 5 Z o 716 Z o 7 S j g
descriptors is a complex optimization problem. It depemis g 15 71 4 274 7|8 4 3
the number of sources to separate, their nature (an insttume 13 ; ‘5‘ 2 ; 2‘ 2 91 4 £l
and a speech signal may not need the same amount of datag 55 1oz =T -
to be accurately described), the nature of the descripaoi, 19 8 |5 6 95 5
their required coding accuracy. Moreover, limits to theesiz ;2 g Z g 10]5 5
of codebooks must be taken into account, since too small-a—; 515 7 - -
codebook cannot efficiently represent the shape of a maecu 23 9 | 7 7
while too large a codebook would considerably increase the ;g 18 ; ;
coding/decoding computational cost. In the present stady,—— TREE 3

series of bit allocation tables were determined empiryctalt
different separation configurations, and validated byetisig
tests. For each configuration, the number of sources toaepar
from the mixture is fixed for the entire mixture signal. This
number, as well as the corresponding bit allocation tafaless, A Data and performance measurements
assumed to be known at both the encoder and the decoder. Tests have been processed with both 16kHz-speech signals
Table | is an example of bit allocation tables designed fand 44.1kHz-music signals with voice+voice mixtures,
the separation of two, three, or four signals with moleculemd singing voice+instruments mixtures, with a number of
of size 2 x 4. Note that the allocation is given per moleculesources varying from two to four. Speech signals are from
and per source, and each source signal is allocated the sdinee TIMIT database. Two male and two female English
resource. This table illustrates the switch between difier speakers were used for the tests. Ten sentences for each
coding configurations depending on the embedding capacity. 279 speakers (122 females, 157 males) were used to
When the embedding capacity is within the range 3-7 bitmiild the codebooks. For the music signals, instruments
(for 2 signals) or 3—6 bhits (for 3 or 4 signals), the ratio (8) iare a bass guitar, a piano, and drums (one track for the
quantized (below 3 bits, the coding accuracy is too poor angerall drum set), and the singing voice is from a female
it is better to directly use the mix molecule for source signainger. Six pieces of music played together by all four
reconstruction). For a high capacity, within the range B1—-2ources (recorded separately in studio conditions) were
bits (for 2 signals), 14—20 bits (for 3 signals), or 12—16&fibr used. Four of them were used to build the codebooks, and
4 signals), the mean-gain-shape (MGS) descriptors of (L) &xcerpts from the two remaining pieces were used to test

IV. EXPERIMENTS AND RESULTS
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the separation (a slow piece and a fast one were choseant?'-E lll: Separation results vs. molecule size fc_>r 3 mix
ensure diversity of test signals). Details about the trmjni SIgnals : 2 speakers (2S), 4 speakers (4S), and 3 instruments

data are given in Table Il (note that the difference in dafal Singing voice (31+1S).

durations between instruments results from the suppmessio . ISNR (dB)

of silent sections). The ratio between the size of training Mix %4 | 4x2 | 3x4 | 4x3 | 4x4
data and the maximum size of the codebooks, is assumed 25 10.05 | 1002 952 | 938| 915
to be always greater than 100. In all the followingl+1S 45 1040 | 1017 | 993| 9.838| 965
denotes a music mixture signal bf instruments + 1 singing 31+1S | 14.97 | 1450 | 1454 | 14.27 | 14.11

voice, andVS denotes a speech mixture signahMbkpeakers.

(')I'he figure below gives the resulting capacity (5) of & 4
molecule. As for many music signals, most of the energy of
the mixture is located in a specific frequency range, mok#y t

TABLE IlI: Characteristics of the training corpus used t
compute the shape codebooks.

source signal dU_ration size corpus sizg low frequencies._This results in a Iarge embedding_ capacity
(minutes) | (number of molecules) / codebook size|  up to about 60 bits per molecule. In higher frequencies, fewe
bass guitar 18.1 186732 182.3 bits are available to insert the watermark (although in this
female singer|  10.8 109568 107.1 example energy and capacity have a local raise around 9kHz).
drums 16.7 171080 1611 In high frequencies, the human ear is less sensitive, andaou
piano 15.1 154836 1512 signals can be represented with a lower accuracy. Thus, the
female speech)  64.1 239961 2343 ratio between the accuracy of the separation informatidreto
male speech |  80.1 300580 293.5 embedded and the embedding capacity is satisfying along all

frequency bins.

The quality of separated sources has been assessed by boftig. 5 also shows the corresponding results of the bit
listening tests in anechoic chamber and ISNR measures,aflecation for the descriptors, in the case of the separatio
defined in [37]. ISNR is the difference (Improvement) of logef three signals from the 4-sources mixture, using the bit
Signal-to-Noise power ratios between input and output ef tlallocation table of Table | (note that the three sources are
separation process, where Signal is the source signtal be allocated the same amount of bits; in a future work, bit
separated, at the input Noise is the sum of all other signalbocation may be adapted to each kind of source signal). As
in the mixtureZisz# sk, and at the output Noise is thea result of the energy distribution, shape codebooks aré use
difference between the original signgland estimated sourceto describe low frequencies molecules, here from 0 to 2kHz
signal §;: (molecular frequency bin 12), and also the medium frequenci

around 8 to 10kHz (molecular frequency bin 47 to 58). From 2
>, (si[n])? 1p) 10 8kHz and then from 10 to 16.5kHz the embedding capacity
D kti 2on (8K [0])? (12) only allows to encode the gain df x 4 sub-molecules (see
) Section lI-E). From 16.5 to 19.5kHz (bin 96 to 114), only
SNR.,, 1010910( > on(si [”]) ) (13) the gain of full 2 x 4 molecules can be encoded, and for
“ > on(si[n] = 5;[n])? higher frequencies, no information on the source signats ca

SNgn = 1010910 (

and for each source be embedded. Above 15kHz, it is likely that signal composent
are very low and thus inaudible, hence source separation may
ISNR = SNR,,; — SNR;;,. (14) not be necessary.

Table IV shows the total capacity for several music and
speech mixtures, summed over frequencies, and averaged ove
] i time. Hence, we obtaiaverage watermarking bitrates. Rates

Concerning the size of a molecule, a trade-off has to B ahout 140 to 180 kbits/s are obtained for music and rates
found between a sufficient capacity that enables to encoglgsr 70 kbits/s are obtained for speech mixtérahose rates

descriptors properly, and a correct resolution in the TF@om  ¢onfirm the possibility to embed a large amount of informatio
Table Il shows the separation results obtained for 5 d#f€r jnto audio signals.

sizes of molecule, containing from 8 to 16 MDCT coefficients.
For this experiment, only the unquantized version of (8) Wa\BLE IV: Embedding capacity for several music and speech
used as a source descriptor, since we only test the "separatixtures.
power" of the molecular decomposition.2x 4 molecule size
appears to be the best trade-off. Results are slightly |darer mixture | 3+1S| 31 |2+1S| 21 |1+1S| 45 | 35S | 2S
a 4 x 2 molecule, which confirms the importance of spectral capacity (kbits/s} 177.5| 159.6| 181.4| 178.6| 144.0| 73.0| 72.3| 73.3
dynamics for audio signals.

The top figure of Fig. 5 gives an example of embedding

Capacity (4) for each MDCT coefficient as a function of 4Note that the capacity does not necessarily increase withmttmber of
sources because mixture signals are normalized in ameliithin [—1, 1.

freque_ncy b'nf' Obtame.d on alL-block O_f S|gnal L % Adding a source to an existing mixture may lead to actuallgrel@se the
1.5s), in the case of a mixture of four musical source signatsergy of some TF regions after renormalization.

B. Molecule size, embedding capacity and bit allocation
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58 1 gain results in a very significant improvement in the quality
ggi e, 1 of separated signals.
SaooL
2 1 1 Y 1
0
* e frequencybin150 - ® TABLE V: Performances for the separation of 4 signals in a
jg ‘ 4-sources music mixture and 2 signals in a 4-sources speech
o e | mixture in the ER and MGS configurations.
0 1 | 1 1 1 1
20 0 60 80 100 120
o T 4\ T T T T Mix Signals ISNR (dB)
28 \ ER | MGS
%4 Vﬂ\ /_\ /_\ /\ Bass 9.6 16.8
0 0 0 & % 10 120 Music Voice 73| 117
ogl. ) poA =y ! ! ] Drums | 12.7 | 19.7
E;ﬂ\/ RS e Piano | 12.1| 143
g | | L | A Femalel | 12.0 | 15.0
20 40 60 80 100 120 Speech
.6 T T T T T T Malel 9.3 12.1
A AN AN
sal ] VL A
CHE - o L \feb | o | b - Now that the interest of using codebooks has been
=, = , T ‘ ‘ ‘ clearly assessed, we present extended results within the
5 N | functional configuration of the proposed system (variable
s, 11 R ‘ ‘ MGS allocation using Table I). Table VI gives the separation
2 O ke fequenty bin 1 1% performance of the presented method for different settings

Fig. 5: Example of embedding capacity (per MDCT coefficierilgn? :z)lfj?ger Ssligl:]zllss a|£|eeigga{sitse?aiﬂoiﬂgs?;?sriﬁg;rﬁfe or
and per molecule for the two top figures) and bit aIIocationf th b 9 f ) ! th ixct d th b f
(per source) for a mixture of a bass guitar, a female singé)r © humber of sources in te mixture an © humber o
a piano, and a drum set, for the separation of 3 sources Wt?]urces.to sep_arate. Note that the more numerous are source
molecul,es of size x 4 ' élgnals in a mixture, the lower is their input SNR, and the
' bigger is the risk these sources overlap in the TF plane.

For the mixture of three sources, the input SNR-i5.9dB,
—5.8dB, and—1.8dB, for the bass guitar, the drums and the
piano, respectively, but when the singing voice is addeti wit

In this section we report separation results obtained vaigh tan input SNR of-1.1dB, the input SNRs of the other sources
complete system. Note that it was verified that watermarkimcrease te-5.8dB, —9.0dB and—5.7dB, respectively.
MDCT coefficients withQ»(l, f/) does not impair the audio The main result emerging from Table VI is a good
quality of the mix signal (this is not surprising since it waseparation for all sources and from every mixture, inclgdin
the case with@Q:(l, f) in which Q2(l, f) is entwined). A the most challenging case of 4 sources from a 4-sources
first series of tests were processed to quantify the effectsxture. In this latter case, ISNRs range from 11.7dB for the
of using codebooks on separation results. A comparison wsBging voice (this lowest ISNR is mainly due to a relatively
made between two configurations: in the first one, only thegh input SNR compared to other sources) to 19.7dB for the
energy ratio descriptor (8) is used for all molecules, evatrums (which have the lowest input SNR). ISNR scores for
if the embedding capacity is high (the ratio is then simplthe other instruments are 14.3dB and 16.8dB. For the case of
guantized with more accuracy). In the second configura#ithn, 3 sources to be separated from the same 4-sources mixture,
descriptors defined in (8) and (10) are used, and the embgddiBNR scores range within 15-22.3dB. The noticeable inereas
capacity is allocated according to Table I. Table V providdsr both output SNRs and ISNRs from the separation of 4
the results obtained for these two configurations (enertiy rasources to the separation of 3 sources (from 3I+1S) reveals
(ER) vs. mean-gain-shape (MGS)), for the separation of fouhe influence of sharing the embedding capacity between
music signals from their mixture, and for the separatiomaf t sources. Altogether, those results demonstrate a suiastant
speech signals from a mixture of two female and two mageparation, despite the difficulty of the task. Obvioustis is
speakers. In each case, two different test signals were, usedde possible by the informed aspect of the separation which
with a duration of approximately 8s each. Table V exhibitensures a good coding of the source signals, as opposed to
ISNR scores from about 7dB up to about 20dB depending osual source separation systems. An additional illusinais
the configuration, hence a good separation of both speech gien in Fig. 6, which provides the 4 original and separated
instrument source signals. Listening tests performederBR waveforms in the "4 out of 4" configuration. This figure
configuration reveal remaining interferences on the sépdrashows that the separated waveforms are very close to the
sources. Table V proves the significant improvement obthineorresponding original waveforms.
by using shape codebooks, with an average ISNR increas&he good separation is confirmed by listening tests, that
across configurations of 4.5dB (from +2.2dB for the pianshow a very good rejection of competing sources: each
which is the instrument with the "sparsest playing", to +7dBistrument is clearly isolated. Of course, the quality i4 no
and +7.2dB for the drums and the bass respectively). Thisrfect, and some level of musical noise remains (more or

C. The complete separation system
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less significant, depending on the source signal and on {HABLE VI: Separation results for music mixtures in term of
number of sources to separate: for instance, the musitalNR (dB).

noise is lower for 3 sources than for 4 sources to separatg). mix of 4 sources (b,s,d,p]| mix of 3 sources (b,d,p)
However, those results provide a very promising basis for>°U"ees 0 separate—gge"" ISNR SNRowe ISNR
the active listening application: separate signals candae@d | bass guitar (b) 11.1 16.8 - -
(up to a reasonable extend) and even subtracted from th&male singer (s) 10.6 117
mixture, directly in the time domain. The resulting qualify | drums (d) 107 197
the “"remastered” mixture is quite encouraging even if it isP?2" () 8.6 14.3 - -
still far from transparency (i.e., as it would result fromedit | Pass oular () 131 189 131 150
. .. . . female singer (s) 14.4 15.0 - -
rt_amasterlng of original source signals). The isolated s®ur drums (d) 132 223 131 189
signals can be clearly enhanced or canceled, and the musicgl, (, . ] 103 121
noise appears to be partly masked by the mixture. SOuN®ass guitar (b) 13.4 191 13.4 16.3
samples for both "3 out of 4" and "4 out of 4" configurations piano (p) 11.3 17.0 11.3 14.0
(and also "2 out of 4", see below) can be downloaded atremale singer (s) 15.1 15.7 - -
http://ww.icp.inpg.fr/~girin/\WB-|SS-deno.rar. drums (d) 14.7 23.7

The package includes original and watermarked mixtures,
and original and separated source signals. All signals ¢ i s sl
correctly scaled so that the interested reader can direc m
process its own remastering using the mixture signal a 0
separated sources. ” bl

As for the other settings, analyzing Table VI into mor: UEMWW

details shows an improvement of the ISNR scores from tl " it D s

extraction of 2 or 3 sources from a 3-sources mixture (31) " “ | |

the extraction of the same sources from a 4-sources mixti ,D: N % ‘ . ' ’
(31+1S). This is mainly due to a drop of input SNRs witt _ il Paro s
a larger number of sources within the mixture (see abowvi s
On the other hand, output SNRs are approximately the sa * ——"

for the separation of 2 or 3 sources from 31+1S and from & '

Observations made during the tests provide two explamatic ”W%WWWWWW
for this latter result: either the embedding capacities f ) Estnde Bes il

the 31+1S mixture and the 3| mixture are similar, or th &z
embedding capacity for 3I+1S is larger but the descripto 1

Estimated Vaice signal

coding accuracy reaches an upper limit (e.g., the limitatic o 5
in codebooks size). This also explains the currently lowt (b DEWMWVWW
real) increase of output SNRs, and corresponding mod . EstinedDun s

increase in signal quality, from the separation of 3 soutoes | ' ‘ P . W ] '“ b” ” it } '
the separation of 2 sources (see Table VI and the sample

This suggests that using larger codebooks, or more refir .- P :
coding schemes, when the number of sources to separat @
small compared to the overall embedding capacity wou **-

result in better separation results. Note that in the case g} 6: Waveforms of 4 original and separated signals from
the audio-CD application, the separation of more than 2 oryge 31+1S mixture (the mixture is in the center plot).
sources is targeted. Hence, we do not focus on improving the

separation quality of a small number of source signals, but
we rather tend to increase the number of sources to separate.
However, the large room for improvement in the "2 out of
4" case is a very encouraging and reassuring point withinThe separation approach described in this paper does not
the audio-CD framework, since a very basic way to explditelong to classical source separation methods. Contrary to
stereophony would be for example to embed one differetite BSS framework, in the Informed Source Separation,
pair of sources in each channel and use the knowledge of #weirce signals are available before the mix is processed,
mixture process to control the contribution of each sour@nd specific (but important) applications such as audio-CD
signal in both channels, leading to 4 high-quality separatactive-listening" are targeted. In the present studynpsing
source signals. This principle is valid for a larger numbgreliminary results on speech and music signals separation
of sources as long as their single-channel coding quality fiem a single-channel mixture have been reported.
satisfying. This is part of our future works. Many improvements can be made to the proposed method.
Future work will first focus on a larger range of music in-
struments to separate. In the audio-CD application, coalkebo
could be learned using the source signals later mixed irgo th

V. CONCLUSION
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tracks of the CD (i.e. training data = test data), whereahkén t[14]
present study, test signals were not included in the codeboo
training set. A better reconstruction of each source sigmal [15]
then expectable. Also, the use of refined TF decomposition
algorithm such as Molecular Matching Pursuit [27] [28] ard/

: X " . : 16]
multi-resolution decomposition will also be considered tb
better take benefit of both the audio signals sparsity and the
properties of the auditory system, and provide a more ateurd’]
separation. Those decomposition techniques can be cochbine
with refined strategies for source signal coding (includings]
variable bit allocation among the sources) depending on the
local composition of the mixture in the TF plane and not onIMQ]
on the local capacity, as was the case in the present work.
As for the watermarking part, a psychoacoustic model Wiﬂ%o]
also be used to determine the resolution of quantizgl, f)
for every L-block of the mixture signal. This is expected
to significantly increase the embedding capacity. Findhg
ISS framework can be extended to the multi-channel sourltzzé]
separation framework, beginning with the stereo case fer th
audio-CD application. Beyond the basic schema mention&dl
at the end of Section IV-C, the combination of the proposed
source coding/watermarking method with spatial processin
inspired from, e.g., [7] [11] [25] is a promising trail that i [23]
currently being investigated.
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