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Introduction

We are concerned with the evolution of compact hypersurfaces {Γ t } t≥0 ⊂ R N moving according to the general non-local law of propagation

V = h(x, t, Ω t , n(x), Dn(x)) on Γ t , (1) 
where V is the normal velocity of Γ t which depends, through the evolution law h, on time, on the position of x ∈ Γ t , on the set Ω t enclosed by Γ t , on the unit normal n(x) to Γ t at x pointing outward to Ω t and on its gradient Dn(x) which carries the curvature dependence of the velocity. When such motion is local, i.e., when h does not depend on Ω t , and satisfies the inclusion principle or geometrical monotonicity, i.e., when, at least formally, the inclusion Ω 1 0 ⊂ Ω 2 0 at time t = 0 implies Ω 1 t ⊂ Ω 2 t for any t > 0, it is proved by Souganidis and the first author [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF] that the motion can be defined and studied by the level set approach, which was introduced by Osher and Sethian [START_REF] Osher | Fronts moving with curvature dependent speed: algorithms based on Hamilton-Jacobi equations[END_REF] for numerical calculations and then developed, from a theoretical point of view, by Evans and Spruck [START_REF] Evans | Motion of level sets by mean curvature. I[END_REF] for the mean curvature motion and by Chen, Giga and Goto [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF] for general velocities. This approach replaces the geometrical problem (1) with a degenerate parabolic partial differential equation called the geometric or level set equation. This equation is designed to describe the desired evolution via the 0-level set of its solution. More precisely, the existence and uniqueness of the level set solution u : R N ×[0, +∞) → R allows to define Γ t as being the set {x ∈ R N | u(•, t) = 0}.

In recent years, there has been much interest on the study of front propagations problems in cases when the normal velocity of the front depends on a non-local way of the enclosed region like [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF]. This interest was motivated by several types of applications like dislocations' theory or FitzHugh-Nagumo type systems or volume dependent velocities that we describe below. It is worth pointing out that the level set approach still applies for motions with nonlocal velocities provided that the inclusion principle holds, following the ideas of Slepcev [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions[END_REF]. But, in many of the above mentioned applications, one faces non-monotone surface evolution equations. For such class of problems, the level set approach cannot be used directly since the classical comparison arguments of viscosity solutions' theory fail and therefore, the existence and uniqueness of viscosity solutions to these equations become an issue.

Though the existence properties for such motions seem now to be well understood (see [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF][START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF][START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]), this is not the case for uniqueness. In particular, there are not many uniqueness results for curvature dependent velocities. As far as the authors know, there are only two works by Forcadel [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF] and Forcadel and Monteillet [START_REF] Forcadel | Minimizing movements for dislocation dynamics with a mean curvature term[END_REF] which investigate the motion arising in a model for dislocation dynamics which is included by our general equations. The aim of this article is to consider cases where we have, at the same time, a non-local velocity which induces a non-monotone evolution together with a curvature dependence (we explain later on the state of the art for such problems and why the curvature dependence creates a specific difficulty). More specifically, we describe a method to show short time uniqueness results for the general motion [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF].

We now describe some typical applications we have in mind. We first consider a model for dislocation dynamics h = M(n(x)) c 0 (•, t) * 1 Ωt (x) + c 1 (x, t)div Γt ξ(n(x)) ,

where 1 A denotes the indicator function of a subset A of R N and M, ξ : S N -1 → R, c 0 , c 1 : R N × [0, T ] → R are given functions and we write c 0 (•, t) * 1 Ωt (x) := models of the dislocation dynamics (see [START_REF] Rodney | Phase-field methods and dislocations[END_REF][START_REF] Alvarez | Dislocation dynamics: short-time existence and uniqueness of the solution[END_REF] for a derivation and the physical background). We next consider asymptotic equations of a FitzHugh-Nagumo type system as an example of interface dynamics coupled with a diffusion equations, h = α(v(x, t))div Γt (n(x)) and

(3)

v t -∆v = g + (v)1 Ωt + g -(v)(1 -1 Ωt ),
where α, g ± : R → R are bounded and Lipschitz continuous with g -≤ g + . This system has been investigated by Giga, Goto and Ishii [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF] and Soravia and Souganidis [START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF]. Finally, we consider equations depending on the measure of the fronts like

h = β(L N (Ω t )) -div Γt (n(x)), (4) 
where the function β : R → R is Lipschitz continuous. A typical example is β(r) = a + br for some a, b ∈ R which has been investigated by Chen, Hilhorst and Logak in [START_REF] Chen | Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term[END_REF] (see also [START_REF] Cardaliaguet | On front propagation problems with nonlocal terms[END_REF][START_REF] Cardaliaguet | On the approximation of front propagation problems with nonlocal terms[END_REF]).

As we already mentioned it above, these examples are not only nonlocal but also non-monotone surface evolution equations. Indeed, in [START_REF] Alvarez | Dislocation dynamics: short-time existence and uniqueness of the solution[END_REF], the kernel c 0 may change sign and, in [START_REF] Aubin | Set-valued analysis[END_REF] and in (4), the functions α, β may be non-monotone. We also refer to [START_REF] Cardaliaguet | On front propagation problems with nonlocal terms[END_REF][START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions[END_REF][START_REF] Da Lio | Nonlocal front propagation problems in bounded domains with Neumann-type boundary conditions and applications[END_REF][START_REF] Srour | Nonlocal second-order Hamilton-Jacobi equations arising in tomographic reconstruction[END_REF] for some monotone non-local geometric equations. By using the framework which we present in this paper, we give short time uniqueness results for (2), [START_REF] Aubin | Set-valued analysis[END_REF] and [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF].

There are many results of existence and uniqueness for the simplest case of motions of (2), i.e., M(p) ≡ 1 and ξ(p) = p/|p| without a curvature term. A short time existence and uniqueness result was first obtained in [START_REF] Alvarez | Dislocation dynamics: short-time existence and uniqueness of the solution[END_REF]. But then most of the results were obtained for curvature-independent velocities (ξ = 0): long time existence and uniqueness results were obtained when the velocity is positive, i.e., h > 0 on Γ t ,

by Alvarez, Cardaliaguet and Monneau in [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF] and by the first two authors in [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF] by different methods. The first two authors with Cardaliaguet and Monneau in [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] presented a new notion of weak solutions (see Definition 1) of the level set equation for (2) without a curvature term, gave the global existence of these weak solutions and analysed the uniqueness of them when (5) holds. A similar concept of solutions already appeared in [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF][START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF]. In the companion paper [START_REF] Barles | Uniqueness Results for Nonlocal Hamilton-Jacobi Equations[END_REF], the first two authors with Cardaliaguet and Monteillet proposed a new perimeter estimate for the evolving fronts with uniform interior cone property and by using this, they extended the uniqueness result for dislocation dynamics equations and provided the uniqueness result for asymptotic equations of a FitzHugh-Nagumo type system, still under the positiveness assumption [START_REF] Barles | A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations[END_REF].

In this paper, we do not use the perimeter estimate in an essential way but either elementary measure estimates or, in the most sophisticated cases, the interior cone property (see Lemma 11). Since the studies by [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF][START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF][START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF][START_REF] Barles | Uniqueness Results for Nonlocal Hamilton-Jacobi Equations[END_REF], it is now well-known that estimates on lower gradient bound and perimeter of 0-level sets of viscosity solutions of associated local equations are key properties to obtain existence and uniqueness results for nonlocal equations derived from (2), ( 3) and ( 4). Let us describe the main difficulty of our problem and, to do so, we consider the level set equations of the simplest case of (2) or (3) here. Considering the non-local part as a given function, we are led to the study the (local) initial value problem

   u t = c(x, t) + div Du |Du| |Du| in R N × (0, T ), u(•, 0) = u 0 in R N , (6) 
where

u 0 ∈ W 1,∞ (R N ) and c ∈ C(R N ×[0, T ]
) are bounded and Lipschitz continuous with respect to the x variable. One of our main results is a short time lower gradient bound estimate for the viscosity solution of (6), i.e.,

|Du(x, t)| ≥ η(t) > 0 in a neighborhood of {u(•, t) = 0}. ( 7 
)
For first-order eikonal equations, lower gradient bound comes naturally from the Barron-Jensen's approach (see [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF]). For second-order equations like [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF], it is affected by the "diffusion" term and the non-empty interior difficulty and therefore we cannot expect that the property (7) holds generally and for long-time. Indeed, in [START_REF] Bellettini | Two examples of fattening for the curvature flow with a driving force[END_REF], see also [START_REF] Koo | A fattening principle for fronts propagating by mean curvature plus a driving force[END_REF][START_REF] Gulliver | Sharp growth rate for generalized solutions evolving by mean curvature plus a forcing term[END_REF], they consider the simple example of ( 6) with c ≡ 1 and smooth u 0 such that Du 0 = 0 on the initial front {u 0 = 0}. They prove that, up to choose suitable u 0 , fattening may occur for arbitrary t > 0, i.e., the front may develop an interior. It is precisely this reason which implies that there are not many results on the nonlocal second-order equations like the level sets equations of (2), (3) and (4) and a short-time result is optimal. Existence results were obtained by [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF][START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF][START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF] but they concern merely existence of weak solutions defined by Definition 1. As stated above, there are two works [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF][START_REF] Forcadel | Minimizing movements for dislocation dynamics with a mean curvature term[END_REF] which give uniqueness results for the motion [START_REF] Alvarez | Dislocation dynamics: short-time existence and uniqueness of the solution[END_REF]. The difference between our results and theirs is that, in [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF], only the evolution of hypersurfaces which can be expressed by graphs of functions is considered while, in [START_REF] Forcadel | Minimizing movements for dislocation dynamics with a mean curvature term[END_REF], the arguments are based on minimizing movement for (2) and they are completely different from our arguments which are based on the theory of viscosity solutions. Moreover, for the existence of minimizing movement for the simplest case of (2), the assumptions that c 0 (•, t) is symmetry and c 0 , c 1 are smooth enough are essentially used. Therefore, uniqueness results for the examples (3) and ( 4) are not covered by [START_REF] Forcadel | Minimizing movements for dislocation dynamics with a mean curvature term[END_REF].

Another difference with existing results in the literature is that h is allowed to change sign in (1), contrary to [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF][START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF][START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF][START_REF] Barles | Uniqueness Results for Nonlocal Hamilton-Jacobi Equations[END_REF] where [START_REF] Barles | A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations[END_REF] is one of the main assumption to get uniqueness. It may give rise of fattening, see [START_REF] Barles | Front propagation and phase field theory[END_REF]Proposition 4.4], and it is another explanation of the short time result.

Finally, we explain the key idea to obtain [START_REF] Barles | Uniqueness Results for Nonlocal Hamilton-Jacobi Equations[END_REF] for viscosity solutions of [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF]. In order to get it, we make the following assumption on u 0 . There exist constants

λ 0 ∈ (0, 1), η 0 > 0 and ν ∈ C(R N , R N ) such that u 0 (x + λν(x)) ≥ u 0 (x) + λη 0 in a neighborhood of {u 0 (•) = 0}
for all λ ∈ [0, λ 0 ]. Then we prove that such a property is preserved for the solution of (6), at least for short time, i.e., u(x + λν(x), t) ≥ u(x, t) + λη(t) in a neighborhood of {u(•, t) = 0} [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF] for all λ ∈ [0, λ], t ∈ [0, t∧T ] and some t > 0, λ ∈ (0, λ 0 ], where η :

[0, t∧T ] → [0, ∞) is a non-increasing continuous function such that η(t) > 0 for all t ∈ [0, t ∧ T ). ( 9 
)
The assumption on u 0 is inspired by [START_REF] Barles | Front propagation and phase field theory[END_REF]Theorem 4.3], where it is formulated only for the sign-distance function. A similar result to (8) may be found in [START_REF] Biton | Non fattening condition for the generalized evolution by mean curvature and applications[END_REF] where it is used to prove uniqueness results for the mean curvature motion for entire graphs. If u 0 is a smooth function with Du 0 = 0 on the compact hypersurface Γ 0 = {x : u 0 (x) = 0}, then the assumption is satisfied with ν(x) = Du 0 (x) and if there exists a smooth solution of the level set equation, then [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF] holds for short time. But, on one hand, the general degenerate parabolic and nonlinear equations we consider do not have classical solutions in general, and on the other hand, the above assumption on u 0 is valid in cases when Γ 0 is not a smooth hypersurface, which is also an important point here.

The proof of ( 8) uses in a crucial way the geometric property of ( 6) and a continuous dependence result for parabolic problems (which is, by the way, of independent interest). We refer to [START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations[END_REF][START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations[END_REF][START_REF] Barles | Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations[END_REF] and references therein for the detail of the continuous dependence result for elliptic and parabolic problems.

We derive lower gradient estimate (7) from (8) formally here. We have

λη(t 0 ) ≤ u(x 0 + λν(x 0 ), t 0 ) -u(x 0 , t 0 ) = λ Du(x 0 , t 0 ), ν(x) + o(λ ν ∞ ) ≤ λ|Du(x 0 , t 0 )| ν ∞ + o(λ ν ∞ ) in a neighborhood of {u(•, t) = 0}
for all t ∈ [0, t ∧ T ] with o(r)/r → 0 as r → 0. Dividing λ in the above and taking a sufficiently small λ ∈ (0, λ], we get the lower estimate [START_REF] Barles | Uniqueness Results for Nonlocal Hamilton-Jacobi Equations[END_REF]. We also obtain the interior cone property of fronts by [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF].

The paper is organized as follows: in Section 2, we state a continuous dependence result for a class of equations which encompasses level set equations associated to [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF]. In Section 3, we obtain the key estimate [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF] and derive the lower-bound gradient and perimeter estimates of 0-level sets of viscosity solutions of local equations. In Section 4, we consider the level set equation of (1) and give the proof for the short time uniqueness result (Theorem 10). Section 5 is devoted to existence and uniqueness results for the level set equations of (2), (3) and (4) as applications of Theorem 10.

Notations. For some k ∈ N, we denote by R k the k-dimensional Euclidean space equipped with the usual Euclidean inner product •, • , and by S k the space of k × k symmetric matrices. We write B(x, r) = {y ∈ R k | |x -y| < r} for x ∈ R k , r > 0, and A+rB(0, 1) := {x+y | x ∈ A, y ∈ B(0, r)} for A ⊂ R k . The symbols L k (A) and H k (A) denote the k-dimensional Lebesgue and Hausdorff measures, respectively. We write X T for the transpose of the matrix X and |X| = sup{|Xξ| | ξ ∈ R k , |ξ| = 1}. Finally, for a, b ∈ R, we write a ∧ b = min{a, b} and a ∨ b = max{a, b}.
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Continuous Dependence of Solutions

In this section, we are concerned with the equation

u t + H(x, t, Du, D 2 u) = 0 in R N × (0, T ), (10) 
T > 0, u : R N × (0, T ) → R is the unknown function, u t , Du and D 2 u stand respectively for its time and space derivatives, and Hessian matrix with respect to x variable. We use the following assumptions. 

(A1) H ∈ C(R N × [0, T ] × (R N \ {0}) × S N ). ( A2 
∈ R N × [0, T ] × (R N \ {0}
) and X, Y ∈ S N with X ≤ Y , where ≤ stands for the usual partial ordering for symmetric matrices. (A3) For any (x, t) ∈ R N × [0, T ], H * (x, t, 0, 0) = H * (x, t, 0, 0), where H * (resp., H * ) is the upper-semicontinuous envelope (resp., lower semicontinuous envelope) of H. (A4) There exist κ 1 , κ 2 ≥ 0, M ≥ 0 such that

H 2 (y, t, p, Y ) -H 1 (x, t, p, X) ≤ C R |x -y| 4 ε 4 + κ 1 + κ 2 |x -y| 2 ε 4 + ρ A 2 (11) 
for any ρ, ε

∈ (0, 1), R > 0, x, y ∈ B(0, R), p = 4ε -4 |x-y| 2 (x-y), X, Y ∈ S N and some C R > 0 satisfying      |p| ≤ M, X 0 0 -Y ≤ A + ρA 2 , ( 12 
)
where

A := |x -y| 2 ε 4 I -I -I I + |x -y| 2 ε 4 p ⊗ p -p ⊗ p -p ⊗ p p ⊗ p , (13) 
with p := p/|p|.

We note that, in this section, we do not assume that H is geometric.

Theorem 1. Let H 1 , H 2 be functions on R N × [0, T ] × (R N \ {0}) × S N satisfying assumptions (A1)-(A4). Let u 1 , u 2 ∈ C(R N × [0, T ]
) be, respectively, a bounded viscosity subsolution and viscosity supersolution of [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF] with H = H i for i = 1, 2.

Assume that there exists L = L u i > 0 such that

|u i (x, t) -u i (y, t)| ≤ L|x -y| for all x, y ∈ R N , t ∈ [0, T ] (14) 
for either i = 1 or 2, and that there exists R > 0 such that

u i (x, t) = -1 for all x ∈ R N \ B(0, R), t ∈ [0, T ] (15) 
for both i = 1 and 2. Then there exists M 1 > 0 which depends only on C, L, u 1 ∞ and u 2 ∞ such that

sup x∈R N (u 1 -u 2 )(x, t) ≤ sup x∈R N (u 1 -u 2 )(x, 0) + M 1 κ 1 t + (κ 2 t) 1/2 ( 16 
)
for all t ∈ [0, T ].
Remark 1. An assumption like (A4) is natural in viscosity theory to obtain continuous dependence results of the type ( 16) and the regularity of the solution (cf. ( 14)) is a key ingredient too, see [START_REF] Barles | Error bounds for monotone approximation schemes for parabolic Hamilton-Jacobi-Bellman equations[END_REF][START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations[END_REF][START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations[END_REF]. In Example 1 below, we show that (A4) holds in the cases we are interested in. Note that [START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions[END_REF] are not restrictive assumptions when dealing with front propagation problems, see [START_REF] Giga | Surface evolution equations. A level set approach[END_REF][START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF][START_REF] Barles | Uniqueness Results for Nonlocal Hamilton-Jacobi Equations[END_REF][START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF].

Proof. Let ε ∈ (0, 1) and K > 0. We shall later fix ε, K. Consider sup

x,y∈R N ,t∈[0,T ] {u 1 (x, t) -u 2 (y, t) - |x -y| 4 ε 4 -Kt}.
Noting [START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions[END_REF], it is clear that the supremum is attained at (x, y, t) ∈ B(0, R+1) 2 ×[0, T ] for small ε > 0.

We consider the case where t ∈ (0, T ]. In view of Ishii's Lemma, for any ρ > 0, there exist (a, p, X) ∈ J 2,+ u 1 (x, t) and (b, p, Y ) ∈ J 2,-u 2 (y, t) (see [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] for the notation) such that

a -b ≥ K, p = 4|x -y| 2 ε 4 (x -y), X 0 0 -Y ≤ A + ρA 2 , ( 17 
)
where A is the matrix defined by [START_REF] Bellettini | Two examples of fattening for the curvature flow with a driving force[END_REF]. The definition of viscosity solutions immediately implies the following inequalities:

a + (H 1 ) * (x, t, p, X) ≤ 0, b + (H 2 ) * (y, t, p, Y ) ≥ 0.
Hence we have

K + (H 1 ) * (x, t, p, X) -(H 2 ) * (y, t, p, Y ) ≤ 0. ( 18 
)
Using that u 1 or u 2 is Lipschitz continuous with respect to x variable, we get, by standard estimates,

|x -y| ≤ Mε 4/3 , |p| ≤ M,
where M is a positive constant which depends only on

u 1 L ∞ (R N ×[0,T ]) , u 2 L ∞ (R N ×[0,T ])
and L.

We now distinguish two cases: (i) for any ε ∈ (0, 1), p = 0; (ii) there exist {ε j } j∈N such that ε j → 0 as j → ∞, p = 0 for any j ∈ N.

We first consider case (i). In view of (A4), we have

K ≤ H 2 (y, t, p, Y ) -H 1 (x, t, p, X) ≤ C R |x -y| 4 ε 4 + κ 1 + κ 2 |x -y| 2 ε 4 + ρ A 2 .
Sending ρ → 0, we get

K ≤ C R |x -y| 4 ε 4 + κ 1 + κ 2 |x -y| 2 ε 4 ≤ C ε 4/3 + κ 1 + κ 2 ε 4/3 =: C ε
In case (ii), we have x = y. Due to [START_REF] Cardaliaguet | On front propagation problems with nonlocal terms[END_REF], we have A = 0, X ≤ 0 and Y ≥ 0. By (A2), we have (H 1 ) * (x, t, 0, X) ≥ (H 1 ) * (x, t, 0, 0) and (H 2 ) * (y, t, 0, Y ) ≤ (H 2 ) * (y, t, 0, 0). Therefore, we get

K ≤ (H 2 ) * (y, t, 0, Y ) -(H 1 ) * (x, t, 0, X) ≤ (H 2 ) * (y, t, 0, 0) -(H 1 ) * (x, t, 0, 0) = 0.
Set K = C ε + Cε 4/3 and then the two above cases cannot hold; this means that necessarily we have t = 0. Therefore, for any (x, t) ∈ B(0, R) × [0, T ],

(u 1 -u 2 )(x, t) ≤u 1 (x, 0) -u 2 (y, 0) + Kt ≤ sup x∈R N (u 1 -u 2 )(x, 0) + MLε 4/3 + C(2ε 4/3 + κ 1 + κ 2 ε 4/3 )t.
An optimization with respect to ε > 0 yields

(u 1 -u 2 )(x, t) ≤ sup x∈R N (u 1 -u 2 )(•, 0) + M 1 κ 1 t + (κ 2 t) 1/2
for some

M 1 = M 1 (C R , L, u 1 ∞ , u 2 ∞ ) > 0.
Example 1. We consider the functions

H i : R N × [0, T ] × (R N \ {0}) × S N defined by H i (x, t, p, X) = inf α∈A sup β∈B -c α,β i (x, t, p)|p| -tr σ α,β i (x, t, p)(σ α,β i ) T (x, t, p)X (19) 
for i = 1, 2, where A, B are compact metric space and c α,β i , σ α,β i are, respectively, real-valued functions and m × N matrix valued functions for some m ∈ N on R N × [0, T ]×(R N \{0}) with a possible singularity at p = 0. We assume that the functions c α,β i , σ α,β i satisfy the following conditions by replacing h by c α,β i , σ α,β i for any α ∈ A, 12) for some R > 0 and let A be the matrix given by [START_REF] Bellettini | Two examples of fattening for the curvature flow with a driving force[END_REF]. We omit the dependence of α, β for simplicity of notation. We calculate that

β ∈ B, i = 1, 2, respectively: h are continuous on R N × [0, T ] and for some L, M ≥ 0 (independent of α, β), |h(x, t, p) -h(y, t, p)| ≤ L|x -y|, |h(x, t, p)| ≤ M (20) for all x, y ∈ R N , t ∈ [0, T ], p ∈ R N \ {0}. Let ρ, ε ∈ (0, 1), x, y ∈ B(0, R), p = ε -4 |x -y| 2 (x -y), X, Y ∈ S N satisfy (
(c 1 (x, t, p) -c 2 (y, t, p))|p| = (c 1 (x, t, p) -c 1 (y, t, p))|p| + (c 1 (y, t, p) -c 2 (y, t, p))|p| ≤ |p|(L|x -y| + c 1 -c 2 ∞ ) ≤ L |x -y| 4 ε 4 + M c 1 -c 2 ∞ ,
where

• ∞ = • L ∞ (B(0,R)×(0,T )×(R N \{0})) and tr (σ x 1 (σ x 1 ) T X) -tr (σ y 2 (σ y 2 ) T Y ) = N i=1 Xσ x 1 e i , σ x 1 e i -Y σ y 2 e i , σ y 2 e i ≤ N i=1 A σ x 1 e i σ y 2 e i , σ x 1 e i σ y 2 e i + ρ A 2 σ x 1 e i σ y 2 e i , σ x 1 e i σ y 2 e i ≤ N i=1 A σ x 1 e i σ y 2 e i , σ x 1 e i σ y 2 e i + Cρ A 2 ( σ x 1 2 ∞ + σ x 2 2 ∞ )
for some C > 0, where {e i } i is the canonical basis of R N , σ x 1 := σ α,β 1 (x, t, p) and σ y 2 := σ α,β 2 (y, t, p). Due to (12), we have

A σ x 1 e i σ y 2 e i , σ x 1 e i σ y 2 e i ≤ 2 ε 4 |x -y| 2 |(σ x 1 -σ y 2 )e i | 2 ≤ 4 ε 4 |x -y| 2 |σ 1 (x, t, p) -σ 1 (y, t, p)| 2 + σ 1 -σ 2 2 ∞ ≤ 4 ε 4 |x -y| 2 L 2 |x -y| 2 + σ 1 -σ 2 2 ∞ .
From the above computations, it follows that the inequality (A4) holds by replacing κ 1 and κ 2 by sup A×B c 1c 2 ∞ and sup A×B σ 1σ 2 2 ∞ , respectively. Therefore, if the u i 's are solutions of [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF] with H = H i given by ( 19), i = 1, 2, then the conclusion of Theorem 1 holds and reads

sup x∈R N (u 1 -u 2 )(x, t) ≤ sup x∈R N (u 1 -u 2 )(x, 0) + M 1 sup A×B t c α,β 1 -c α,β 2 ∞ + √ t σ α,β 1 -σ α,β 2 ∞
for all t ∈ [0, T ]. Finally, note that, applying Theorem 1 with H 1 = H 2 , gives comparison and uniqueness for [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF].

Remark 2. For the applications we have in mind, a continuous dependence result for equations with a measurable dependence in time will be needed. We do not state a precise result here but we mention that it can be obtained by an easy approximation argument.

Estimates on Lower-Bound Gradient and Properties of Fronts

We consider the initial value problem in this section

u t + H(x, t, Du, D 2 u) = 0 in R N × (0, T ), u(•, 0) = u 0 in R N . ( 21 
)
We make the following assumption on u 0 throughout this section.

(I1) u 0 ∈ W 1,∞ (R N ) and |u 0 (x)| ≤ 1 for all x ∈ R N and there exists R 0 > 0 such that u 0 (x) = -1 for all x ∈ R N \ B(0, R 0 ). (I2) There exist constants λ 0 , δ 0 ∈ (0, 1), η 0 > 0 and ν ∈ C(R N , R N ) such that u 0 (x + λν(x)) ≥ u 0 (x) + λη 0 for all x ∈ U 0 , λ ∈ [0, λ 0 ], (22) 
where

U 0 := {x ∈ R N | |u 0 (x)| ≤ δ 0 }.
Remark 3. Without loss of generality, we may assume that ν is a smooth bounded Lipschitz continuous function and henceforth we will assume it from now on. Indeed, let ν ε ∈ C ∞ (R N , R N ) for ε ∈ (0, 1) be an approximate function of ν, then we have

u 0 (x + λν ε (x)) = u 0 (x + λν(x) + λ(ν ε (x) -ν(x))) ≥ u 0 (x + λν(x)) -λ Du 0 L ∞ (U 0 ) ν ε -ν L ∞ (U 0 ) .
If ε is enough small, then we have

u 0 (x + λν ε (x)) ≥ u 0 (x) + λ η 0 2 for all x ∈ U 0 , λ ∈ [0, λ 0 ]. Let u 0 ∈ C 1 (R N ) such that Du 0 = 0 on Γ 0 := {u 0 = 0}. ( 23 
)
Then, for δ 0 > 0 and λ 0 enough small, Du 0 = 0 in U 0 + B(0, λ 0 ν ∞ ) and, setting ν(x) = Du 0 (x), we have

u 0 (x + λν(x)) = u 0 (x) + λ|Du 0 (x)| 2 + λω U 0 (Mλ),
where

ω U 0 is a modulus of continuity of Du 0 in U 0 + B(0, λ 0 ν ∞ ) and M = max U 0 +B(0,λ 0 ν ∞) |Du 0 |. Therefore (I2) holds for η = min U 0 +B(0,λ 0 ν ∞ ) |Du 0 |/2 and λ ∈ [0, λ 0 ]
for λ 0 enough small. Moreover, the Implicit Function Theorem implies that Γ 0 is a C 1 hypersurface. Conversely, assume that Γ 0 is a C 1 hypersurface with the unique nearest point property (that is, there exists a neighborhood U 0 of Γ 0 such that, for all x ∈ U 0 , there exists a unique x ∈ Γ 0 such that dist(x, Γ 0 ) = |x -x|).

Then the signed distance function d s Γ 0 to Γ 0 is C 1 (see [START_REF] Foote | Regularity of the distance function[END_REF]). It follows that (I1), (I2) hold with u 0 such that u 0 = d s Γ 0 in a neighborhood of Γ 0 and u 0 is a suitable regularization of d s Γ 0 elsewhere. More generally, when considering front propagation problems, it may be convenient to have a characterization of (I2) in geometrical terms. Such a result does not seem obvious. However, we have partial results in the following lemma, the proof of which is given in the appendix with additional comments.

A subset A ⊂ R N is star-shaped with respect to x 0 if, for every x ∈ A, the segment

[x 0 , x) := {λx + (1 -λ)x 0 , λ ∈ [0, 1)} belongs to A. It is star-shaped with respect to a ball B(x 0 , r 0 ) if A is star-shaped with respect to every y ∈ B(x 0 , r 0 ). Lemma 2. Let Ω 0 ⊂ R N be
an open bounded set with boundary ∂Ω 0 =: Γ 0 .

(i) (Star-shaped with respect to a ball domains) The set Ω 0 is star-shaped with respect to a ball, i.e., there exists a compact subset K ⊂ R N and r 0 > 0 such that

Ω 0 = x∈K α∈[0,1] B(αx, (1 -α)r 0 ), (24) 
if and only if there exists u 0 : R N → R such that

Γ 0 = {u 0 = 0}, Ω 0 = {u 0 > 0} (25) 
and (I1), (I2) hold in U 0 with ν(x) = -x. In this case, Γ 0 is locally the graph of a Lipschitz continuous function. (ii) If there exists K > 0 such that Γ 0 is locally the graph of a Lipschitz continuous function with constant K, then there exists u 0 such that (25), (I1) and (I2) hold.

Hereinafter, we set

ψ λ (x) := x + λν(x) = (I + λν)(x). (26) 
From Remark 3, we may assume that ν is a smooth bounded Lipschitz continuous function and, replacing λ 0 by a smaller constant in order that

λ 0 ν ∞ < 1 and λ 0 Dν ∞ < 1, (27) 
we obtain that

ψ λ (x) is a C 1 -diffeomorphism in R N with ξ λ := ψ -1 λ = (I + λν) -1 , Dξ λ (x) = I + ∞ k=1 (-λDν(x)) k . ( 28 
)
We assume (A1)-(A3) and make the following additional assumptions on H throughout this section.

(A5) The function H is geometric, i.e., H(x, t, αp, αX + βp ⊗ p) = αH(x, t, p, X)

for all α > 0, β ∈ R, (x, t, p, X) ∈ R N × [0, T ] × (R N \ {0}) × S N . (A6) There exists L H > 0 such that |H(x, t, p, X) -H(x, t, p, Y )| ≤ L H |X -Y | for any (x, t, p) ∈ R N × [0, T ] × (R N \ {0}) and X, Y ∈ S N . (A7) For any R > 0, there exists C H > 0 such that H ψ λ (y), t, Dξ λ (ψ λ (y)) T p, Dξ λ (ψ λ (y)) T Y Dξ λ (ψ λ (y)) -H(x, t, p, X) ≤ C H |x -y| 4 ε 4 + λ + λ 2 |x -y| 2 ε 4 + ρ A 2 (29) 
for any λ ∈ [0, λ 0 ] and for any ρ, ε [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF] and A ∈ S N given by ( 13). (A8) There exists at least one viscosity solutions of ( 21) which satisfies

∈ (0, 1), x, y ∈ B(0, R), t ∈ [0, T ], p = 4ε -4 |x -y| 2 (x -y), X, Y ∈ S N satisfying
u(x, t) = -1 for all (x, t) ∈ (R N \ B(0, R T )) × [0, T ] (30) 
for some R T > 0.

Let us make some comments about these new assumptions: (A5) is needed to use the level set approach to describe front propagation (see [START_REF] Barles | Front propagation and phase field theory[END_REF][START_REF] Giga | Surface evolution equations. A level set approach[END_REF] for instance). Assumption (A6) is satisfied for a wide class of quasilinear equations under interest in this paper, see Example 2. A consequence of (A5) and (A6) is: For any R > 0, there exists M R > 0 such that [START_REF] Gulliver | Sharp growth rate for generalized solutions evolving by mean curvature plus a forcing term[END_REF] which is a crucial property to obtain Hölder continuity in time for the solutions of [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF], see Proposition 3. Assumption (A7) is a natural condition to obtain a preservation of the initial property (I2) during the evolution. This condition is related to (A4); it is worthwhile to notice, as it was done at the end of Example 1, that such a condition gives uniqueness for the solutions of [START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF]. Existence of solutions to [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF] is assumed in (A8) because it is not the point in this paper, see [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF][START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF][START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF] for some conditions which guarantee existence. More precisely, we have the following result about solutions of ( 21) and the proof is given in Appendix:

|H(x, t, p, X)| ≤ M R (1 + |X|) on B(0, R) × [0, T ] × (B(0, R) \ {0}) × S N ,

Proposition 3 (Regularity of Solutions). There exists a unique viscosity solution

u ∈ C(R N × [0, T ]) of (21) and we have |u(x, t) -u(y, t)| ≤ Du 0 L ∞ (R N ) e Kt |x -y|, ( 32 
) |u(x, t) -u(x, s)| ≤ L|t -s| 1/2 (33) for all x, y ∈ R N , t, s ∈ [0, T ],
where K, L are positive constants which depend only on C H and C H , R T , Du 0 ∞ respectively. Now, we state the main result of this section.

Theorem 4 (Key Estimate

). There exist t > 0, 0 < λ ≤ λ 0 (λ 0 is given by (I2) and satisfies [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF]) and a non-increasing continuous function η

: [0, t ∧ T ] → [0, ∞) which depend only on C H , L H , δ 0 , η 0 , R T , Du 0 ∞ , ν ∞ , Dν ∞ such that η(t) > 0 for all t ∈ [0, t ∧ T ),
and u satisfies

u(x + λν(x), t) ≥ u(x, t) + λη(t) for all x ∈ U t , λ ∈ [0, λ], (34) 
where

U t := {x ∈ R N | |u(x, t)| ≤ δ 0 /4}.
Proof. From (I2) and Lemma 17 in the Appendix, we can extend [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF] 

in R N , u 0 (ψ λ (x)) ≥ Ψ(u 0 (x) + λη 0 ) for any x ∈ R N , λ ∈ [0, λ],
where λ and Ψ are introduced in Lemma 17.

We first prove

u(ψ λ (x), t) ≥ Ψ(u(x, t) + λη 0 ) -M 2 λ √ t (35) for all (x, t) ∈ R N × [0, T ], λ ∈ [0, λ], some constant M 2 > 0, which is depends only on C H , L H , δ 0 , η 0 , R T , Du 0 ∞ and ν ∞ (Note that M 2 does not depend on Dν ∞ contrary to λ which depends on Dν ∞ through λ 0 because of (27)). Fix λ ∈ [0, λ]. Set v(x, t) := u(ψ λ (x), t) and w(x, t) := Ψ(u(x, t) + λη 0 ) for all (x, t) ∈ R N × [0, T ]. Since H is geometric and Ψ is a nondecreasing function, the functions v, w satisfy      v t + H ψ λ (x), t, Dξ λ (ψ λ (x)) T Dv(x, t), Dξ λ (ψ λ (x)) T D 2 v(x, t)Dξ λ (ψ λ (x)) + D 2 ξ λ (ψ λ (x))Dv(x, t) = 0 in R N × (0, T ), v(x, 0) = u 0 (ψ λ (x)) in R N , w t + H(x, t, Dw, D 2 w) = 0 in R N × (0, T ), w(x, 0) = Ψ(u 0 (x) + λη 0 ) in R N in the viscosity sense (see [29, Theorem 4.2.1] for instance).
Let R T be the constant in (A8) and recall that λη 0 ≤ δ 0 /4 in Lemma 17. For any

(x, t) ∈ (R N \ B(0, R T + λ ν ∞ ) × [0, T ], u(x, t) + λη 0 ≤ -1 + δ 0 /4 ≤ -(3δ 0 )/4, which implies that -1 = Ψ(u(x, t) + λη 0 ) ≤ u(ψ λ (x), t). Therefore, we only need to show that for any (x, t) ∈ B(0, R T + λ ν ∞ ) × [0, T ] inequality (35) holds. Note that |D 2 ξ λ (ψ λ (x))p| ≤ Cλ|p|.
By Assumptions (A6), (A7) and Theorem 1 with κ 1 = λ and κ 2 = λ 2 , we get, for any (x, t)

∈ B(0, R T + λ ν ∞ ) × [0, T ], (w -v)(x, t) ≤ C(t + √ t)λ ≤ C( √ T + 1) √ tλ =: M 2 √ tλ
for all t ∈ [0, T ], which implies [START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate elliptic equations[END_REF].

Setting t := (η 0 /M 2 ) 2 and η(t

) := η 0 -M 2 √ t for all t ∈ [0, t ∧ T ],
we obtain the conclusion.

The first important consequence is a lower-gradient bound estimate on the front.

Corollary 5 (Estimate on Lower-Bound Gradient). We have

-|Du(x, t)| ≤ - η(t) ν ∞ in {|u(•, t)| < δ 0 4 } × (0, t ∧ T ),
where t and η are given in Theorem 4.

Remark 4. Theorem 3.1 in [START_REF] Bellettini | Two examples of fattening for the curvature flow with a driving force[END_REF] implies that we cannot expect global in time lower gradient estimates for solutions of (59) with general initial data like (I1), (I2), even if we assume some positiveness assumptions on the velocity like in [START_REF] Alvarez | Existence and uniqueness for dislocation dynamics with nonnegative velocity[END_REF][START_REF] Barles | Nonlocal first-order Hamilton-Jacobi equations modelling dislocations dynamics[END_REF][START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF][START_REF] Barles | Uniqueness Results for Nonlocal Hamilton-Jacobi Equations[END_REF].

Before giving the proof of this result, we continue by stating another consequences of Theorem 4. We need to introduce some notations.

For any t ∈ [0, T ], r ∈ [-1, 1], we set

Ω r t := {x ∈ R N | u(x, t) > r}, Γ r t := ∂Ω r t
and define the cone with vertex z ∈ R N , axis e ∈ S N -1 and parameters (ρ,

θ) ∈ R + × R + by C ρ,θ e,z := a∈[0,θ] B(z + ae, a ρ θ ) = {z + ae + a ρ θ ξ | a ∈ [0, θ], ξ ∈ B(0, 1)}.
The following result means that the evoluting fronts have the interior cone property.

Corollary 6 (Interior Cone Properties of Fronts). For any r ∈ [-δ 0 /4, δ 0 /4] and t ∈ [0, t ∧ T ],

C ρ(t),θ(z) ν(z) |ν(z)| ,z ⊂ Ω r t for all z ∈ Γ r t ,
where

ρ(t) := η(t)λ Du 0 ∞ e Kt , θ(z) := λ|ν(z)|.
When A is a subset of R k , we will write, by abuse of notation, Per(A) = H k-1 (∂A) for the perimeter of A. Notice that it does not always correspond to the usual definition of perimeter. The two definitions coincide for instance when the boundary is locally the graph of a Lipschitz function, which is often the case in our applications. For further details, see [24, Section 5 and Remark p.183] or [START_REF] Henrot | Variation et optimisation de formes[END_REF].

Corollary 7 (Estimate on Perimeter of Fronts).

There exists a constant M 3 > 0 which depends only on the constants appearing in Theorem 4 such that

Per (Ω r t ) ≤ M 3 for all r ∈ [-δ 0 /4, δ 0 /4] and t ∈ [0, (t ∧ T )/2].
We turn to the proofs.

Proof of Corollary 5. Take any function φ ∈ C 1 (R N ×(0, T )) satisfying (u-φ)(x 0 , t 0 ) = 0 and (uφ)(x, t) ≤ 0 for all (x, t) ∈ R N × (0, T ) for some (x 0 , t 0 ) ∈ {|u(•, t)| < δ 0 /4} × (0, t ∧ T ), where t is given by Theorem 4. By Theorem 4 and mean-value theorem, we have

λη(t 0 ) ≤ u(ψ λ (x 0 ), t 0 ) -u(x 0 , t 0 ) ≤ φ(ψ λ (x 0 ), t 0 ) -φ(x 0 , t 0 ) = λ Dφ(x 0 , t 0 ), ν(x) + o(λ) ≤ λ|Dφ(x 0 , t 0 )| ν ∞ + o(λ ν ∞ ).
Dividing by λ ν ∞ > 0 in the above and letting λ ∈ (0, λ] go to 0, we obtain the conclusion.

Proof of Corollary 6. Fix r ∈ [-δ 0 /4, δ 0 /4], t ∈ [0, t ∧ T ] and z ∈ Γ r t . By Theorem 4, we have

u(z + λν(z), t) ≥ r + λη(t) for all λ ∈ [0, λ].
Set r λ (t) := (λη(t))/( Du 0 ∞ e Kt ). For any ξ ∈ B(0, 1), we have

u(z + λν(z) + r λ (t)ξ, t) ≥ u(z + λν(z), t) -Du 0 ∞ e Kt r λ (t) ≥ r + λη(t) -Du 0 ∞ e Kt r λ (t) ≥ r, which implies that B(z + λν(z), r λ (t)) ⊂ Ω r t
for any λ ∈ [0, λ]. Therefore, we have

C ρ(t),θ(z) ν(z) |ν(z)| ,z = λ∈[0,λ] B(z + λν(z), λ ρ(t) λ ) = a∈[0,θ(z)] B(z + a ν(z) |ν(z)| , a ρ(t) θ(z) ) ⊂ Ω r t .
Before doing the proof of Corollary 7, we recall the following lemma.

Lemma 8 ([7, Theorem 5.8]). Let K be a compact subset of R N having the interior cone property of parameters ρ and θ. Then there exists a positive constant Λ = Λ(N, ρ, θ/ρ) such that for all R > 0,

H N -1 (∂K ∩ B(0, R)) ≤ ΛL N (K ∩ B(0, R + ρ/4)).
Proof of Corollary 7. Set t * := (t ∧ T )/2. Let ρ(t), θ(z) be the functions in Corollary 6 and set ρ := ρ(t * ) and θ := min z∈∂Ωt,t∈[0,t * ] θ(z). By Theorem 4 and Corollary 6, we see that ρ, θ > 0 and we have,

C ρ,λ ν(z) |ν(z)| ,z ⊂ C ρ(t * ),θ(z) ν(z) |ν(z)| ,z ⊂ Ω r t for all z ∈ Γ r t , r ∈ [- δ 0 4 , δ 0 4 ].
Due to Lemma 8, there exists Λ = Λ(N, ρ, θ/λ) > 0 such that

H N -1 (Γ r t ) ≤ ΛL N (Ω r t ) ≤ ΛL N (B(0, R T )) =: M 3 for all t ∈ [0, t * ], r ∈ [-δ 0 /4, δ 0 /4].
We end this section with an application.

Example 2. We consider the function H(x, t, p, X) = inf α∈A sup β∈B -c α,β (x, t, p)|p|tr σ α,β (x, t, p)(σ α,β ) T (x, t, p)X , [START_REF] Koo | A fattening principle for fronts propagating by mean curvature plus a driving force[END_REF] where the functions c α,β and σ α,β satisfy (20) for all α ∈ A, β ∈ B, respectively. We add the following assumptions on c α,β , σ α,β :

c(x, t, µp) = c(x, t, p), |c(x, t, p) -c(x, t, q)| ≤ C c |p -q|, σ(x, t, µp) = σ(x, t, p), σ T (x, t, p)p = 0, |σ(x, t, p) -σ(x, t, q)| ≤ C σ |p -q| |p| + |q| (37) 
for all µ > 0, (x, t) ∈ R N × [0, T ], p, q ∈ (R N \ {0}) and some C c , C σ > 0. These assumptions are related to (A5). A typical example is σ α,β (x, t, p) = Ip ⊗ p/|p| 2 and then the second-order term is the so-called mean curvature term. We claim that the function H satisfies (A1)-(A8).

It is easy to check that the function H satisfies (A1)-(A5). We check that the function H satisfies (A7). Note that, by ( 27), [START_REF] Forcadel | Minimizing movements for dislocation dynamics with a mean curvature term[END_REF], we have

|Dξ λ (ψ λ (x))| ≤ 1 1 -λ|Dν(x)| ≤ 1 1 -λ 0 Dν ∞ < +∞, |I -Dξ λ (ψ λ (x))| ≤ λ Dν ∞ 1 -λ 0 Dν ∞ ,
for λ 0 ∈ (0, 1) small enough and any x ∈ R N . By abuse of notations, we write c, σ instead of c α,β , σ α,β for any α ∈ A, β ∈ B. We compute

|c(x, t, p) -c(ψ λ (x), t, Dξ λ (ψ λ (x)) T p)| ≤ |c(x, t, p) -c(ψ λ (x), t, p)| + |c(ψ λ (x), t, p) -c(ψ λ (x), t, Dξ λ (ψ λ (x)) T p)| ≤ L|x -ψ λ (x)| + C c |(I -Dξ λ (ψ λ (x)) T )p| ≤ Cλ and |σ(x, t, p) -Dξ λ (ψ λ (x))σ(ψ λ (x), t, Dξ λ (ψ λ (x)) T p)| ≤ |σ(x, t, p) -Dξ λ (ψ λ (x))σ(x, t, p)| + |Dξ λ (ψ λ (x))(σ(x, t, p) -σ(ψ λ (x), t, p))| + |Dξ λ (ψ λ (x))(σ(ψ λ (x), t, p) -σ(ψ λ (x), t, Dξ λ (ψ λ (x)) T p))| ≤ M|I -Dξ λ (ψ λ (x))| + L|Dξ λ (ψ λ (x))||x -ψ λ (x)| + C σ |Dξ λ (ψ λ (x))||(I -Dξ λ (ψ λ (x)) T )p| |p| + |Dξ λ (ψ λ (x)) T p| ≤ Cλ for some C = C(L, M, C c , C σ ) > 0 and any x ∈ R N , p ∈ R N \ {0} and λ ∈ [0, λ 0 ].
By using the same computations as Example 1, we have

H ψ λ (y), t, Dξ λ (ψ λ (y))p, Dξ λ (ψ λ (y)) T Y Dξ λ (ψ λ (y)) -H(x, t, p, X) ≤ C |x -y| 4 ε 4 + λ + λ 2 |x -y| 2 ε 4 + ρ A 2
for some C = C(L, M, C c , C σ ) > 0 and any ρ, ε ∈ (0, 1), x, y ∈ B(0, R), t ∈ [0, T ], p = ε -4 |x -y| 2 (xy) with x = y, X, Y ∈ S N satisfying (12) and A ∈ S N given by [START_REF] Bellettini | Two examples of fattening for the curvature flow with a driving force[END_REF], which implies that H satisfies (A7). We finally check that H satisfies (A8). At first, the constant function -1 is obviously a subsolution of [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF]. We set R(t)

:= M c t + R 0 + √ 2, with M c ≥ c ∞ and define the function f : R N × [0, T ] → R by f (x, t) := φ((R(t) -|x|) 2 -1),
where φ(r) := r ∨ (-1). We prove that f is a viscosity supersolution of [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF]. It is easily seen that f (x, 0) ≥ u 0 (x) on R N . Indeed, for all x ∈ B(0, R 0 ), we have

f (x, 0) ≥ (R 0 + √ 2 -|x|) 2 -1 ≥ 1 ≥ u 0 (x) and, for all x ∈ R N \ B(0, R 0 ), u 0 (x) = -1 ≤ f (x, 0) (see (I1)). We have f t (x, t) = 2M c (R(t) -|x|), Df (x, t) = 2(|x| -R(t)) x |x| and D 2 f (x, t) = 2 I -R(t) |x| (I -x⊗x |x| 2 ) for any t ∈ (0, T ) and x ∈ B(0, R(t)) \ {0}. Note that D -f (0, t) = ∅ for all t ∈ [0, T ]. Set b α,β (x, t, p) = σ α,β (x, t, p)(σ α,β ) T (x, t, p). We calculate that f t + inf α∈A sup β∈B {-c α,β (x, t, Df )|Df | -tr (b α,β (x, t, Df )D 2 f )} = inf α∈A sup β∈B 2(M c -c α,β (x, t, Df ))(R(t) -|x|) -2tr b α,β (x, t, Df ) I - R(t) |x| (I - x ⊗ x |x| 2 )
.

Set e 1 := x/|x| and take e i ∈ R N for i = 2, . . . , N so that {e i } i=1,...,N is an orthonormal basis. Then we have (I -x⊗x |x| 2 )e 1 = 0 and (I -x⊗x |x| 2 )e i = e i for i = 2, . . . , N. Therefore,

tr b α,β (x, t, Df ) I - R(t) |x| (I - x ⊗ x |x| 2 ) = N i=1 b α,β (x, t, Df ) I - R(t) |x| (I - x ⊗ x |x| 2 ) e i , e i ) = N i=1 b α,β (x, t, Df )e i , e i - R(t) |x| b α,β (x, t, Df ) I - x ⊗ x |x| 2 e i , e i ) = N i=2 1 - R(t) |x| (σ α,β ) T (x, t, Df )e i , (σ α,β ) T (x, t, Df )e i ) ≤ 0, (38) 
since |x| < R(t) and (σ α,β ) T (x, t, Df )e 1 = (σ α,β ) T (x, t, -x)x = 0 by [START_REF] Ley | Lower-bound gradient estimates for first-order Hamilton-Jacobi equations and applications to the regularity of propagating fronts[END_REF]. Moreover, D -u(0, t) = ∅ and -1 is obviously a supersolution on R N \ B(0, R(t)). Setting R T = R(T ), we see that (A8) is satisfied in view of the comparison theorem for viscosity solutions of (21).

Uniqueness of Solutions of Nonlocal Equations

In this section, we consider the initial value problem of the nonlocal and nonmonotone geometric equations which is derived from ( 1), through the level set approach (see [START_REF] Chen | Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations[END_REF][START_REF] Evans | Motion of level sets by mean curvature. I[END_REF][START_REF] Giga | Surface evolution equations. A level set approach[END_REF]),

u t + H[1 {u≥0} ](x, t, Du, D 2 u) = 0 in R N × (0, T ), u(•, 0) = u 0 in R N . ( 39 
)
For any function 

χ ∈ L ∞ (R N × [0, T ], [0, 1]), H[χ] denotes a real-valued function of (x, t, p, X) ∈ R N × [0, T ] × (R N \ {0}) × S N . For almost any t ∈ [0, T ], (x, p, X) → H[χ](x, t, p, X) are continuous functions on R N × (R N \ {0}) × S N with a possible singularity at p = 0. For all (x, p, X) ∈ R N × (R N \ {0}) × S N , t → H[χ](x, t, p, X) are measurable functions. For any χ ∈ L ∞ (R N × [0, T ], [0, 1]), H[χ] = H satisfies (A2), ( A3 
(R N )) such that supp χ(•, t) is compact for any t ∈ [0, τ ], H[χ] ∈ C(R N × [0, τ ] × (R N \ {0}) × S N ). (H3) The functions H[χ] satisfy (A6) with H = H[χ] uniformly for any χ ∈ L ∞ (R N × [0, T ], [0, 1]). (H4) The functions H[χ] satisfy (A7) with H = H[χ] uniformly for any χ ∈ L ∞ (R N × [0, T ], [0, 1]). (H5-(i)) For any R > 0, there exists C H > 0 such that |H[χ 1 ](x, t, p, X) -H[χ 2 ](y, t, p, Y )| ≤ C H |x -y| 4 ε 4 + κ χ 1 ,χ 2 (x, t) + κ 2 χ 1 ,χ 2 (x, t)|x -y| 2 ε 4 + ρ A 2 (40) 
for any

χ 1 , χ 2 ∈ L ∞ (R N × [0, T ], [0, 1]
) and for any ρ, ε ∈ (0, 1), x, y ∈ B(0, R), t ∈ [0, T ], p = ε -4 |x -y| 2 (xy) and X, Y ∈ S N satisfying (12) and A ∈ S N given by [START_REF] Bellettini | Two examples of fattening for the curvature flow with a driving force[END_REF], where

κ χ 1 ,χ 2 (x, t) := R N |χ 1 (y, t) -χ 2 (y, t)| dy.
(H5-(ii)) One has inequality (40) by replacing κ χ 1 ,χ 2 by

κ χ 1 ,χ 2 (x, t) := t 0 R N G(x -y, t -s)|χ 1 (y, s) -χ 2 (y, s)| dyds,
where G(x, t) is the Green function defined by

G(x, t) := 1 (4πt) N/2 e -|x| 2 4t . (H6) For any χ ∈ L ∞ (R N × [0, T ], [0, 1]), if χ n (x, t) := n t+1/n t χ(x, s)ds, then the nonlinearity H n (x, t, p, X) := H[χ n ](x, t, p, X) satisfies (A1)-(A4) and u[χ n ] → u[χ] uniformly in R N × [0, T ] as n → +∞.
Assumptions (H1)-(H4) are modifications of (A1)-(A7) in order to be able to deal with the nonlocal equation [START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF]. While (H5-(i)) and (H5-(ii)) are specially designed to encompass dislocation type equations or FitzHugh-Nagumo type systems. Finally (H6) is the assumption which allows to use Theorem 1 through an approximation argument (cf. Remark 2). Further detailed examples are given in Section 5.

We use the following definition of weak solutions introduced in [START_REF] Barles | Global existence results and uniqueness for dislocation equations[END_REF] which is inspired by [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF][START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF][START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions[END_REF][START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions. Existence and applications to the levelset approach[END_REF].

Definition 1 (Definition of Weak Solutions). Let u : R N × [0, T ] → R be a continuous function. We say that u is a weak solution of (39) if there exists

χ ∈ L ∞ (R N × [0, T ], [0, 1]) such that (1) u is an L 1 -viscosity solution of u t + H[χ](x, t, Du, D 2 u) = 0 in R N × (0, T ), u(•, 0) = u 0 in R N , (41) 
(2) for almost every t ∈ (0, T ),

1 {u(•,t)>0} (x) ≤ χ(x, t) ≤ 1 {u(•,t)≥0} (x) for a.e. x ∈ R N .
Moreover, we say that u is a classical solution of (39) if in addition, for almost all t ∈ [0, T ],

1 {u(•,t)>0} (x) = 1 {u(•,t)≥0} (x) for a.e. x ∈ R N .
Proposition 9 (Weak Solutions are Classical in a Short Time). If there exists a weak solution

u ∈ C(R N × [0, T ]) of (39), then u is classical in R N × (0, t ∧ T ) for some t > 0 which depends on C H , L H , δ 0 , η 0 , R T , Du 0 ∞ , ν ∞ , Dν ∞ . Proof. Let (χ, u) ∈ L ∞ (R N ×[0, T ], [0, 1])×C(R N ×[0, T ]
) be an L 1 -viscosity solution of [START_REF] Rodney | Phase-field methods and dislocations[END_REF]. We prove that

1 {u(•,t)>0} (x) = 1 {u(•,t)≥0} (x) for a.e. (x, t) ∈ R N × (0, t ∧ T ) ( 42 
)
for some t > 0.

We use (H6) and set u n := u[χ n ]. We recall that u n is the viscosity solutions of ( 21) with H = H n for all n ∈ N.

By the comparison theorem for local equations, Proposition 3 we have

|u n (x, t)| ≤ C on R N × [0, T ], |u n (x, t) -u n (y, t)| ≤ C|x -y|, |u n (x, t) -u n (x, s)| ≤ C|t -s| 1/2
for all x, y ∈ R N , t, s ∈ [0, T ] and some C > 0, which is independent of n. In view of Ascoli-Arzelá theorem, the stability (see [START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions[END_REF][START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions. Existence and applications to the levelset approach[END_REF]) and the uniqueness (see [START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF][START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions[END_REF][START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions. Existence and applications to the levelset approach[END_REF]) of L 1 -viscosity solutions of (41), we have u n → u locally uniformly on R N × [0, T ] for u ∈ C(R N × [0, T ]) which is the L 1 -viscosity solution of [START_REF] Rodney | Phase-field methods and dislocations[END_REF].

Moreover, in view of Corollary 5, we have

-|Du n (x, t)| ≤ - η(t) ν ∞ in {|u n (•, t)| < δ 0 4 } × (0, t ∧ T )
for some t > 0. By the usual stability result of viscosity solution, we get

-|Du(x, t)| ≤ - η(t) ν ∞ in {|u(•, t)| < δ 0 4 } × (0, t ∧ T ),
which implies that L N ({u(•, t) = 0}) = 0 for a.e. t ∈ (0, t ∧ T ) in view of [24, Corollary 1 in p. 84]. Therefore, we get [START_REF] Slepčev | Approximation schemes for propagation of fronts with nonlocal velocities and Neumann boundary conditions[END_REF].

Remark 5. By Proposition 9, we have

1 {u(•,t)≥0} ∈ C([0, t ∧ T ]; L 1 (R N ))
for any weak solution u of [START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF]. In view of (H2), we see that

t → H[1 {u≥0} ](x, t, p, X) is continuous on [0, t ∧ T ] for any (x, p, X) ∈ R N × (R N \ {0}) × S N .
We state our main result.

Theorem 10 (Uniqueness Result of Solutions in a Short Time). If there exist weak solutions of the initial-value problem [START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF], they are classical and unique in

R N ×[0, t],
where t is given by Theorem 4.

We formulate the main ingredient of the proof of the above theorem as a lemma.

Lemma 11. Let t > 0 and η be a continuous function on [0, t] such that η(t) ≥ η > 0 for any t ∈ [0, t] and u : R N × [0, t] → R be a bounded Lipschitz continuous function with respect to x variable which satisfies ( 14), ( 15) and (34) on [0, t]. Then we have

R N 1 {-δ≤u(•,t)<0} (y) dy ≤ M 4 δ η , ( 43 
) t 0 R N G(x -y, t -s)1 {-δ≤u(•,s)<0} (y) dyds ≤ M 5 δ η ( 44 
)
for any

δ ∈ (0, min{ δ 0 4 , ηδ 0 4L ν ∞ , ηλ}],
where M 4 is a constant depending on N, R, L, Dν ∞ and M 5 is a constant depending on N, R, λ 0 , δ 0 , L, ν ∞ , Dν ∞ .

Proof. We first prove the estimate [START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF]. We have

R N 1 {-δ≤u(•,t)<0} (y) dy = L N ({-δ ≤ u(•, t)}) -L N (Ω t ) (45) for δ > 0, since Ω t := {u(•, t) > 0} ⊂ {-δ ≤ u(•, t)}. We claim that {-δ ≤ u(•, t)} ⊂ (I + δ η ν) -1 (Ω t ) ( 46 
)
for t ∈ [0, t] and δ small enough. We recall that ψ λ = (I +λν) is a C 1 -diffeomorphism when λ satisfies [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF]. To prove the claim, let (x, t) ∈ R N × [0, t] such that u(x, t) ≥ -δ and set

λ := δ η .
We distinguish two cases. If u(x, t) ≥ δ 0 /4, then, by [START_REF] Biton | Non fattening condition for the generalized evolution by mean curvature and applications[END_REF], [START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations[END_REF],

u(x + λν(x), t) ≥ u(x, t) -λL ν ∞ ≥ δ 0 4 -λL ν ∞ ≥ 0 for λ ≤ δ 0 /(4L ν ∞ ). If -δ ≤ u(x, t) ≤ δ 0 /4, then, by
u(x + λν(x), t) ≥ u(x, t) + λη(t) ≥ u(x, t) + λη ≥ -δ + λη = 0 for δ ≤ δ 0 /4, λ ≤ λ and t ∈ [0, t]. Finally, (46) holds if δ is such that δ ≤ min{ δ 0 4 , ηδ 0 4L ν ∞ , ηλ}.
By a change of variable, we have

L N ((I + λν) -1 (Ω t )) = Ωt det(D(I + λν) -1 )dx ≤ (1 + 2Nλ Dν ∞ )L N (Ω i t ),
for small δ and therefore small λ, since det(D(I + λν) -1 (x)) = (det(I + λDν(x))) -1 = 1λ tr(Dν) + o(λ).

From ( 45) and ( 46), it follows

R N 1 {-δ≤u(•,t)<0} (y) dy ≤ L N ((I + δ η ν) -1 (Ω t )) -L N (Ω t ) ≤ 2Nλ Dν ∞ L N (Ω t ) ≤ 2N Dν ∞ L N (B(0, R)) η δ =: M 4 δ η
by [START_REF] Bourgoing | Viscosity solutions of fully nonlinear second order parabolic equations with L 1 dependence in time and Neumann boundary conditions[END_REF]. We next prove the estimate [START_REF] Srour | Nonlocal second-order Hamilton-Jacobi equations arising in tomographic reconstruction[END_REF]. Note that (34) implies the lower gradient estimate

-|Du(x, t)| ≤ - η ν ∞ in {|u(•, t)| < δ 0 4 } × (0, t).
From the increase principle of [10, Lemma 2.3], we get

{-δ ≤ u(•, t) < 0} ⊂ (Ω t + ν ∞ δ η B) \ Ω t ,
where B := B(0, 1) ⊂ R N . Therefore, noting that [START_REF] Jakobsen | Continuous dependence estimates for viscosity solutions of fully nonlinear degenerate parabolic equations[END_REF] implies that Ω t has a interior cone property as we can see in the proof of Corollary 6, by [START_REF] Barles | Uniqueness Results for Nonlocal Hamilton-Jacobi Equations[END_REF]Lemma 4.4] for some M 5 depending on N, R, λ 0 , δ 0 , η, L, ν ∞ , Dν ∞ , we have

t 0 R N G(x -y, t -s)1 {-δ≤u(•,s)<0} (y) dyds ≤ t 0 R N G(x -y, t -s)1 (Ωt+ ν ∞δB/η)\Ωt (y) dyds = |φ(x, t, ν ∞ δ η ) -φ(x, t, 0)| ≤ M 5 δ η , where φ(x, t, r) := t 0 R N G(x -y, t -s)1 Ωs+rB (y) dyds.
Proof of Theorem 10. Suppose that there exist viscosity solutions u 1 and u 2 of (39). Let τ ∈ (0, T ] which will be fixed later and set

δ τ := max R N ×[0,τ ] |(u 1 -u 2 )(x, t)|.
In view of Theorem 1 and (H5-(i)) or (H5-(ii)), we have

δ τ ≤ M 1 κ τ (τ + τ 1/2 ) or δ τ ≤ M 1 κ τ (τ + τ 1/2 ), ( 47 
)
where

κ τ := sup t∈[0,τ ] R N |1 {u 1 (•,t)≥0} (y) -1 {u 2 (•,t)≥0} (y)| dy (48) 
and

κ τ := sup x∈R N ,t∈[0,τ ] t 0 R N G(x -y, t -s)|1 {u 1 (•,s)≥0} (y) -1 {u 2 (•,s)≥0} (y)| dyds. ( 49 
)
Note that

|1 {u 1 (•,t)≥0} (y) -1 {u 2 (•,t)≥0} (y)| ≤ 1 {-δτ ≤u 1 (•,t)<0} (y) + 1 {-δτ ≤u 2 (•,t)<0} (y).
We fix

t * ∈ (0, t ∧ T ),
where t is given by Theorem 4. Take τ ≤ t * small enough in order that δ τ ≤ δ 0 /4, the lower-bound gradient estimate (Corollary 5) holds on [0, τ ] and, for all t ∈ [0, τ ], η(t) ≥ η(t * ) =: η > 0. Moreover, take τ ≤ t * such that

δ τ ∈ (0, min{ δ 0 4 , ηδ 0 e -KT 4 ν ∞ Du 0 , ηλ}],
where K is the constant give by Proposition 3. By continuity of u 1 , u 2 which achieve the same initial condition u 0 , it is always possible to find τ > 0 small enough in order that the above condition holds. By Lemma 11, we have

κ τ ≤ C 1 δ τ η for some C 1 depending on N, R T , C H , Du 0 ∞ , Dν ∞ and κ τ ≤ C 2 δ τ η for some C 2 depending on C H , λ 0 , δ 0 , η 0 , Du 0 ∞ ν ∞ , Dν ∞ .
Therefore, we get

δ τ ≤ C η δ τ (τ + √ τ ) for some constant C(C H , λ 0 , δ 0 , η 0 , R T , Du 0 ∞ , N, ν ∞ , Dν ∞ ) > 0 which is in- dependent of τ . For τ small enough, we have δ τ = 0. It follows u 1 = u 2 on R N × [0, τ ]. We consider τ = sup{τ > 0 | u 1 = u 2 on R N ×[0, τ ]}. If τ < t *
, then we can repeat the above proof from time τ instead of 0. Finally, we have u 1 = u 2 on R N × [0, t * ] for all t * < t, which gives the conclusion.

Applications

In the companion paper [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF], the framework to show existence of weak solutions of ( 39) is given and as applications, existence results for weak solutions of level set equations appearing in dislocations' theory and in the study of FitzHugh-Nagumo systems are presented (see [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]Sections 3.2,4.2]). In this section, we give uniqueness results for viscosity solutions of such equations. 5.1. Dislocation Type Equations. We consider the level set equation of the evolution of hypersurfaces:

V = M(n(x)) c 0 (•, t) * 1 Ω t (x) + c 1 (x, t) -div Γt (ξ(n)(x)) on Γ t , (50) 
where we use the notations in Introduction. Here M :

S N -1 → R + , c 0 , c 1 : R N × [0, T ] → R, ξ : R N → R N are
given functions which satisfy the following assumption (A):

(i) M ∈ C(S N -1 ), 0 ≤ M(p) ≤ M for all p ∈ R N \ {0}, where p = p/|p| and p → M(p) is Lipschitz continuous; (ii) c 0 ∈ C([0, T ]; L 1 (R n )), c 1 ∈ C(R N × [0, T ]), D x c 0 ∈ L ∞ ([0, T ]; L 1 (R N )); (iii) there exist constants L c , M c > 0 such that, for any x, y ∈ R N and t ∈ [0, T ] D x c 0 (•, t) L 1 (R N ) ≤ L c , |c 1 (x, t) -c 1 (y, t)| ≤ L c |x -y|, c 0 (•, t) L 1 (R N ) + |c 0 (x, t)| + |c 1 (x, t)| ≤ M c ; (iv) ξ(p) = (ξ 1 (p), . . . , ξ N (p)) = Dγ(p) = (∂γ(p)/∂p 1 , . . . , ∂γ(p)/∂p N ) for some positively homogeneous function γ ∈ C 2 (R N \ {0}) of degree 1, i.e., γ(αp) = αγ(p) for α > 0, p ∈ R N \ {0}, which satisfies D 2 γ(p) =     ∂ 2 γ(p) ∂p 1 ∂p 1 • • • ∂ 2 γ(p) ∂p 1 ∂p N . . . . . . ∂ 2 γ(p) ∂p N ∂p 1 • • • ∂ 2 γ(p) ∂p N ∂p N     ≥ 0 for all p ∈ R N \ {0}, sup p∈R N \{0} |D 2 γ(p)| < ∞ and p → D 2 γ(p) 1/2 is Lipschitz continuous.
The function ξ is called the Cahn-Hoffman vector and the last term in the right hand side of (50) is the anisotropic curvature of Γ t at x given by div Γt (ξ(n)(x)) = tr (In(x) ⊗ n(x))D x (ξ(n))(x) . We refer the reader to the monograph by Giga [START_REF] Giga | Surface evolution equations. A level set approach[END_REF] and the references therein for more details.

For reader's convenience, we derive the level set equation of ( 2), see [START_REF] Alvarez | Dislocation dynamics: short-time existence and uniqueness of the solution[END_REF][START_REF] Giga | Surface evolution equations. A level set approach[END_REF]. We have

div Γt (ξ(n)(x)) = tr (D x (ξ(n))(x)) -tr (n(x) ⊗ n(x)D x (ξ(n))(x)). ( 51 
)
Since γ is positively homogeneous of degree 1, ξ i is positively homogeneous of degree 0 for all i ∈ {1, . . . , N}, i.e., ξ i (αp) = ξ i (p) for all α > 0, p ∈ R N \{0}. Differentiating in α, setting α = 1 and noting that

D p ξ(p) = D 2 γ(p) ∈ S N , yields N j=1 ξ i p j (p)p j = N j=1
ξ j p i (p)p j = 0 for all i ∈ {1, . . . , N},

where ξ i p j (p) = ∂ξ i (p)/∂p j . Equality (52) yields

tr (n(x) ⊗ n(x)D x (ξ(n))(x)) = i,j,k n k (x)n j (x)ξ j p i (n(x))n i x k (x) = 0,
where

n i x k (x) = ∂n i (x)/∂x k , and 
R p D 2 γ(p) = D 2 γ(p) = D 2 γ(p)R p ,
where R p = Ip ⊗ p. Introducing an auxiliary function u :

R N × [0, T ] → R such that u(•, t) = 0 on Γ t and u(•, t) > 0 in Ω t for all t ∈ [0, T ], we note n(x) = -Du(x)/|Du(x)| and it follows div Γt (ξ(n)(x)) = div x ξ(-Du(x)) = -tr D 2 γ(-Du(x))D 2 u(x) = -tr R Du(x) D 2 γ(-Du(x))R Du(x) D 2 u(x) = -1 |Du(x)| tr R Du(x) D 2 γ - Du(x) |Du(x)| R Du(x) D 2 u(x) .
In the above equalities, we used the homogeneity of degree 0 of ξ and of degree -

1 of D 2 γ. Set c[χ](x, t, p) := M(-p) c 0 (•, t) * χ(•, t)(x) + c 1 (x, t) , σ(p) := M(-p) D 2 γ(-p) 1/2 R p , H d [χ](x, t, p, X) := -c[χ](x, t, p)|p| -tr σ(p)σ T (p)X , for any χ ∈ L ∞ (R N × [0, T ], [0, 1]), (x, t, p, X) ∈ R N × [0, T ] × (R N \ {0}) × S N .
The level set equation of ( 50) is the equation

u t + H d [1 {u(•,t)≥0} ](x, t, Du, D 2 u) = 0 in R N × (0, T ),
which is a particular case of (39).

Theorem 12. Under assumptions (A), (I1) and (I2), the initial value problem [START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF] with H = H d has at least a weak solution in R N × [0, T ]. Moreover, weak solutions are classical and unique in R N × [0, t * ] for some t * ∈ (0, T ] which depends only on L c , M c , M, δ 0 , η 0 , R 0 , Du 0 ∞ and ν ∞ .

We refer to [START_REF] Forcadel | Dislocation dynamics with a mean curvature term: short time existence and uniqueness[END_REF][START_REF] Forcadel | Minimizing movements for dislocation dynamics with a mean curvature term[END_REF] for the short time existence and uniqueness of the solution of a dislocation dynamics equation with a mean curvature term under different assumptions.

Proof. The existence of weak solutions is proved in [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]Theorem 3.3]. By using Theorem 10, we prove a short time uniqueness. It is easy to check that (H2), (H3) are satisfied. Due to the arguments in Example 2 and assumptions (A) (i), (iv), we see that (H4) is satisfied. We prove that H d satisfies (H1) and (H5-(i)). We first check (H5-(i)). Set ci (x, t, p) [START_REF] Rodney | Phase-field methods and dislocations[END_REF]. We extend the functions c[χ](x, •, p) to be equal 0 when t < 0 and T ≤ t. We set

:= c[χ i ](x, t, p) for (x, t, p) ∈ R N × [0, T ] × (R N \ {0}), χ i ∈ L ∞ (R N × [0, T ], [0, 1]) and i = 1, 2. Note that |c 1 (x, t, p) -c2 (x, t, p)| ≤ M(-p) R N |c 0 (x -y)(χ 1 (y, t) -χ 2 (y, t))| dy ≤ M M c R N |χ 1 (y, t) -χ 2 (y, t)| dy. We finally check (H1). Let (u, χ) ∈ C(R N × [0, T ]) × L ∞ (R N × [0, T ], [0, 1]) be a L 1 -viscosity solution of
c n (x, t, p) := c[χ](x, •, p) * ζ n (t), for all (x, t, p) ∈ R N × [0, T ] × (R N \ {0}), where ζ n (r) := nζ(nr) for r ∈ R and ζ is a standard mollification kernel. Then we have c n ∈ C(R N × [0, T ] × (R N \ {0})), | t 0 c n (x, s, p) -c[χ](x, s, p) ds| → 0,
locally uniformly in (0, T ) as n → ∞. Moreover, the c n 's are Lipschitz continuous with respect to x variable with the constant L c and bounded (independently of n). Let u n be the viscosity solutions of

u t -c n (x, t, Du)|Du| -tr (σ(Du)σ T (Du)D 2 u) = 0 in R N × (0, T ), u(•, 0) = u 0 in R N × (0, T ),
for all n ∈ N. By Example 2 and Proposition 3, we have 

|u n (x, t)| ≤ 1 on R N × [0, T ], u n (x, t) = -1 on (R N \ B(0, R(t))) × [0, T ], |u n (x, t) -u n (y, t)| ≤ C|x -y|, |u n (x, t) -u n (x, s)| ≤ C|t -s| 1/2 , (53) 

5.2.

A FitzHugh-Nagumo Type System. We consider the following system:

         u t = α(v) + div Du |Du| |Du| in R N × (0, T ), v t -∆v = g + (v)1 {u≥0} + g -(v)(1 -1 {u≥0} ) in R N × (0, T ), (54) 
u(•, 0) = u 0 , v(•, 0) = v 0 in R N ,
which is obtained as the asymptotic as ε → 0 of the following Fitzhugh-Nagumo system arising in neural wave propagation or chemical kinetics (see [START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF]Theorem 4.1]):

   u ε t -∆u ε = 1 ε 2 f (u ε , v ε ) in R N × (0, T ), v ε t -∆v ε = g(u ε , v ε ) in R N × (0, T ), (55) 
where

f (u, v) = u(1 -u)(u -a) -v (0 < a < 1), g(u, v) = u -γv (γ > 0).
The functions α, g + and g -: R → R appearing in (54) are associated with f and g. We make the following assumptions (B):

(i) the function v 0 is bounded and of class C 1 with Dv 0 ∞ < +∞;

(ii) the functions g -, g + are Lipschitz continuous on R with a Lipschitz constant L g ≥ 0 and there exist g, g ∈ R such that g ≤ g -(r) ≤ g + (r) ≤ g for all r ∈ R;

(iii) |α(r)α(s)| ≤ L α |r -s|, |α(r)| ≤ M α for all r, s ∈ R and some L α , M α > 0.

For χ ∈ L ∞ (R N × [0, T ], [0, 1]), we write v for the solution of

v t -∆v = g + (v)χ + g -(v)(1 -χ) in R N × (0, T ), v(•, 0) = v 0 in R N , (56) 
and set c[χ](x, t) := α(v(x, t)). Then Problem (54) reduces to

   u t -c[1 {u≥0} ](x, t) + div Du |Du| |Du(x, t)| = 0 in R N × (0, T ), u(•, 0) = u 0 in R N , (57) 
which is a particular case of (39).

Theorem 13. Under assumptions (B), (I1) and (I2), the initial value problem (57) has at least a weak solution in R N × [0, T ]. Moreover, it is classical and unique in R N ×[0, t * ] for some t * which depends only on L α , M α , δ 0 , η 0 , R 0 , Du 0 ∞ and ν ∞ .

Proof. The existence of weak solutions is proved in [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]Theorem 3.4]. See also [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF][START_REF] Soravia | Phase-field theory for FitzHugh-Nagumo-type systems[END_REF].

It is easy to check that (H2) and (H3) are satisfied. Due to similar arguments as those in the proof of Theorem 12, we see that (H1) and (H4) are satisfied. We prove that (H5-(ii)) is satisfied. For

χ 1 , χ 2 ∈ L ∞ (R N × [0, T ], [0, 1]
), the solutions of (56) are given by

v i (x, t) = R N G(x -y, t)v 0 (y) dy + t 0 R N G(x -y, t -s)(g + (v i )χ i (y, s) + g -(v i )(1 -χ i (y, s))) dyds for i = 1, 2.
By the proof of [7, Theorem 4.1], we have

|c[χ 1 ](x, t)-c[χ 2 ](x, t)| ≤ L α (g-g)e 3Lg T t 0 R N G(x-y, t-s)|χ 1 (y, s)-χ 2 (y, s)| dyds for all (x, t) ∈ R N × [0, T ].
This completes the proof.

5.3.

Nonlocal equations with volume-dependent terms. We consider the following evolution of hypersurfaces:

V = β(L N (Ω t )) -div Γt (n(x)) on Γ t , (58) 
where the function β : R → R is Lipschitz continuous. A typical example is β(r) = a + br for some a, b ∈ R which has been studied by Chen, Hilhorst and Logak in [START_REF] Chen | Asymptotic behavior of solutions of an Allen-Cahn equation with a nonlocal term[END_REF] (see [START_REF] Cardaliaguet | On front propagation problems with nonlocal terms[END_REF][START_REF] Cardaliaguet | On the approximation of front propagation problems with nonlocal terms[END_REF] also). The authors prove that the limiting behaviour of the following reaction-diffusion equation

           u t = ∆u + 1 ε 2 f (u, ε Ω u) in Ω × (0, ∞), ∂u ∂n = 0 on Ω × (0, ∞), u(•, 0) = g ε in Ω
is characterized by the motion of hypersurface (58) with β(r) = a + br. The level set equation of ( 58) is the nonlocal equation:

   u t -β L N ({u(•, t) ≥ 0}) + γ div Du |Du| |Du| = 0 in R N × (0, T ), u(•, 0) = u 0 in R N , (59) 
for some positive constant γ.

It is worthwhile to mention that we cannot expect the global existence of weak solutions without any restriction of the growth of β, because the front can blow up at a finite time. A growth condition to ensure a global existence result is given below in (C-(ii)), see also [START_REF] Barles | Existence of weak solutions for general nonlocal and nonlinear second-order parabolic equations[END_REF]Section 4.2].

We can easily check that the equation (59) satisfies assumptions (H1)-( H4) and (H5-(i)). So, the following result holds. Theorem 14. Under assumptions (I1) and (I2), for any γ, R > 0, there exists a constant t R ∈ (0, T ] and at least a weak solution

(u, χ) ∈ C(R N × [0, T ]) × L ∞ (R N × [0, T ], [0, 1]) of the initial value problem for (59) such that {x ∈ R N | u(x, t) ≥ 0} ⊂ B(0, R) for any t ∈ [0, t R ].
Moreover, the weak solution is classical and unique in R N × [0, t * ] for some t * ∈ (0, t R ] which depends only on the Lipschitz constant of β, R, N, δ 0 , η 0 , R 0 , Du 0 ∞ and ν ∞ .

Now, adding the assumption (C):

(i) the assumption (I2) holds with ν(x) = -x in U 0 , (ii) there exist L 1 , L 2 > 0 such that 0 ≤ β(r) ≤ L 1 + L 2 r 1/N for all r ∈ [0, ∞), we can show a global existence and uniqueness result of solutions of (59) for small γ. More precisely, we get Theorem 15. Under assumptions (I1), (I2) and (C), there exists a positive constant γ = γ(N, T, η 0 / Du 0 ∞ ) such that, for any 0 ≤ γ ≤ γ, there exists a unique viscosity solution of (59

) in R N × [0, T ]. Lemma 16. Let u be the viscosity solution of    u t = c(t)|Du| + γ tr (I - Du ⊗ Du |Du| 2 )D 2 u in R N × (0, T ), u(•, 0) = u 0 in R N ,
where γ is a positive constant and c ∈ C([0, T ]) is a nonnegative given function.

Then we have, for any

(x, t) ∈ {|u(•, t)| ≤ δ 0 /4} × [0, T ], u((1 -λ)x, t) ≥ u(x, t) + (η 0 -C Du 0 ∞ √ γt)λ for all λ ∈ [0, λ],
where C is a positive constant which depends only on N and H and λ is the constant given by Lemma 17 (We may assume that λ ≤ 1/2).

The proof of Lemma 16 is very similar to that of Theorem 4, but since we would like to explain how to use the positiveness of c(t) and note the dependence of C in Lemma 16, we give it here.

Proof. Let Ψ be the function given by Lemma 17 and fix λ ∈ [0, λ]. Setting v(x, t) := u((1λ)x, t) and w(x, t) := Ψ(u(x, t) + η 0 λ) for all (x, t) ∈ R N × [0, T ], we consider sup

x,y∈R N ,t∈[0,T ] {w(x, t) -v(y, t) - |x -y| 4 ε 4 -Kt}.
for ε, K > 0. By similar arguments as those used in Theorem 1, there exist (x, y, t) ∈ B(0, R T + 1) 2 × [0, T ] for some R T > 0 and small enough ε > 0 such that the supremum attains at (x, y, t) and (a, p, X) ∈ J 2,+ v(x, t) and (b, p, Y ) ∈ J 2,-w(y, t) satisfy [START_REF] Cardaliaguet | On front propagation problems with nonlocal terms[END_REF]. Note that the Lipschitz constant of u is Du 0 ∞ in this case. We have

|x -y| ≤ Du 0 1/3 ∞ ε 4/3 , |p| ≤ 4 Du 0 ∞ .
We only consider the case where x = y. The definition of viscosity solutions immediately implies that we have

a ≤ c(t)|p| + γtr (I - p ⊗ p |p| 2 )X , b ≥ c(t) 1 -λ |p| + γ (1 -λ) 2 tr (I - p ⊗ p |p| 2 )Y . It follows a -b = K ≤ c(t)(1 - 1 1 -λ )|p| + γtr (I - p ⊗ p |p| 2 )(X - Y (1 -λ) 2 ) .
We note that Ip ⊗ p/|p| 2 is a positive definite bounded matrix and

X - Y (1 -λ) 2 ≤ -λ 1 -λ 2 |x -y| 2 ε 4 I + ρ N i=1
A 2 e i e i , e i e i by [START_REF] Barles | A new approach to front propagation problems: theory and applications[END_REF]. In view of the positiveness of c(t), we get, for some constant C = C(H, N) > 0 which may change line to line,

K ≤ Cγλ 2 (1 -λ) 2 |x -y| 2 ε 4 + Cρ A 2 ≤ C Du 0 2/3 ∞ γλ 2 ε 4/3 + Cρ A 2 .
Sending ρ → 0 and taking K = (C + 1) Du 0 2/3 ∞ γλ 2 ε -4/3 , we necessarily have t = 0. Thus we have for any

(x, t) ∈ R N × [0, T ] w(x, t) -v(x, t) ≤ w(x, 0) -v(y, 0) + Kt ≤ v(x, 0) -v(y, 0) + Kt ≤ e 4KT /3 Du 0 4/3 ∞ ε 4/3 + (C + 1) Du 0 2/3 ∞ γλ 2 tε -4/3 . Setting ε 4/3 = (C + 1)γλ 2 t e 4KT /3 Du 0 2/3 ∞ 1/2 , we get w(x, t) -v(x, t) ≤ C Du 0 √ γtλ,
where C depends only on N, H. This implies a conclusion.

Proof of Theorem 15. In [8, Section 4], the global existence result for weak solutions of (59) is given. Due to Lemma 16, we see that if

γ ≤ 1 T η 0 2C Du 0 ∞ 2 , then η 0 -C Du 0 ∞ √ γt ≥ η 0 2 for all t ∈ [0, T ].
Therefore, we get

u((1 -λ)x, t) ≥ u(x, t) + η 0 2 λ for all (x, t) ∈ {|u(•, t)| ≤ δ 0 /4} × [0, T ], λ ∈ [0, λ].
(60) A careful review of the proof of Theorems 10 gives the conclusion. Remark 6. Inequality (60) implies that the r-level set of u, for r close to 0, are starshaped domains with respect to a ball with center 0, see Lemma 2. In particular, they are locally Lipschitz continuous graphs. Then we can get perimeter estimates without using Lemma 8. Indeed, noting that, from the lower gradient estimate (Corollary 5) and the increase principle [10, Lemma 2.3], for small ε > 0

, {-ε ≤ u(•, t) ≤ 0} ⊂ η η-ε Ω t \ Ω t , we have, for any t ∈ [0, t ∧ T ], 1 ε 0 -ε H N -1 ({u(•, t) = r}) dr = 1 ε {-ε<u(•,t)<0} |Du(x, t)| dx ≤ Du 0 ∞ e Kt ε L N ({-ε < u(•, t) < 0}) ≤ Du 0 ∞ e Kt ε L N ( η η -ε Ω t \ Ω t ) = Du 0 ∞ e Kt ε η η -ε N -1 L N (Ω t )
in view of the co-area formula and Proposition 3. Since the {u(•, t) = r}'s are locally Lipschitz continuous, the (N -1)-Hausdorff measure and the perimeter in Geometric Measure Theory coincide (see [START_REF] Evans | Measure theory and fine properties of functions[END_REF]). Since this latter perimeter is lowersemicontinuous with respect to the Hausdorff convergence, sending ε → 0, we get

H N -1 ({u(•, t) = 0}) ≤ N Du 0 ∞ e Kt η L N (Ω t )
for all t ∈ [0, T ].

Appendix

We give the proof of Lemma 2, Proposition 3 and Lemma 17.

Proof of Lemma 2. Let Ω 0 be defined by [START_REF] Evans | Measure theory and fine properties of functions[END_REF] and consider the function

u 0 (x) = dist(x, Γ 0 ) ∧ 1 x ∈ Ω 0 , (-dist(x, Γ 0 )) ∨ (-1) x ∈ R N \ Ω 0 .
It is not difficult to see that ( 25), (I1) and (I2) hold with ν(x) = -x. Conversely, suppose that (I1) and (I2) with ν(x) = -x hold for some u 0 . We claim that Ω 0 = {u 0 > 0} is star-shaped with respect to the ball B(0, r 0 ) with

r 0 < η 0 Du 0 ∞ .
Let y ∈ B(0, r 0 ) and x ∈ ∂Ω 0 and define g(λ) = u 0 ((1λ)x + λy). It suffices to show that g > 0 on (0, 1]. From (I1), (I2), we have

g(λ) = u 0 ((1 -λ)x + λy) ≥ u 0 ((1 -λ)x) -λ Du 0 ∞ r 0 ≥ η 0 λ -λ Du 0 ∞ r 0 > 0 for λ ∈ (0, λ 0 ]. Let λ * = max{λ ∈ [λ 0 , 1] : g > 0 on [0, λ]}. If λ * = 1, then the proof is complete. Otherwise, let ε > 0 small enough such that ε/(1 -λ * + ε) < λ 0 . From (I1), (I2), we have 0 = g(λ * ) = u 0 ((1 -λ * )x + λ * y) = u 0 ((1 - ε 1 -λ * + ε )((1 -λ * + ε)x + (λ * -ε)y) + ε 1 -λ * + ε y) ≥ g(λ * -ε) + (η 0 -Du 0 ∞ r 0 ) ε 1 -λ * + ε > 0,
which is a contradiction. It completes the proof of the claim. The proof of the fact that a star-shaped with respect to a ball domain has a locally Lipschitz continuous boundary may be found in [32, Prop. 2.4.4 and Theorem 2.4.7] or [START_REF] Maz | Differentiable functions on bad domains[END_REF]Lemma p.20]. We turn to the proof of (ii). We need to recall some notations and definitions and we refer the reader to [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF] for further details. The Clarke generalized directional derivative at x in the direction h of f : R N → R is

f • (x, h) = lim sup y→x,λ↓0 f (y + λh) -f (y) λ .
The Clarke generalized derivative at x is the closed convex set

∂f (x) = {p ∈ R N : for all h ∈ R N , lim sup y→x,λ↓0
f (y + λh)f (y)p, h λ ≥ 0}, which is nonempty when f is locally Lipschitz continuous at x. The Clarke tangent cone to Ω at x ∈ Γ is the convex cone

T Ω (x) = {h ∈ R N : d • Ω (x, h) = 0}
and the Clarke normal cone is the polar of the latter, i.e.,

N Ω (x) = {ξ ∈ R N : ξ, h ≤ 0 for all h ∈ T Ω (x)}.

The proof is divided in several steps. 1. We claim that, for any x ∈ Γ and ξ ∈ N Ω (x) ∩ S N -1 , there exists ν x ∈ S N -1 such that

1 ≥ ξ, ν x ≥ 1 √ K 2 + 1 . ( 61 
)
We fix x ∈ Γ, x = (x ′ , x N ) ∈ R N -1 × R and consider neighborhoods V ′ = B(x ′ , r) of x ′ and V N = B(x N , r) of x N such that there exists a K-Lipschitz continuous function f :

V ′ → R with graph(f ) = Γ ∩ (V ′ × V N ) and epi f ∩ (V ′ × V N ) = Ω ∩ (V ′ × V N ). Let ξ = (ξ ′ , ξ N ) ∈ N Ω (x) ∩ S N -1 = N epi f (x ′ , f (x ′ )) ∩ S N -1 . By definition, for all v = (v ′ , v N ) ∈ T epi f (x ′ , f (x ′ )), (v ′ , v N ), (ξ ′ , ξ N ) = v ′ , v N + v N ξ N ≤ 0. ( 62 
)
By [21, Theorem 2.5.7], since f is Lipschitz continuous, T epi f (x ′ , f (x ′ )) = epi f • (x; •). It follows that, for any r ≥ v N , (v ′ , r) still belongs to T epi f (x ′ , f (x ′ )). From (62), we get

v ′ , v N + rξ N ≤ 0 for all r ≥ v N . (63) 
A first consequence is that ξ N ≤ 0 necessarily. Moreover ξ N < 0.

Indeed, if ξ N = 0 then (63) holds for all r ∈ R and therefore (v ′ , r) ∈ T epi f (x ′ , f (x ′ )) = epi f • (x; •) for all r ∈ R. Therefore, using that f is K-Lipschitz continuous, we get

r ≥ f • (x; v ′ ) ≥ -K|v ′ |
which leads to a contradiction for r → -∞. Using again [21, Theorem 2.5.7], we have

(ξ ′ , ξ N ) = -ξ N (- ξ ′ ξ N , -1) ∈ N epi f (x ′ , f (x ′ )) ⇒ - ξ ′ ξ N ∈ ∂f (x). Since f is K-Lipschitz continuous, it follows |ξ ′ | |ξ N | ≤ K
Using that ξ ∈ S N -1 , we obtain

|ξ N | ≥ 1 √ 1 + K 2 .
Taking ν x = (0, -1) we obtain easily (61).

We denote by d Ω the distance to Ω and by d s Γ the signed distance to Γ which is negative in Ω. For any set A ⊂ R N , co A is the closure of the convex hull of A.

2. We claim ∂d s Γ (x) ⊂ co[N Ω (x) ∩ S N -1 ] for all x ∈ Γ. (Notice it means that the generalized derivative of the signed distance does not contain 0.) Let x ∈ Γ and x i a sequence of points which converges to Γ such that d s Γ is differentiable at x i . Assume that p i := ∇d s Γ (x i ) converges to p. Suppose first that, up to extract a subsequence, x i ∈ Ω. Then, since d s Γ = d Ω in R N \ Ω, and d Ω is differentiable at x i , it means that x i has a unique closest point x i ∈ Γ and

p i = ∇d Ω (x i ) = x i -x i |x i -x i | , |p i | = 1.
But N Ω (x) is the convex hull of the cone generated by such limits ([21, Exercise 8.5, p.96]). Thus p ∈ N Ω (x) ∩ S N -1 . From [21, Theorem 2.8.1], ∂d s Γ (x) is the convex hull of such p which completes the proof of the claim. for all y ∈ B(x, r x ) ⊂ O and λ ∈ [0, λ x ]. We conclude by compactness of Γ (Note that we can modify the signed distance function far from Γ in order to have a bounded function). 0 Figure 1. A set which is star-shaped with respect to 0 but does not satisfy (I2) and a set whose boundary is not locally Lipschitz continuous and which satisfies (I2).

Remark 7. Star-shaped property is not sufficient to ensure (I2), see the counterexample of Figure 1. There exist some sets which satisfy (I2) but they do not have a locally Lipschitz boundary, see Figure 1.

Proof of Proposition 3. Existence of a solution to [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF] is given by Assumption (A8). We prove the uniqueness and the Lipschitz continuity regularity in x of the solutions. Let u ∈ C(R N × [0, T ]) be a solution of [START_REF] Clarke | Nonsmooth analysis and control theory[END_REF] which satisfy [START_REF] Giga | Global existence of weak solutions for interface equations coupled with diffusion equations[END_REF]. Let K, ε, η > 0 and set M := sup

x,y∈R N ,t∈[0,T ] {u(x, t)u(y, t)e Kt |x -y| 4 ε 4 -ηt}.

Let M be attained at (x, ŷ, t) ∈ R 2N ×[0, T ]. By (A8), we may assume that (x, y, t) ∈ B(0, R) 2 × [0, T ]. We first consider the case where t ∈ (0, T ]. In view of Ishii's lemma, for any ρ > 0, there exist (a, p, X) ∈ J 2,+ u(x, t) and (b, p, Y ) ∈ J The definition of viscosity solutions immediately implies the following inequalities:

a + H * (x, t, p, X) ≤ 0, b + H * (y, t, p, Y ) ≥ 0.

We have Ke Kt |x -y| 4 ε 4 + η + H * (x, t, p, X) -H * (y, t, p, Y ) ≤ 0.

(66)

We shall distinguish two cases: (i) for any ε ∈ (0, 1), p = 0; (ii) there exist {ε j } j∈N such that ε j → 0 as j → ∞, p = 0 for any j ∈ N.

We first consider case (i). By (A7) with λ = 0, we have In case (ii), we have x = y. Therefore we have A = 0, X ≤ 0, Y ≥ 0 and η ≤ H * (y, t, 0, Y ) -H * (x, t, 0, X) ≤ H * (y, t, 0, 0) -H * (x, t, 0, 0) = 0, which is a contradiction.

Therefore, sending ρ → 0 and setting K = C H , necessarily we have t = 0. We get for all x, y ∈ R N , t ∈ We have used the Young inequality in the third inequality. Setting Sending η → 0, we have u(x, t)u(y, t) ≤ Du 0 ∞ e Kt/4 |x -y|.

On the one hand, by taking x = y in the above inequality, we get u ≤ v and obtain the uniqueness of the solution. On the other hand, by choosing u = v, we obtain [START_REF] Henrot | Variation et optimisation de formes[END_REF].

  ), (A5). Furthermore, we make the following assumptions (H1)-(H5-(i)) or (H5-(ii)) and (I1), (I2) on u 0 throughout this section. (H1) For any χ ∈ L ∞ (R N × [0, T ], [0, 1]), equation (39) has a bounded uniformly continuous L 1 -viscosity solution u[χ]. Moreover, there exist constants C, R T > 0 independent of χ ∈ L ∞ (R N × [0, T ], [0, 1]) such that |u(x, t)| ≤ C for all (x, t) ∈ R N ×[0, T ] and u(x, t) = -1 for all x ∈ (R N \B(0, R T ))×[0, T ]. (H2) For any τ ∈ [0, T ] and χ ∈ C([0, τ ]; L 1

2 , 4 (ε 4

 244 -u(y, t) such that ab = Ke Kt |x -y| 4 ε 4 + η, p = 4e Kt |x -y| 2 ε |x-y| 2 I -I -I I + 8e Kt ε 4 (xy) ⊗ (xy) -(xy) ⊗ (xy) -(xy) ⊗ (xy) (xy) ⊗ (xy) .

4 + e Kt |x -y| 4 ε 4 ≤ 4 + e Kt |x -y| 4 ε 4 ≤ 3 4 4 / 3 3 ∞

 44443433 [0, T ] u(x, t)u(y, t)ηt ≤ u 0 (x)u 0 (y) -|x -y| 4 ε Du 0 ∞ |x -y| -|x -y| 4 ε Du 0 4/ε 4/3 + e Kt |x -y| 4 ε 4 .

ε 4 = 4 4 / 3 e

 43 Kt |x -y| 4 t)u(y, t)ηt ≤ Du 0 ∞ e Kt/4 |x -y|.

  ) The equation is degenerate parabolic, i.e.,

	H(x, t, p, X) ≥ H(x, t, p, Y ),
	for any (x, t, p)

  for all x, y ∈ R N , t, s ∈ [0, T ] and some C > 0, where R(t) is the function introduced in Example 2. By Ascoli-Arzelá theorem, the uniqueness of L 1 -viscosity solutions of[START_REF] Rodney | Phase-field methods and dislocations[END_REF] with H[χ] = H d [χ] and [4, Theorem 1.1], we have u n → u locally uniformly on R N × [0, T ] and u still satisfies properties (53). The above mollification argument can be an alternative way of getting the approximation property we need (cf. (H6)) by a regularization of H[χ] by H[χ](x, •, p, X) * ζ n (t) instead of H[χ * ζ n (t)](x, t, p, X).

  Ke Kt |x -y| 4 ε 4 + η ≤ H(y, t, p, Y ) -H(x, t, p, X) = H(y, t, 4e Kt |x -y| 2 ε 4 (xy), Y ) -H(x, t, 4e Kt |x -y| 2 ε 4 (xy), X) ≤ C H e Kt |x -y| 4 ε 4 + ρ A 2 .

There exists an open bounded neighborhood O of Γ and η > 0 such that, for all y ∈ O, V(y) = {ν ∈ B(0, 1) : 1 ≥ p, ν ≥ η f or all p ∈ ∂d s Γ (y)} is a nonempty compact convex subset of R N . The subsets V(y) are clearly convex, closed and bounded for any 1 > η > 0 and open subset O. It remains to prove that there are nonempty for some η. It is true for V(x) with η = √ 1 + K 2 -1 by Claims 1 and 2. To extend this property in a neighborhood B(x, r) of x, we notice the following facts: since ∂d s Γ (•) is upper-semicontinuous ([21, Proposition 2.1.5]) and 0 ∈ ∂d s Γ (x), there exists r > 0 such that 0 ∈ ∂d s Γ (y) for all y ∈ B(x, r). By Clarke's implicit function theorem[START_REF] Clarke | Nonsmooth analysis and control theory[END_REF] Proposition 3.3.6], the d s Γ (y)-level sets of d s Γ are Lipschitz continuous in B(x, r). The Lipschitz constant is controlled by the distance from 0 to ∂d s Γ (y). Up to take r small, it depends only on K. Then, we can repeat the previous arguments and obtain the result in B(x, r) (up to take 0 < η smaller than 1/ √ 1 + K 2 ). We then find O by compactness of Γ.

The multi-valued map V : O ⇉ R N is lower-semicontinuous. Let y ∈ O. Let ν ∈ V(y) and ǫ > 0. Since ∂d s Γ (•) is upper-semicontinuous, by definition, there exists δ > 0 such that, if |yy ′ | < δ then ∂d s Γ (y ′ ) ⊂ ∂d s Γ (y) + ǫB (where B = B(0, 1)). Any p ′ ∈ ∂d s Γ (y ′ ) can be written p ′ = p + ǫw where p ∈ ∂d s Γ (y) and |w| ≤ 1. Using that ν ∈ V(y), it follows1 + ǫ ≥ ν, p ′ = ν, p + ν, w ≥ ηǫThis proves that V(y) ⊂ V(y ′ )+ǫB which is the definition of the lower-semicontinuity of a multi-valued function.

Michael's continuous selection theorem and end of the proof. From steps 3 and 4, we can apply Michael's continuous selection theorem ([START_REF] Aubin | Set-valued analysis[END_REF]): there exists a continuous map Φ : O → R N such that Φ(y) ∈ V(y), i.e., for all y ∈ O and p ∈ ∂d s Γ (y), we haved s Γ (y + λΦ(y)) ≥ d s Γ (y) + p, λΦ(y) + o y (λ) ≥ d s Γ (y) + ηλ + o y (λ). (64)According to Remark 3, up to decrease η, we may choose Φ which is smooth, bounded and Lipschitz continuous. Using the Lipschitz continuity of d s Γ and Φ, we may earn some uniformity in (64) up to reduce η. More precisely, for every x ∈ O, there exists
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R N c 0 (xy, t)1 Ωt (y) dy.

We now prove [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF]. Set R := 2R T ∨ Du 0 L ∞ (R) e KT , where K is the constant given by Proposition 3. Recalling [START_REF] Gulliver | Sharp growth rate for generalized solutions evolving by mean curvature plus a forcing term[END_REF], in view of Lemma 9.1 in [START_REF] Barles | A geometrical approach to the study of unbounded solutions of quasilinear parabolic equations[END_REF], there exists a constant L > 0 such that

Lemma 17. Assume (I2). Define the nondecreasing function Ψ ∈ C(R) by

There exists a constant λ ∈ (0, λ 0 ] which depends only on δ 0 , η 0 , Du 0 ∞ and ν ∞ and satisfies

Proof. It is easy to see inequality (67) if |u 0 (x)| ≤ δ 0 in view of (I2). In the case where u 0 (x) > δ 0 , we have

which implies inequality (67) if λ ∈ [0, λ] with λ Du 0 ∞ ν ∞ ≤ δ 0 /2. Finally, we consider the case where u 0 (x) < -δ 0 . By replacing λ by a smaller constant if necessary, we may assume that λη 0 ≤ δ 0 /4 for all λ ∈ [0, λ]. Then we have Ψ(u 0 (x) + λη 0 ) = -1, which yields a conclusion.