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Abstract: The paper presents a method to control random sampling in motion planning al-
gorithms. The principle of the method is to use on line the results of a probabilistic planner to
describe the free space in which the planning takes place, by computing a Principal Compo-
nent Analysis (PCA). This method identifies the locally free directions of the free space. Given
that description, our algorithm accelerates the progression along these favored directions. That
way, if the free space appears as a small volume around a submanifold of a high-dimensional
configuration space, the method overcomes the usual limitations of probabilistic motion plan-
ning algorithms and finds a solution quickly. The presented method is theoretically analyzed
and experimentally compared to known motion planners.

1 Problem statement, related work and contribution

1.1 General Framework

Motion planning problems have been intensively studied in the last decades, with
applications in many diverse areas, such as robotics, part disassembly problems in
Product Lifecycle Management (PLM), digital actors in computer animation, or even
protein folding and drug design. For comprehensive overviews of motion planning
problems and methods, one can refer to (Latombe, 1991), (Choset et al., 2005) and
(LaValle, 2006).

In the past fifteen years, probabilistic algorithms exploring the configuration
space (CS) have been developed with success. The sampling approach, first intro-
duced in (Kavraki et al., 1996) as probabilistic roadmaps (PRM), consists in comput-
ing a graph, or a roadmap, whose vertices are collision free configurations, sampled
at random in the free space and whose edges reflect the existence of a collision free
elementary path between two configurations. PRMs aim at capturing the topology
of the collision free space (CS free) in a learning phase in order to handle multiple
planning queries in a solving phase.

† This work is partly supported by the French ANR-RNTL project PerfRV2. A preliminary
version of this paper appeared in WAFR’08.
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One class of these algorithms has received special attention in the literature for
its ability to rapidly solve single-query problems: tree expansion strategies, intro-
duced in both (Hsu et al., 1999) and (Kuffner & LaValle, 2000), which include RRT
planners, consist in growing a tree rooted at the start configuration towards the goal
configuration, by repetitively expanding it in random directions.

These methods have been proved to be efficient and suitable for a large class of
motion planning problems. Work has been done to analyze and validate theoretically
these algorithms. Probabilistic completeness has been studied and proved for PRM
(Kavraki et al., 1998), as well as for RRT (Kuffner & LaValle, 2000).

1.2 Narrow Passages

In some environments, however, passing through so-called narrow passages is a dif-
ficult task for probabilistic motion planners. A lot of work has been done to evaluate
this difficulty, as well as to overcome it.

The formalism of expansive spaces was first presented in (Hsu et al., 1999). A
good description of it can be found in (Hsu et al., 2006). It quantifies the complexity
of a configuration space from a probabilistic planning point of view. The presence
of narrow passages is identified as the main source of complexity for PRM planners.
Indeed, if the path to find in CS goes through a narrow passage, the algorithm has
to sample configurations inside the passage, which is difficult because its volume is
small compared to CS . Thus, this work demonstrates the difficulty of “finding” the
passage, i.e. sampling at least one configuration inside it.

Motion planning problems occur though, where the difficulty is not to find the
passage, but to go along it. For industrial disassembling problems for instance, the
mechanical part to remove is already mounted and inside a constrained area. The
motion planner has to find a path that follows the narrow passage until the part is dis-
assembled. Going along a narrow passage can be a difficulty in itself for motion plan-
ners. Actually, the velocity of an RRT algorithm, for example strongly depends on
the thickness of the narrow passage - i.e. on the radius of the largest sphere included
in CS free. We will analyze that effect theoretically in Section 3 then in the experimen-
tal section. The purpose of our work is to speed up the progression of probabilistic
algorithms in constrained regions of CS free, it deals solely with roadmap expansions
inside narrow passages, and not with finding the entrance of narrow passages in CS .

Some previous work deals with controlling probabilistic planning algorithms as
well. Visibility based PRM is presented in (Siméon et al., 2000). A visibility cri-
teria is used to improve the quality of the sampling and accelerate the algorithm.
Dynamic-domain RRTs, presented in (Yershova et al., 2005), control the sampling
domain of an RRT algorithm to overcome some bias of classic RRT algorithms. In
(Burns & Brock, 2005), a local model of the configuration space shape is built and
used to improve the efficiency of configuration sampling. A good review on different
sampling techniques was presented in (Geraerts & Overmars, 2004).

More recently, work has been done to use workspace information within CS
probabilistic algorithms. In (Rodriguez et al., 2006) for instance, workspace hints -
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such as real world obstacle directions - are used to accelerate an RRT algorithm that
progresses through a narrow passage.

1.3 Motivations

Motivations for the work presented here come from motion planning for digital ac-
tors. In these high-dimensional problems - we consider whole-body motion planning,
known probabilistic algorithms behave rather well, but can be slowed down by nar-
row passages.

The fact that the whole-body motion takes place in a narrow passage of CS ,
however, does not necessarily reflect the difficulty of a motion planning problem
from a human point of view, as we will show it with the next example.

Fig. 1. Three animation motion planning problems. The mannequin has to get into position to
fix the pipe. The first problem is unconstrained, we then add an obstacle for problems 2 and 3.
In problem 3 the right arm is already in position and the mannequin has to find a way to move
its left arm.

Fig. 1 shows the example of a mannequin getting into position to fix a pipe. In
the first environment, the mannequin has to move both arms in an unconstrained
environment. This problem should be easy to solve for current motion planners. In
the second environment, the right hand has to go through a hole to get into position.
This makes the problem more difficult, since the path to find in CS goes through a
narrow passage. The third problem takes place in the same environment, but the right
hand is already in position. The difficulty of this last problem, from a human point
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of view, is more or less the same as the first one: the mannequin has to find a way to
move only one of its arms in a free environment. However, the fact that the right hand
is in position forces the motion planner to sample configurations in a small volume
around a sub-manifold of CS - the sub-manifold corresponding to a still right hand.
This slows down random expansions (we will quantify it in Section 3) and motivates
our work on how to identify on line when the search process takes place within
small volumes of CS . Note that we want this identification to be automatic, to keep
the generic properties of CS motion planners. This means that in the third problem
of Fig. 1 we do not want an outside operator to input the information about which
degrees of freedom the mannequin should use.

1.4 Contribution

This paper presents a study on how going through narrow passages slows down ran-
dom expansions, and a new planner based on this study. Our algorithm analyzes on
line the valid configurations sampled by a probabilistic motion planner to estimate if
they lie in a small volume around a submanifold of CS . If so, the sampling distribu-
tion is locally adapted to fit into that volume. That way, if the path to find follows a
narrow passage, the algorithm does not lose time in trying to expend the roadmap in
the directions orthogonal to the passage. Thanks to the method used to describe the
free space from the sampled configurations, the identified submanifold can be of di-
mension more than one, while rest of the contributions dealing with narrow passages
usually consider tubes, i.e. small volumes around a one-dimensional manifold. This
problem is different from the one of sampling for closed kinematic chains -presented
for instance in (Han & Amato, 2000) and (Cortes et al., 2002), since in our case,
the subspace in which the search should take place is unknown. The new algorithm
presented in this paper only uses CS-information, which makes it more generic than
algorithms that use workspace information.

Note that our method is a way to estimate on line if previously sampled configu-
rations lie inside a narrow passage. It does not help in sampling a first configuration
inside a narrow passage. Therefore, the adaptation of random sampling we propose
is only effective if the probabilistic roadmap contains configurations inside a narrow
passage. This might be the case from the start in some problems, for example indus-
trial disassembly ones. Otherwise, some heuristics, independent from our method,
can be used to find the entrance of narrow passages more efficiently: see for example
Iterative Path Planning (Ferre & Laumond, 2004).

Our work uses a long known and classic statistical method: the principal com-
ponent analysis (PCA). It is used in many fields where subspace identification is
needed, and in particular in (Teodoro et al., 2002), in a motion planning context. The
use of PCA there is different than ours though, since it is only applied to motion
description, while we use it to control the search and generate motion. We found
some recent mathematical publications (Zwald & Blanchard, 2005) that helped us
understanding some convergence properties of PCA. They are shown and explained
in this paper.
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Our algorithm has been tried in various examples, and the experimental results
are presented and analyzed. We chose to use it on different motion planning classes
of problems: a mechanical disassembling problem, the animation problems of Fig.
1, and an animation problem motivated by industrial needs.

1.5 Paper Outline

We start by recalling briefly in Section 2 the structure of a widely used motion plan-
ning algorithm: RRT, before analyzing in Section 3 how narrow passages in CS slow
down this kind of algorithms. Section 4 presents the Principal Component Analysis
method and our algorithm that uses it. Section 5 deals with several implementation
issues and Section 6 presents our experimental results. We discuss in the final section
the possibility of using other dimensionality reduction technique than PCA.

2 Preliminaries: Rapidly exploring Random Trees (RRT)

The method presented in this article can be applied to any random expansion strategy.
By expansion strategies, we mean adaptive sampling strategies that repetitively try to
expand the boundary of the fraction of CS free visible from the roadmap by sampling
new configurations around nodes believed to be close to this boundary (Hsu et al.,
2006). The second phase of the PRM algorithm as presented in (Kavraki et al., 1996),
for instance, is an expansion strategy.

We evaluated our method by using it on a popular algorithm that is based solely
on random expansions: the RRT algorithm (LaValle, 1998), (Kuffner & LaValle,
2000). The experimental section will show examples of use of our method on differ-
ent expansion based algorithms. Let us remind briefly the RRT algorithm structure.

Algorithm 1 shows the pseudo-code of the RRT algorithm. It takes as input an
initial configuration q0 and grows a tree T in CS free. At each step, it samples a ran-
dom configuration qrand, finds the nearest configuration to qrand in T : qnear, and
extends T from qnear in the direction of qrand as far as possible. The new configu-
ration qnew is then added to T . One extension from a configuration of the tree to a
random configuration corresponds to one step of roadmap random expansion. In the
rest of the paper, we will use both terms.

The version of RRT we consider is RRT-Connect rather than classic RRT. It often
works better and is more generic, as there is no need to tune any step parameter.

3 Analyzing random expansions in narrow passages

3.1 Local description of a narrow passage

Most motion planners encounter difficulties when solving problems containing nar-
row passages. In (Hsu et al., 1999), Hsu et. al defined the notion of expansive spaces.
This formalism describes configuration spaces containing difficult areas, or narrow
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Algorithm 1 RRT(q0)
T .Init(q0)
for i = 1 to K do
qrand ← Rand(CS)
qnear ← Nearest(qrand, T )
qnew ← Extend(qnear, qrand)
T .AddVertex(qnew)
T .AddEdge(qnear, qnew)

end for

passages. These difficulties occur when connected areas of CS free do not see large re-
gions outside themselves. Probabilistic planners then have to sample configurations
in these small volumes to solve the problem, which make the search longer.

The expansive space formalism describes the global difficulty of a configuration
space. What we studied here are the local properties of CS free that slow down random
expansions. In other terms, how can we describe locally a narrow passage?

Configuration space probabilistic planners try to find a path between a start and
a goal configurations with as few samples as possible. Basically, this means that one
would want new edges to be as long as possible - the accurate notion is that one would
want to add nodes that expand the roadmap visibility region as much as possible.

Let q be a configuration in CS free. To describe how a roadmap will expand from
q, one should look at its visibility region V (q). If V (q) is equally constrained in all
directions, then an RRT algorithm, for instance, will behave nicely. It will add edges
from q of length the radius of V (q), which is the best one could expect. On the other
hand, if V (q) has an elongated shape, we can say that q lies inside a narrow passage.
The volume of V (q) is small because of constraints in some directions. A random
tree will grow slowly, while it could expand easily along free directions.

Thus, a good description of the local difficulty to expand from q is the variances
and covariances of V (q) along a basis of CS . Directions accounting for most of
the volume of V (q) are the ones along which the roadmap could be expanded the
furthest, while directions accounting for low volume are highly constrained and slow
down motion planners.

Remark

We use here the notion of CS−visibility, which depends on the local method the
planner uses to connect two configurations (see (Laumond & Simeon, 2001) for more
comments on this). We try to describe the shape of a configuration visibility region
to identify directions in which the local method goes the furthest. The technique we
will use - Principal Component Analysis - is only valid for linear trajectories, since
it identifies linear subspaces of CS . Thus, the following results are given under the
assumption that the local steering method is linear, this is the case in the experiments
we will show.
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3.2 One step of expansion inside a narrow passage

What characterizes a narrow passage is the elongated shape of a visibility region, i.e.
the region has a much higher variance along some directions than along others. To
understand how this slows down random expansions, let us look at a 2D example,
where one dimension is more constrained than the other.

L

l
q

θ
d(θ)

qrand

Fig. 2. One step of random expansion inside a 2D narrow passage. L is fixed and l approaches
0. We are interested in the expected length d of the new vertex of the roadmap. For |θ[π]| ≤
arcsin(l/L), d(θ) = L/2, otherwise d(θ) = l/2 sin(θ)

Fig. 2 shows a 2D example of a narrow space. Here, the visibility region of q has
a rectangular shape. One of the dimension of the rectangle is fixed: L, and the other
l approaches 0, which means the space around q gets narrower. The configuration
towards which q is extended is sampled at random on a circle of center q and radius
half the length of the rectangle. Thus, the random extension from q is isotropic, and
the longest possible progress is L/2.

We can compute the expected length d of the new edge returned by one step of
expansion. The exact value of d(θ) is indicated in Fig. 2.

d = 1
2π

∫ 2π

θ=0
d(θ)dθ

= 1
π (L arcsin(l/L)− l log(tan(arcsin(l/L)/2)))

'l→0 − l
π log(l)

As the width of the rectangle approaches 0, the expected length of the extension
converges to 0, even though q sees configurations far away in one of the two dimen-
sions. This example shows how the search is slowed down in a narrow passage: if
some directions are more constrained than others, an isotropic expansion strategy
will not go as fast as possible in the free directions. If CS is of higher dimension
n, if only one dimension is constraint, d 'l→0 k(n).l log(l), where k(n) is a con-
stant depending on the dimensionality of CS , and if p > 1 dimensions are constraint,
d 'l→0 k

′(n, p).l, which means the extensions get shorter.
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The important point is that what slows down random expansions inside a narrow
passage is the elongation of the visibility region, i.e. the difference between variances
along different directions of CS .

4 A new Planner using dimensional reduction tools

According to the previous description of narrow passages, a good way to quantify
the local difficulty of CS in terms of probabilistic motion planning is to describe
the shape of its points visibility region. Following the sampling motion planning
paradigm, we do not want to describe explicitly CS free. The only information that we
have and will use are the free configurations already obtained.

Given a node we are about to extend from, we will assume its nearest neighbors
in the roadmap capture the local shape of the free space. We will then describe that
shape by computing its variances and covariances along the canonical basis of CS .
A statistical tool, the Principal Component Analysis, is then used to determine direc-
tions in CS accounting for most of the variance of this region of CS free. Given that
description, we change the random direction of the expansion to follow the directions
of the passage inside which the node lies.

Fig. 3. Changing the random direction of extension according to CS free local shape. Instead of
extending from qnear to qrand, we use CS information and extend to q′rand.

Note that while ideally we would like to describe the visibility region of qnear,
we compute the variances and covariances of a neighborhood of qnear in CS free.
There is no reason for those two regions of CS to be the same, but we assume that
the latter one is a good approximation of the first one. Using only nodes that qnear
can actually “see” would take more iterations of classic sampling before being able
to compute the PCA, as there is a minimal number of nodes required to compute a
valid PCA.

4.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical dimensionality reduction tech-
nique. Its goal is to determine the underlying dimensionality of a set of p points in
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an n−dimensional space. PCA is one of the most commonly used technique for di-
mensionality reduction. It was first proposed by Pearson (Pearson, 1901) and further
developed by Hotelling(Hotelling, 1933). A good description can be found in Jolliffe
(Jolliffe, 2002).

This method involves a mathematical procedure that, given p points, computes
an orthogonal change of basis such that the first vectors of the new basis are the
directions that account for most of the variance of the input set. The underlying
structure found by PCA is therefore linear.

The new basis and the corresponding variances are obtained by diagonalizing the
covariance matrix of the input points. They correspond respectively to its eigenvec-
tors and eigenvalues. The PCA Algorithm takes a set of p points in an n−dimensional
space, computes its covariance matrix C and returns the matrices Λ and U , contain-
ing respectively the eigenvalues and the eigenvectors of C.

Algorithm 2 PCA(Points[n][p])
matrix C
for i = 1 to n do
Cii ← Variance(Points[i])

end for
for i, j = 1 to n, i 6= j do
Cij ← Covariance(Points[i], Points[j])
Cji ← Covariance(Points[i], Points[j])

end for
matrix Λ, matrix U
Λ,U ← EigenSolve(C)
return Λ,U

4.2 Applying PCA to Probabilistic Algorithms

The way we use PCA for probabilistic algorithms does not change their structure. We
only reimplemented the expansion step. At each step, we find the p nearest neighbors
of qnear in the roadmap by performing a Breadth-First Search. We then compute a
PCA on those points. The random direction towards which the roadmap is extended
(qrand) is changed according to the results of the PCA, in order to favor the directions
in which the variance of the roadmap is high.

More precisely, let us note λ1 > · · · > λn > 0 the eigenvalues of the covariance
matrix, and u1, . . . ,un the corresponding eigenvectors. Placing the origin on qnear,
the coordinates of the new random direction q′rand , in the eigen basis, are given by:

∀i ∈ [1, n], q′(i)rand =
λi
λ1
q
(i)
rand

Thus, U being the eigen change of basis matrix, we get in CS canonical basis :
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q′rand = qnear +
n∑
i=1

(
λi
λ1

(qrand − qnear).Ui
)
Ui

This transformation projects qrand coordinates corresponding to low variance di-
rections towards qnear, while keeping the directions with high variances unchanged.
Note that the probability of 0 being an eigenvalue of the covariance matrix is null, so
all the directions are kept.

Algorithm 3 PCA-Extend(qnear, qrand,R)
vector table Points[n][p]
Points← BreadthFirstSearch(R, qnear, p)
matrix Λ, matrix U
Λ,U ← PCA(Points)
λmax ← max(Λii)

qrand ← qnear +
Pn
i=1

“
Λii
λmax

(qrand − qnear).Ui
”
Ui

qnew ← Extend(qnear, qrand)
return qnew

Fig. 4. One step of extension inside a narrow passage. On the left, isotropic sampling and on
the right PCA adapted sampling, concentrated along the direction of the passage. The bold
part shows where half of the measure is concentrated.

Recalling the example of Fig. 2, we can show the difference between classic
expansion and PCA-controlled expansion. Fig.4 shows how an isotropic distribution
around q is transformed into an ellipsoidal distribution. The bold part indicates where
half of the probability stands, before and after changing qrand. One can see that
with PCA-Extend, the measure is concentrated on the ends of the ellipse. That way,
when the space gets narrower, the expected length of one step of extension does not
converge to 0, but to a positive limit. The respective expected length of extension are
plotted in Fig. 5.
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l/L

0 1

L/2
d for RRT

d for PCA-RRT

Fig. 5. Expected length of extension inside a narrow passage. The curves have to be looked at
from right to left. As the space gets narrower, isotropic sampling (plain curve) converges to a
null extension, while PCA controlled sampling (dashed curve) converges to a positive limit.

4.3 Accuracy of the PCA description

The previous sections explained how knowledge about the local shape of CS free could
help improving the performance of random expansion algorithms. However, a key
point is the accuracy of this knowledge. We said that we assume the nearest neighbors
of a configuration catch the shape of the free space. Two questions remain: how true
is this assumption and how many neighbors are necessary to describe locally CS free?

The following result partially answers these questions. It is a simplified version
of mathematical results found in (Zwald & Blanchard, 2005). The accuracy of PCA
description is expressed as the distance δ between the high variance subspace found
by PCA and the real high variance subspace CS free lies around. The distance be-
tween the two subspaces is expressed as the distance between the projectors on the
subspaces, using the Frobenius norm. Let D be the dimension of the high variance
subspace CS free lies around, and λ1 > · · · > λn > 0 the eigen values of the local
covariance matrix of CS free.

Theorem 1. For p points lying in a ball of radius r, for ξ ∈ [0, 1], the following
bound holds with probability at least 1− e−ξ:

δ ≤ 4r2
√
p(λD − λD+1)

(
1 +

√
ξ

2

)
(1)

This theorem is a simpler rewriting of Theorem 4 in (Zwald & Blanchard, 2005).
It illustrates two points: the convergence speed of the PCA analysis with respect to
the number of points is 1/

√
p, and the narrower the free space is (i.e. the higher

(λD − λD+1) is), the more accurate the PCA description will be.
Note that if the space is unconstrained (all the λi are close to each other), this

bound is not interesting. In that case, PCA may return imprecise results, but then
again, known probabilistic algorithms behave properly. We will discuss in the next
section how not to suffer from PCA computation in a locally unconstrained space.
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Remark

The theorem presented here is true under the hypothesis that the samples are drawn
independently from the same probability distribution. It is not the case with configu-
rations obtained by an RRT algorithm, for instance. Nevertheless, we found relevant
to show this result to give an intuition about the convergence speed of PCA. We
will also use the bound given by the theorem as a heuristic convergence criterion
in the next section. Even if the theorem is not strictly applicable on samples drawn
by a probabilistic planner, we found experimentally that its heuristic use was highly
effective.

5 Implementation details

5.1 Normalization of the degrees of freedom

The PCA method is not scale independent: when computing the covariance matrix of
a set of configurations, the values of the different degrees of freedom (DoF) are com-
pared to each other. This can be an issue, for example when comparing translation
with rotations, or bounded DoFs with unbounded ones. One solution is to compute
separate PCAs for the rotations and the translations, but then we fail to express the
potential correlations between them. The other solution is to normalize all the values
of the DoFs, so that they all lie between 0 and 1: if a certain DoF (translation or rota-
tion) is bounded between vmin and vmax, we divide its value by (vmax− vmin), and
if a rotation DoF is unbounded, we divide its values by 2π. If we have unbounded
translation DoFs, we have to compute a PCA on these DoFs separately, since it is ir-
relevant to compare their values with the other DoFs. In the following experimental
section, we show results obtained with the latter solution, where all the translation
DoFs were bounded. Note that we use Euler angles to describe rotations, we perform
the PCA on these angles.

5.2 PCA Bias in unconstrained spaces

As shown earlier, the computation of PCA will give accurate results in narrow pas-
sages. However, if the free space is locally unconstrained - or equally constrained
in all directions - the description returned by PCA may not be accurate enough.
This could induce a bias in the algorithm: if the space is free, the algorithm may
favor expansion in directions that have previously been sampled at random. This is a
main drawback since the new algorithm loses one of the key properties of the RRT
algorithm: the convergence of the RRT vertices distribution towards the sampling
distribution.

To overcome this bias, our implementation of PCA-RRT uses, at each step of
expansion, PCA-Extend with probability 0.5 and classic RRT Extend with probabil-
ity 0.5. That way, the tree still covers densely the free space, while the PCA-Extend
function speeds up the search in narrow passages.
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5.3 Recursive PCA

The previous section presented ideas about how many points are necessary to cor-
rectly describe the space. It depends on each region of the space, narrow passages
needing less points than free regions. On a first implementation of the algorithm, we
chose to fix arbitrarily the number of points on which we compute a PCA. For an
n−dimensional space, this number has to be at least (n+1), so that all the eigenval-
ues of the covariance matrix are positive. We chose to use k.n points for a k between
2 and 10. This solution works, given that the user is ready to tune k for each problem.

As we do not want any tuning to be done by a user, but automatically by the
algorithm, we have implemented a version of the algorithm where the number p of
nearest neighbors used to compute the PCA is no longer a parameter. It is done by
evaluating the PCA result each time we add a new neighbor: we start by computing
the PCA on (n+1) points then we update that computation by adding the points one
by one.

We chose to use the bound given by Theorem 1 as a heuristic indicator on the
accuracy of the successive computations of PCA. At one step of the computation of
recursive PCA, given the estimate on the eigenvalues λ = (λ1, . . . , λn), the number
of points used p, and the maximum distance between two points r we can compute
the bound of Theorem 1 for every D between 1 and (n − 1). Let fD(λ, p, r) =

4r2√
p(λD−λD+1)

(see Eq. 1).
The Frobenius norm of the projector on the high variance subspace of dimension

D is
√
D, so the relative error made on evaluating that subspace is δ/

√
D.

For a given ε, if fD(λ, p, r)/
√
D ≤ ε/1.707 (choosing ξ = 1 in Eq. 1), we get,

with probability at least 1 − e−1, δ/
√
D ≤ ε. In our implementation, we chose ε =

0.1 as a convergence criterion: if for some D ∈ [1, n−1], fD(λ, p, r)/
√
D ≤ 0.059,

we stop the recursive PCA computation and use the results as they are.

Remark

The Theorem 1 uses the real eigenvalues of the local covariance matrix of CS free,
while we only have access to an estimate of it. Therefore, we can not guarantee that
the bound is valid. We also have to keep in mind that the hypothesis of the theorem
are not strictly met, as we remarked it in the previous section. We still found that this
convergence criterion was both theoretically founded and experimentally effective.
Fig. 6 shows an example of the successive evaluation of the convergence criterion
for a robot with 20 degrees of freedom. The criterion is met when the PCA uses 50
points to describe CS free. This data was actually taken from a trial of the PCA-RRT
algorithm on the example shown on Fig. 1, Problem 3.

This whole computation needs an incremental version of the PCA, in order not
to recompute the diagonalization of the covariance matrix at each step. A good de-
scription of incremental PCA can be found in (Erdogmus et al., 2004). It uses matrix
perturbation theory, and computes a rank one update of the PCA results each time
we add a point.
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Number of points

min
D∈[1,n−1]

“
fD(λ, p, r)/

√
D
”

20 50

0.8

0.2 PCA computation precision

Fig. 6. Convergence of the estimate of the distance between the real high variance subspace
of CS free and the subspace identified by the PCA. The computation stops when that estimate
reaches a lower threshold, which happens for 50 points. The data is taken from a trial of the
PCA-RRT algorithm on the example shown on Fig. 1, Problem 3.

5.4 Complexity

The complexity of the algorithm at each step of extension depends on two parame-
ters: the dimension of the space n and the number p of nearest neighbors used to do
the PCA.

The computation of the original PCA, with (n+1) points is done in O(n3) oper-
ations. Afterward, each step of recursive PCA involves one (n× n)-matrix product,
so the overall complexity is O(n3× p). Unfortunately, we have no way of predicting
the value of p. We will show in the experimental section its average value for the
considered problems, as well as the relative costs of PCA computation and collision
detection.

6 Experimental Results

In this section, we compare our PCA adapted sampling to several classic probabilistic
motion planning algorithms. First and mostly, we evaluated it by using it on an RRT
algorithm.

All our algorithms have been implemented in KineoWorksTM(Laumond, 2006),
we used its implementation of RRT as a reference. The default expansion method
used in KineoWorks is RRT-Connect. Since our expansion method only uses CS
information, it can be useful in any motion planing problem, as long as the config-
uration space contains narrow passages that slow down motion planners. To show
the range of uses of our method, we present results in various motion planning prob-
lems: an industrial disassembly problem, the three computer animation problems
presented in introduction, and an industrial animation problem. In a previous version
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of this paper (Dalibard & Laumond, 2009), the PCA-RRT algorithm was compared
to OBRRT (Rodriguez et al., 2006) on two motion planning benchmarks. Because
of differences in the RRT implementations and in the computers used to do the tests,
computation time comparison is not relevant. (Dalibard & Laumond, 2009) presented
a comparison based only on the number of iterations needed by the motion planner
to solve the benchmark. PCA-RRT generally required more iterations than OBRRT,
however, one should notice that PCA-RRT does not need any tuning, while the re-
sults of OBRRT taken from (Rodriguez et al., 2006) correspond to a tuned version,
adapted to each problem. We chose to focus here on the computation gain between
classic sampling and PCA controlled sampling.

All the experiments presented here were performed on a 2.13 GHz Inter Core 2
Duo PC with 2 GB RAM. Each method was tested a hundred times on each envi-
ronment and we show the average results of all test runs. The initial and final con-
figurations were fixed for each problem. The results report the time taken by each
method, the number of sampling steps and the number of nodes needed. We have
also indicated the average length of each expansion step, in an arbitrary unit, to show
the benefit of PCA-RRT in narrow passages.

For each trial, we stopped the motion planner after one million iterations if it
had not found a path. The results indicate the percentage of failed trials. One should
note that for a given problem and planner, the higher this percentage is, the more we
underestimate the computation time average.

6.1 Industrial Disassembly Problem

This environment (Fig. 7) is the back of a car. The robot, the exhaust, must be disas-
sembled. This industrial environment was provided as a motion planning benchmark
with KineoWorksTM. The initial configuration is the mounted position, and the ran-
dom tree must get out of the narrow passage to the unmounted position. For that
problem both RRT and PCA-RRT found a solution every time. Fig. 7 shows the
problem, and a solution path.

Fig. 7. Exhaust disassembly problem. Start and goal configurations and solution path.

Tab. 1 shows the average results over one hundred trials. The PCA used in av-
erage 14.5 neighbors to describe locally CS free. For the PCA-RRT algorithm, the
PCA cost 1% of the computation time, and collision detection 93%. Because the
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dimension of CS is small (6), the PCA does not cost a lot compared to collision de-
tection. The gain of using PCA, however is not very significant in terms of number
of iterations, since dimensionality reduction does not help much on a 6-dimensional
space. On the following examples, PCA will cost much more relatively to collision
detection, but will help in finding solution paths in very few iterations.

Iterations Nodes Average Computation Time Standard Deviation Step Length
RRT 7748.3 5241.2 272.239 s 87.855 s 96.5

PCA-RRT 4725.2 3362.2 196.405 s 82.978 s 118.3

Table 1. Experimental results for the exhaust disassembling problem.

6.2 Animation Problems

This algorithm was first designed to overcome the limitations of traditional motion
planing algorithms. Among others, high- dimensional problems are hard to solve.
The problems presented in Fig. 1 deal with a rather high-dimensional robot: the
upper body of a virtual character. The robot can move its torso, head and both arms.
These adds up to 20 degrees of freedom. It should get into position to fix a pipe. Its
left hand holds a wrench and its right hand should hold a bolt that lies into a hole,
inside a large torus shaped obstacle. The obstacle is represented by 1,000 triangles.
The difficulties in that environment come from the narrow space the right hand has to
go through, the dimension of CS and the collisions caused by the arms and wrench.
We considered the two problems presented in the introduction in the following order:

• One where the character’s right hand is already inside the hole. The motion plan-
ner has to find a path around a linear submanifold of CS .

• One where the character has to move both hands to get into position. The most
difficult part is finding a way for the right hand. Here, the narrow passage to
follow in CS free is non-linear.

As in the previous disassembly problem, we want to evaluate the interest of PCA
for speeding up expansions inside a narrow passage, and not for finding the entrance
of the passage. For all these problems, we chose to root the growing search tree at
the final configuration, i.e. inside the passage. Thus, the RRT only has to follow the
passage.

Right hand already positioned

For the first set of problems, the right hand is already inside the hole. The motion
planner has to find a path to get the left hand in position. To do so, the motion planner
has to find a path around a linear submanifold of CS .
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Fig. 8. Different scenarios of increasing difficulty because of the narrowness of the hole in
which the right hand is.

To evaluate how the advantage of PCA is related to the narrowness of the passage,
we varied the size of the hole the right hand is in. The first experiment is done without
the torus shaped obstacle, which means the right hand degrees of freedom hardly
slow down the path finding process for the left hand. On the next experiments, the
size of the hole is successively 24 cm, 16 cm, 12 cm and 8 cm. The initial and final
configurations do not change for the different problems. Fig. 8 shows the different
environments, from the easiest to the hardest.

Fig. 9. Solution path for the first problem. The character only has to move its left hand.

Fig. 9 shows a solution path for this problem. The results of PCA-RRT and RRT
on those problems are indicated in Table 2 and 3. The average number of neighbors
used by the PCA is 31.2. It varies slightly between 28.3 for the easiest problem and
32.6 for the most difficult. For these problems, the PCA computation represents 80%
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of the total computation time, the rest of it being mainly collision detection. That
rate does not vary significantly over the different problems. The PCA-RRT algorithm
always found a path for these problems. On the other hand, classic RRT often failed
to find a path in less than 1,000,000 iterations. We indicated the failure rate of the
algorithm for each problem. One should keep in mind that the higher that rate is, the
more the estimate on the average computation time is an underestimate of the real
average computation time.

Size of the hole Iterations Nodes Average Computation Time Standard Deviation Step Length
No torus 1,104 111.8 4.377 s 3.097 s 50.7

24 cm 2,970 166.6 14.881 s 11.531 s 9.65
16 cm 5,111 200.0 27.795 s 28.418 s 7.72
12 cm 6,588 198.6 34.679 s 42.311 s 5.11
8 cm 11,533 177.9 50.992 s 53.595 s 2.70

Table 2. Results of PCA-RRT for the first set of animation problems.

Size of the hole Iterations Nodes Average Computation Time Standard Deviation Step Length Failure Rate
No torus 56,446 182.2 123.302 s 455.952 s 1.23 4%

24 cm 240,691 188.7 514.678 s 850.086 s 0.335 20%
16 cm 254,300 166.0 528.041 s 861.391 s 0.255 22%
12 cm 303,732 177.7 686.534 s 1,019.66 s 0.165 23%
8 cm 305,794 164.4 709.301 s 1,010.62 s 0.0836 26%

Table 3. Results of RRT for the first set of animation problems

One can see that PCA-RRT outperforms classic RRT for every problem, as ex-
pected on those benchmarks. An interesting point is that as the hole gets narrower,
the average gain of using the PCA increases. On the easiest problem, with no torus
shaped obstacle, the RRT algorithm has a surprisingly high average computation
time. This is mainly due to a few costly runs where the RRT failed to find a so-
lution. The fact that randomized motion planning algorithms have high variances
in their running times has often been experimentally observed in the literature, and
can be seen in our figures. Controlling the sampling by the PCA apparently “de-
randomizes” the algorithm and decreases the variance of the computation time.

Fig. 10 shows the evolution of the ratio between the average length of extensions
for PCA-RRT and classic RRT on this set of problems. Recalling the analysis sum-
marized by Fig. 5 we should expect that ratio to diverge to infinity when the thickness
of the narrow passage approaches 0 in CS .
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Fig. 10. Evolution of the ratio between the average distance between two nodes with PCA-
RRT and classic RRT. As the hole gets smaller, the passage in CS gets narrower and the gain
of using PCA is higher.

Two hand motion

The environment is the same as before, but this time, the character has to get both
hands into position. The path to find in CS is non linear. Fig. 11 shows a solution
path for this problem.

Fig. 11. Solution path for the second problem. The character has to move both hands.

We ran the classic RRT algorithm a hundred times on the problem where the
hole size is 24 cm and it never found a solution in less than 1,000,000 iterations. We
did not find relevant to make the hole smaller, as we did on the previous problem.
The results of both algorithms are shown on Tab. 4 and Tab. 5. The average number
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of points used by the PCA is 33.2. Its computation cost is 70% of the total compu-
tation time. The standard deviation of the computation time for the classic RRT is
irrelevant, since the algorithm was always stopped at the same number of iterations,
before finding a solution. For that problem, the ratio between the extension length of
classic RRT and PCA-RRT jumps to 300.

Industrial animation problem

This problem was given to us in the scope of the French ANR-RNTL project PerfRV2
by Dassault Aviation. The picture on Fig. 12 and the corresponding 3D model of the
plain hold is their courtesy.

In that problem, two characters have to cooperate to fix a part of a plain hold.
Getting into position is easy for the character above the hold, but difficult for the
character underneath it. We considered the motion planning problem consisting in
moving the upper part of the body of the character beneath the hold. As in the previ-
ous animation benchmarks, the robot has 20 degrees of freedom. Fig. 12 shows the
3D model of the hold and of the virtual characters. On the left is the initial configu-
ration of the mannequin underneath the hold and on the right its final configuration.
Fig. 13 shows a solution path for that problem.

The results of PCA-RRT and classic RRT on that problem are shown in Tab. 6
and 7. As in the last animation benchmark, the path to follow is not linear, but the
use of PCA speeds up the search a lot, because of the presence of narrow passages.
The PCA used in average 32.4 points to describe CSfree. The computation of PCA
represented 88% of the total computation time.

6.3 PCA controlled PRM

We implemented a PRM algorithm as presented in (Kavraki et al., 1996). It consists
in two phases, first uniform random sampling, then adaptive sampling around the
nodes believed to be in narrow passages. The measure for choosing these latter nodes
was implemented according to its description in (Kavraki et al., 1996). We followed

Size of the hole Iterations Nodes Average Computation Time Standard Deviation Step Length Failure Rate
No torus 1,901 165,4 8.026 s 5.373 s 27 0%

24 cm 137,982 2,638.9 1,055.062 s 926.660 s 18 18%

Table 4. Results of PCA-RRT for the second set of animation problems.

Size of the hole Iterations Nodes Average Computation Time Standard Deviation Step Length Failure Rate
No torus 257,173 306.9 622.947 s 993.628 s 0.43 22%

24 cm 1,000,000 333.7 2,168.174 s 250.409 s 0.058 100%

Table 5. Results of RRT for the second set of animation problems
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Fig. 12. Motion planning problem for a virtual actor. The main difficulty is to place both hands
of the character beneath the plain hold. Picture and 3D model of the plain hold are under a
Copyright of Dassault Aviation. They were given to us in the scope of the French ANR-RNTL
project PerfRV2.
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Fig. 13. Solution path for the plain hold problem.

Iterations Nodes Average Computation Time Standard Deviation Step Length Failure Rate
186,769 2602 1,406.818 s 868.773 s 1.07 34%

Table 6. Results of PCA-RRT for the industrial animation problem.

Iterations Nodes Average Computation Time Standard Deviation Step Length Failure Rate
870,852 1424 2,484.212 s 786.087 s 0.0402 72%

Table 7. Results of RRT for the industrial animation problem.

the global scheme presented in (Hsu et al., 2006) for single query settings: run the
first phase for 100 iterations, then the second for 200, and then repeat.

According to this description, it is straightforward to use PCA controlled sam-
pling in the expansion phase: when a node c is chosen to be expanded, we run the
PCA on its neighbors in the roadmap. If the PCA converges, we use its result to
transform the direction towards which c is expanded, as presented in Section 4.2.

We show the results of PRM and PCA-PRM on the exhaust problem in Tab. 8
and 9. Both PRM and PCA-PRM always succeeded in finding a path in less than
1,000,000 iterations.

For this problem, the first uniform sampling phase of the PRM algorithm is less
efficient than starting with random expansions. It is often the case in mechanical
disassembly problems, as the initial configuration of the robot is already inside a
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Iterations Nodes Average Computation Time Standard Deviation
7,688 6,973 490.557 s 798.127 s

Table 8. Results of PCA-PRM on the exhaust problem.

Iterations Nodes Average Computation Time Standard Deviation
11,957 9,423 869.541 s 1,542.159 s

Table 9. Results of PRM on the exhaust problem.

narrow passage. PCA can still improve the quality of the adaptive sampling phase,
even for a small number of degrees of freedom.

6.4 PCA controlled Iterative Path Planning

Iterative Path Planning (IPP) is another tree expansion strategy presented in (Ferre
& Laumond, 2004). It consists in computing a draft path by running an RRT while
allowing some penetration within the obstacles. The path is then iteratively re-shaped
by decreasing the allowed penetration and rerunning RRTs. It has been proved to be
very efficient for mechanical disassembly problems. IPP is part of KineoWorksTM,
so we used its implementation of it. We adapted the sampling for this algorithm the
same way we did it for RRTs.

We show the results of IPP and PCA-IPP on the exhaust problem in Tab. 10 and
11.

Iterations Nodes Average Computation Time Standard Deviation
185 40.2 3.324 s 1.381 s

Table 10. Results of PCA-IPP on the exhaust problem.

Iterations Nodes Average Computation Time Standard Deviation
212 42.2 3.543 s 1.731 s

Table 11. Results of IPP on the exhaust problem.

On this problem, IPP outperforms PCA-RRT. The heuristic of widening the nar-
row passages is more efficient then the one of linearizing the passages. We can still
gain some computation time by controlling the random sampling with PCA within
the IPP algorithm.

IPP was designed to accelerate mechanical disassembly planning. In high-dimensional
problems such as the animation benchmarks presented in the paper, its heuristic is
less efficient. Tab 12 and 13 show the results of 100 trials of PCA-IPP and IPP on the
animation problem where the robot has to its left arm with its right arm inside a 24
cm hole. PCA-IPP never failed to find a solution path, we indicated PCA-IPP failure
rate in the table.
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Iterations Nodes Average Computation Time Standard Deviation
20,134 87.1 67.066 s 111.421 s

Table 12. Results of PCA-IPP on the animation benchmark.

Iterations Nodes Average Computation Time Standard Deviation Failure Rate
74,097 357.3 309.634 s 1,135.415 s 2%

Table 13. Results of IPP on the animation benchmark.

Here, IPP outperforms classic RRT, but both PCA-RRT and PCA-IPP are faster
than IPP. PCA-IPP is slower than PCA-RRT. In fact, the benefits of using IPP depend
a lot on the length of the narrow passages to follow. If a narrow passage is long,
as it is the case here, many configurations sampled inside the passage for a given
penetration will be rejected when the penetration threshold is lowered. This induces
a lot of wasted computation time. If the narrow passage is punctual, as in the previous
disassembly benchmark, the first trials of RRT will find the entrance of the passage,
which means the problem will almost be solved.

In all cases, we found PCA sampling more efficient than classic sampling, but the
combination of IPP heuristic and PCA sampling is not necessarily better than RRT
with PCA controlled sampling.

7 Discussion on the choice of the dimensionality reduction
technique

7.1 Non-linear steering methods

As we said in the introduction, the method presented earlier is only valid for linear
local methods. If the motion planner does not connect configurations by straight
lines - for instance if we are dealing with car-like robots, the sets of free trajectories
starting from a given point of CS can not be well approximated by linear subspaces.
This is also the case if dynamic or other non-holonomic constraints are applied to
the system. For all these problems, PCA controlled sampling is irrelevant.

In order to use dimensionality reduction, we need to do the linearization in a
mapping of CS , in which the local paths are mapped into straight lines. This can
be done by using Kernel-PCA. The classic computation of PCA can be done using
only the euclidean inner product rather than the variance and covariance matrix. If
the steering method we are using defines a distance - as it is the case for Reeds
and Shepp curves (Reeds & Shepp, 1990), we can define what would be the inner
product corresponding to that distance in the mapping of CS and use it to compute
the KPCA. This method is valid if there is actually a space where our operator is an
inner product. Intuitively, that means that the notions of orthogonality and alignment
are valid for the local method we consider. For a good description of Kernel-PCA,
one can refer to (Schoelkopf et al., 1997).
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We have not shown that Reeds and Shepp curves actually define an inner product,
but we have used KPCA with what would be the Reeds and Shepp inner product,
and it showed better results that naive PCA on some examples. We chose not to
present these results because for car-like robots, i.e. devices with only three degrees
of freedom, there is no need for dimensionality reduction techniques and classic RRT
outperformed PCA-RRT as well as KPCA-RRT.

7.2 Non-linear dimensionality description of the space

In the work presented here, we chose PCA as our dimensionality reduction technique
because it is easy to implement and provides good results. The main limitation of this
method is that it is globally linear. The subspaces found by PCA are therefore linear,
and could be of higher dimension than necessary if the true underlying structure of
the data is not linear.

Some methods for non-linear dimensional reduction have been proposed to over-
come this limitation. Some of them are widely used in fields where dimensionality
reduction is a critical issue, for instance the isomap method, proposed by Tenenbaum
et. al (Tenenbaum et al., 2000), or the locally linear embedding method, proposed
by Roweis and Saul (Roweis & Saul, 2000).

Several cases can appear while using PCA to control random sampling in motion
planning:

1. The sub-manifold to find is actually linear. This is the case for the animation
benchmark where the right hand of the character was in the right position in
the initial configuration: some of the degrees of freedom should not be moved
(the ones corresponding to the right arm), which forces the search to take place
in an intersection of hyperplanes, i.e a linear submanifold of CS . In that case,
using PCA as our dimensionality reduction technique is appropriate. These are
the cases we first had in mind while designing the algorithm.

2. The sub-manifold CS lies around is non-linear but is smooth. Because our use
of the PCA is local, the result it will give can be seen as the tangent space of
that manifold rather than the manifold itself. PCA then helps solving the motion
planning problem, as some of our experiments showed: the exhaust disassembly
problem, and more remarkably, the animation benchmarks with the torus shaped
obstacle. In these last examples, we even gained more with PCA in the second
problem, where the passage to follow was non-linear than in the first one, where
the free space lied around a linear submanifold of CS .

3. The free space makes a right angle (i.e. goes from a direction to an other or-
thogonal one). In that case, the PCA description does not help at all. However,
the fact we use classic RRT every other step guaranties us that we will find the
turn. Once the turn is found the new points will be taken into account in the PCA
description which will make our algorithm deal equally with the two orthogonal
directions at the point where the free space makes a right angle. Thus, our tech-
nique does not slow down the search -except for the useless PCA computations-
in terms of number of expansion steps.
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4. The free space is a T-shape tunnel. The use of the PCA induces an inertia in the
straight line direction, and the exploration will go faster in that direction than in
the orthogonal one. In a sense, our method could slow down the RRT algorithm
here if the path to find takes the turn and the straight line is a dead-end. This is
an other reason why we use classic RRT half of the iterations: the turn will be
found with probability one and not that slower than the classic RRT would do.

8 Conclusion

An adaptation of probabilistic motion planning algorithms is proposed. The statisti-
cal method we used, PCA, is well-known and widely used in literature, but not yet to
control random sampling in motion planning algorithms. Using dimensional reduc-
tion tool in roadmap expansion based algorithms, and analyzing the result of it is the
contribution of this work. As expected, we observed that this technique could sig-
nificantly improve probabilistic planners performances in constrained environments.
Note that it does not solve the problem of finding the entrance of a narrow passage,
but only accelerate the expansions inside the passage. Our method has been used on
several motion planning problems, coming from different domains of application,
and has shown good results. Its main strength is the fact that it does not need any
tuning and adapts itself automatically to the difficulty and dimension of the problem.
That automatic tuning relies on the use of a heuristic based on theoretical results
about PCA convergence. The class of problems where we found it to be the most
useful are high-dimensional animation problems in confined and complex environ-
ments.
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