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Abstract: The paper presents a method to control probabilistic diffusion in motion planning

algorithms. The principle of the method is to use on line the results of a diffusion algorithm to

describe the free space in which the planning takes place, by computing a Principal Compo-

nent Analysis (PCA). This method identifies the locally free directions of the free space. Given

that description, our algorithm accelerates the diffusion along these favoured directions. That

way, if the free space appears as a small volume around a submanifold of a highly dimensioned

configuration space, the method overcomes the usual limitations of diffusion algorithms and

finds a solution quickly. The presented method is theoretically analyzed and experimentally

compared to known motion planning algorithms.

1 Problem statement, related work and contribution

1.1 General Framework

Motion planning problems have been intensively studied in the last decades, with

applications in many diverse areas, such as robotics, part disassembly problems in

Product Lifecycle Management (PLM), digital actors in computer animation, or even

protein folding and drug design. For comprehensive overviews of motion planning

problems and methods, one can refer to (Latombe, 1991), (Choset et al., 2005) and

(LaValle, 2006).

In the past fifteen years, two kinds of configuration space (CS) search paradigms

have been investigated with success.

• The sampling approach, first introduced in (Kavraki et al., 1996) as probabilistic

roadmaps (PRM), consists in computing a graph, or a roadmap, whose vertices

are collision free configurations, sampled at random in the free space and whose

edges reflect the existence of a collision free elementary path between two con-

figurations. It aims at capturing the topology of the collision free space (CSfree)

in a learning phase in order to handle multiple queries in a solving phase.

† This work is partly supported by the French ANR-RNTL project PerfRV2. A preliminary

version of this paper appeared in WAFR’08.
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• The diffusion approach, introduced in both (Hsu et al., 1999) and (Kuffner &

LaValle, 2000), which includes RRT planners, consists in solving single queries

by growing a tree rooted at the start configuration towards the goal configuration

to be reached. That approach can be seen as the exploration of the tangent space

of CS: starting from collision free configurations, the algorithm tries directions in

CS which will give collision free paths. In that sense, it is fundamentally different

from PRM algorithms, which build a static description of the configuration space.

These methods have been proven to be efficient and suitable for a large class of

motion planning problems. Work has been done to analyze and validate theoretically

these algorithms. Probabilistic completeness has been studied and proved for RRT

(Kuffner & LaValle, 2000), as well as for PRM (Kavraki et al., 1998).

1.2 Narrow Passages

In some environments, however, passing through so-called narrow passages is a dif-

ficult task for probabilistic motion planners. A lot of work has been done to evaluate

this difficulty, as well as to overcome it.

The formalism of expansive spaces was first presented in (Hsu et al., 1999). A

good description of it can be found in (Hsu et al., 2006). It quantifies the complexity

of a configuration space from a randomized planning point of view. The presence of

narrow passages is identified as the main source of complexity for PRM planners.

Indeed, if the path to find in CS goes through a narrow passage, the algorithm has

to sample configurations inside the passage, which is difficult because its volume is

small compared to CS. Thus, this work demonstrates the difficulty of “finding” the

passage, i.e. sampling at least one configuration inside it.

Motion planning problems occur though, when the difficulty is not to find the

passage, but to go along it. For industrial disassembling problems for instance, the

mechanical part to remove is already mounted and inside a constrained area. The

motion planner has to find a path that follows the narrow passage until the part is

disassembled. Going along a narrow passage can be a difficulty in itself for diffusion

algorithms. Actually, the diffusion velocity strongly depends on the thickness of the

narrow passage - i.e. on the radius of the largest sphere included in CSfree. We will

analyze that effect theoretically in Section 3 then in the experimental section. The

purpose of our work is to speed up such constrained diffusion processes, it deals

solely with diffusion within a narrow passage, and not with finding the entrance of

narrow passages in CS.

Some previous work deals with controlling probabilistic planning algorithms as

well. Visibility based PRM is presented in (Siméon et al., 2000). A visibility cri-

teria is used to improve the quality of the sampling and accelerate the algorithm.

Dynamic-domain RRTs, presented in (Yershova et al., 2005), control the sampling

domain of a RRT algorithm to overcome some bias of classical RRT algorithm. In

(Burns & Brock, 2005), a local model of the configuration space shape is built and

used to improve the efficiency of configuration sampling. A good review on different

sampling techniques was presented in (Geraerts & Overmars, 2004).
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More recently, work has been done to use workspace information within CS
probabilistic algorithms. In (Rodriguez et al., 2006) for instance, diffusion uses

workspace hints, such as real world obstacle directions, or decouples rotations and

translations to accelerate a RRT algorithm that diffuses through a narrow passage.

1.3 Motivations

Motivations for the work presented here come from motion planning for digital ac-

tors. In these high-dimensioned problems - we consider whole-body motion plan-

ning, diffusion algorithms behave rather well, but can be slowed down by narrow

passages.

The fact that the whole-body motion takes place in a narrow passage of CS,

however, does not necessarily reflect the difficulty of a motion planning problem

from a human point of view, as we will show it with the next example.

Fig. 1. Three animation motion planning problems. The mannequin has to get into position to

fix the pipe. The first problem is unconstrained, we then add an obstacle for problems 2 and 3.

In problem 3 the right arm is already in position and the mannequin has to find a way to move

its left arm.

Fig. 1 shows the example of a mannequin getting into position to fix a pipe. In

the first environment, the mannequin has to move both arms in an unconstrained

environment. This problem should be easy to solve for current motion planners. In

the second environment, the right hand has to go through a hole to get into position.

This makes the problem more difficult, since the path to find in CS goes through
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a narrow passage. The third problem takes place in the same environment, but the

right hand is already in position. The difficulty of this last problem, from a human

point of view, is more or less the same as the first one: the mannequin has to find a

way to move only one of its arms in a free environment. However, the fact that the

right hand is in position forces the diffusion to take place in a small volume around a

sub-manifold of CS - the sub-manifold corresponding to a still right hand. This slows

down a RRT algorithm (we will quantify it in Section 3) and motivates our work on

how to identify on line when a diffusion process takes place within small volumes

of CS. Note that we want this identification to be automatic, to keep the generic

properties of CS motion planners. This means that in the third problem of Fig. 1

we do not want an outside operator to input the information about which degrees of

freedom the mannequin should use.

1.4 Contribution

This paper presents a study on how going through narrow passages slow down dif-

fusion algorithms, and a new diffusion planner based on this study. Our adaptation

of diffusion algorithms analyzes the growing tree on line to estimate if it lies in a

small volume around a submanifold of CS. If it does, the search is restrained to that

volume. That way, if the tree has to follow a narrow passage, the algorithm does not

loose time in trying to expend in the directions orthogonal to the passage. Thanks

to the method used to describe the free space from the growing tree, the identified

submanifold can be of dimension more than one, while rest of the contributions deal-

ing with narrow passages usually consider tubes, i.e. small volumes around a one-

dimensional manifold. This problem is different from the one of sampling for closed

kinematic chains -presented for instance in (Han & Amato, 2000) and (Cortes et al.,

2002), since in our case, the subspace in which the search should take place is un-

known. The new algorithm presented in this paper only uses CS-information, which

makes it more generic than algorithms that use workspace information.

Our work uses a long known and classical statistical method: the principal com-

ponent analysis (PCA). It is used in many fields where subspace identification is

needed, and in particular in (Teodoro et al., 2002), in a motion planning context. The

use of PCA there is different than ours though, since it is only applied to motion

description, while we use it to control the search and generate motion. We found

some recent mathematical publications (Zwald & Blanchard, 2005) that helped us

understanding some convergence properties of PCA. They are shown and explained

in this paper.

Our algorithm has been tried in various examples, and the experimental results

are presented and analyzed. We chose to use it on different motion planning classes

of problems: an mechanical disassembling problem, the animation problems of Fig.

1, and an animation problem motivated by industrial needs.

1.5 Paper Outline

We start by recalling briefly in Section 2 the structure of a widely used diffusion

algorithm: RRT, before analyzing in Section 3 how narrow passages in CS slow
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down this kind of algorithms. Section 4 presents the Principal Component Analysis

method and our algorithm that uses it. Section 5 deals with several implementation

issues and Section 6 presents our experimental results. We discuss in the final section

the possibility of using other dimensionality reduction technique than PCA.

2 Preliminaries: Rapidly exploring Random Trees (RRT)

The method presented in this article can be applied to any diffusion algorithm. To

understand what our method changes in a typical diffusion algorithm, let us re-

mind briefly the structure of the RRT algorithm (LaValle, 1998),(Kuffner & LaValle,

2000).

Algorithm 1 shows the pseudo-code of the RRT algorithm. It takes as input an

initial configuration q0 and grows a tree T in CS. At each step of diffusion, it sam-

ples a random configuration qrand, finds the nearest configuration to qrand in T :

qnear, and extends T from qnear in the direction of qrand as far as possible. The new

configuration qnew is then added to T .

The version of RRT we consider is RRT-Connect rather than classical RRT. It

often works better and is more generic, as there is no need to tune any step parameter.

Algorithm 1 RRT(q0)

T .Init(q0)
for i = 1 to K do

qrand ← Rand(CS)
qnear ← Nearest(qrand, T )
qnew ← Extend(qnear, qrand)
T .AddVertex(qnew)
T .AddEdge(qnear, qnew)

end for

3 Analyzing probabilistic diffusion in narrow passages

3.1 Local description of a narrow passage

Most motion planners encounter difficulties when solving problems containing nar-

row passages. In (Hsu et al., 1999), Hsu et. al defined the notion of expansive spaces.

This formalism describes configuration spaces containing difficult areas, or narrow

passages. These difficulties occur when connected areas of CSfree do not see large

regions outside themselves. Probabilistic planners then have to sample configurations

in these small volumes to solve the problem, which make the search longer.

The expansive space formalism describes the global difficulty of a configuration

space. What we studied here is the local properties of CSfree that slow down a

diffusing algorithm. In other terms, how can we describe locally a narrow passage?
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Configuration space probabilistic planners try to find a path between a start and

a goal configurations with as few samples as possible. Basically, this means that one

would want new edges to be as long as possible - the accurate notion is that one would

want to add nodes that expand the roadmap visibility region as much as possible.

Let q be a configuration in CSfree. To describe how a diffusing tree will grow

from q, one should look at its visibility region V (q). If V (q) is equally constrained in

all directions, then diffusing algorithms will behave nicely. A RRT-Connect planner

will add edges from q of length the radius of V (q), which is the best one could expect.

On the other hand, if V (q) has an elongated shape, we can say that q lies in a narrow

passage. The volume of V (q) is small because of constraints in some directions. The

tree will grow slowly, while it could expand easily in some other directions.

Thus, a good description of the local difficulty to expand from q is the variances

and covariances of V (q) along a basis of CS. Directions accounting for most of the

volume of V (q) are the ones along which the tree could be expanded the furthest,

while directions accounting for low volume are highly constrained and slow down a

diffusing algorithm.

Remark

We use here the notion of CS−visibility, which depends on the local method the

planner uses to connect two configurations (see (Laumond & Simeon, 2001) for more

comments on this). We try to describe the shape of a configuration visibility region

to identify directions in which the local method goes the furthest. The technique we

will use - Principal Component Analysis - is only valid for linear trajectories, since

it identifies linear subspaces of CS. Thus, the following results are given under the

assumption that the local steering method is linear, this is the case in the experiments

we will show.

3.2 One step of diffusion in a narrow passage

What characterizes a narrow passage is the elongated shape of a visibility region, i.e.

the region has a much higher variance along some directions than along others. To

understand how it slows down the expansion of a random tree, it is sufficient to look

at a 2D example, where one dimension is more constrained than the other.

Fig. 2 shows a 2D example of a narrow space. Here, the visibility region of q has

a rectangular shape. One of the dimension of the rectangle is fixed: L, and the other

l approaches 0, which means the space around q gets narrower. The configuration

towards which the tree is extended is sampled at random on a circle centered in q of

radius half the length of the rectangle. Thus, the diffusion from q is isotropic, and the

longest progress the tree could make starting from q is L/2.

In this example, we can compute the mean length d of the new edge returned by

one step of diffusion. The exact value of d(θ) is indicated in Fig. 2.

d = 1
2π

∫ 2π

θ=0
d(θ)dθ

= 1
π

(L arcsin(l/L) − l log(tan(arcsin(l/L)/2)))
≃l→0 − l

π
log(l)
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L

l
q

θ
d(θ)

qrand

Fig. 2. One step of RRT expansion in a 2D narrow passage. L is fixed and l approaches

0. We are interested in the expected length d of the new vertex of the tree. For |θ[π]| ≤
arcsin(l/L), d(θ) = L/2, otherwise d(θ) = l/2 sin(θ)

As the width of the rectangle approaches 0, the mean distance the tree is extended

converges to 0, even though q sees configurations far away in one of the two dimen-

sions. This example shows how diffusion is slowed down in a narrow passage: if

some directions are more constrained than others, the diffusion process does not go

as fast as possible in the free directions. We used a 2D example to describe the effect

of one dimension getting narrower, but the result is still valid in higher dimension. If

more dimensions are constrained the diffusion gets even slower.

The important point is that what slows down a diffusion tree inside a narrow

passage is the elongation of the visibility region, i.e. the difference between variances

along different directions of CS.

4 A new Planner using dimensional reduction tools

According to the previous description of narrow passages, a good way to quantify

the local difficulty of CS in terms of probabilistic motion planning is to describe

the shape of its points visibility region. Following the sampling motion planning

paradigm, we do not want to describe effectively CSfree. The only information that

we have and will use are the vertices of the random tree already obtained.

Given a node we are about to extend the tree from, we will assume its nearest

neighbours in the tree capture the local shape of the free space. We will then describe

that shape by computing its variances and covariances along the canonical basis of

CS. A statistical tool, the Principal Component Analysis, is then used to determine

directions in CS accounting for most of the variance of this region of CSfree. Given

that description, we change the random direction in which the tree is about to be

extended to follow the directions of the passage in which the node lies.
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The technical way we change the RRT algorithm is the same as in (Rodriguez

et al., 2006): changing qrand just before extending the tree. The methods used to

change the random direction, however, are completely different, since we only use

CS information.

Fig. 3. Changing the random direction of extension according to CSfree local shape. Instead

of extending from qnear to qrand, we use CS information and extend to q′rand.

Note that while ideally we would like to describe the visibility region of qnear,

we compute the variances and covariances of a neighbourhood of qnear in CSfree.

There is no reason for those two regions of CS to be the same, but we assume that

the later one is a good approximation of the first one. Using only nodes that qnear

can actually “see” would take more iterations of classical RRT before being able to

compute the PCA, as there is a minimal number of nodes required to compute a valid

PCA.

4.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is a statistical dimensionality reduction tech-

nique. Its goal is to determine the underlying dimensionality of a set of p points in

an n−dimensional space. PCA is one of the most commonly used technique for di-

mensionality reduction. It was first proposed by Pearson (Pearson, 1901) and further

developed by Hotelling(Hotelling, 1933). A good description can be found in Jolliffe

(Jolliffe, 2002).

This method involves a mathematical procedure that, given p points, computes

an orthogonal change of basis such that the first vectors of the new basis are the

directions that account for most of the variance of the input set. The underlying

structure found by PCA is therefore linear.

The new basis and the corresponding variances are obtained by diagonalizing the

covariance matrix of the input points. They correspond respectively to its eigenvec-

tors and eigenvalues. The PCA Algorithm takes a set of p points in an n−dimensional

space, computes its covariance matrix C and returns the matrices Λ and U , contain-

ing respectively the eigenvalues and the eigenvectors of C.
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Algorithm 2 PCA(Points[n][p])

matrix C
for i = 1 to n do

Cii ← Variance(Points[i])
end for

for i, j = 1 to n, i 6= j do

Cij ← Covariance(Points[i], Points[j])
Cji ← Covariance(Points[i], Points[j])

end for

matrix Λ, matrix U
Λ, U ← EigenSolve(C)

return Λ, U

4.2 Applying PCA to Diffusing Algorithms

The way we use PCA for diffusion algorithms does not change their structure. We

only reimplemented the extension step. At each step of diffusion, we find the p near-

est neighbours of qnear by performing a Breadth-First Search in the tree. We then

compute a PCA on those points. The random direction towards which the tree should

be extended (qrand) is changed according to the results of the PCA, in order to favour

the directions in which the variance of the growing tree is high.

More precisely, let us note λ1 > · · · > λn > 0 the eigenvalues of the covariance

matrix, and u1, . . . ,un the corresponding eigenvectors. Placing the origin on qnear,

the coordinates of the new random direction q′rand , in the eigen basis, are given by:

∀i ∈ [1, n], q
′(i)
rand =

λi

λ1
q
(i)
rand

Thus, U being the eigen change of basis matrix, we get in CS canonical basis :

q′rand = qnear +

n∑

i=1

(
λi

λ1
(qrand − qnear).Ui

)
Ui

This transformation projects the directions with low variances towards qnear,

while keeping the directions with high variances unchanged.

By projecting directions with low variances, the algorithm makes the diffusion

process go faster in narrow spaces. Recalling the example of Fig. 2, we can show the

difference between classical diffusion and PCA-controlled diffusion. Fig.4 shows

how an isotropic distribution around q is transformed into an ellipsoidal distribution.

We indicated in red where half of the probability stands, before and after transform-

ing qrand. One can see that with PCA-Extend, the measure is concentrated on the

ends of the ellipse. That way, when the space gets narrower, the expected length of

one step of diffusion does not converge to 0, but to a positive limit. The respective

expected length of diffusion are plotted in Fig. 5.
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Algorithm 3 PCA-Extend(qnear, qrand, T )

vector table Points[n][p]
Points← BreadthFirstSearch(T , qnear, p)
matrix Λ, matrix U
Λ, U ← PCA(Points)
λmax ← max(Λii)

qrand ← qnear +
Pn

i=1

“

Λii

λmax
(qrand − qnear).Ui

”

Ui

qnew ← RRT-Extend(qnear, qrand)

return qnew

Fig. 4. One step of diffusion in a narrow passage. One the left, RRT isotropic diffusion and on

the right PCA-RRT diffusion, concentrated along the direction of the passage. The bold red

part shows where half of the measure is concentrated.

l/L

0 1

L/2
d for RRT

d for PCA-RRT

Fig. 5. Expected length of diffusion in a narrow passage. The curves have to be looked at from

right to left. As the space gets narrower, the RRT (in red) converges to a null extension, while

PCA-RRT (in blue) converges to a positive limit.

4.3 Accuracy of the PCA description

The previous sections explained how knowledge about the local shape of CSfree

could help improving the performance of a diffusion algorithm. However, a key point

is the accuracy of this knowledge. We said that we assume the nearest neighbours of

a configuration catch the shape of the free space. Two questions remain: how true is

this assumption and how many neighbours are necessary to describe locally CSfree?

The following result answer these questions. It is a simplified version of mathe-

matical results found in (Zwald & Blanchard, 2005). The accuracy of PCA descrip-
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tion is expressed as the distance δ between the high variance subspace found by PCA

and the real high variance subspace CSfree lies around. The distance between the

two subspaces is expressed as the distance between the projectors on the subspaces,

using the Frobenius norm. Let D be the dimension of the high variance subspace

CSfree lies around, and λ1 > · · · > λn > 0 the eigen values of the local covariance

matrix of CSfree.

Theorem 1. For p points lying in a ball of radius r, for ξ ∈ [0, 1], the following

bound holds with probability at least 1 − e−ξ:

δ ≤ 4r2

√
p(λD − λD+1)

(
1 +

√
ξ

2

)
(1)

This theorem is a simpler rewriting of Theorem 4 in (Zwald & Blanchard, 2005)3.

It illustrates two points: the speed of convergence of the PCA analysis with respect

to the number of points is 1/
√

p, and the narrower the free space is (i.e. the higher

(λD − λD+1) is), the more accurate the PCA description will be.

Note that if the space is unconstrained (all the λi are close to each other), this

bound is not interesting. In that case, PCA may return imprecise results, but then

again, traditional diffusion algorithms behave properly. We will discuss in the next

section how not to suffer from PCA computation in a locally unconstrained space.

5 Implementation details

5.1 PCA Bias in unconstrained spaces

As shown earlier, the computation of PCA will give accurate results in narrow pas-

sages. However, if the free space is locally unconstrained - or equally constrained in

all directions - the description returned by PCA may not be accurate enough. This

could induce a bias in the algorithm: if the space is free, the algorithm may favour

expansion in directions that have previously been sampled at random. This is a main

drawback since the new diffusion algorithm loses one of the key properties of the

RRT algorithm: the convergence of the RRT vertices distribution towards the sam-

pling distribution.

To overcome this bias, our implementation of PCA-RRT uses, at each step of ex-

pansion, PCA-Extend with probability 0.5 and classical RRT Extend with probabil-

ity 0.5. That way, the tree still covers densely the free space, while the PCA-Extend

function accelerates the search in narrow passages.

3 Note to the reviewers: we did not consider as useful to develop the underlying mathematics.

However, you can find, for review purpose, the original theorem in Annex 1.
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5.2 Recursive PCA

The previous section presented ideas about the necessary number of points to cor-

rectly describe the space. It depends on each region of the space, narrow passages

needing less points than free regions. As we do not want that tuning to be done by a

user, but automatically by the algorithm, we need a version of the algorithm where

the number p of nearest neighbours used to compute the PCA is no longer a param-

eter. It is done by evaluating the PCA result each time we add a new neighbour: we

start by computing the PCA on (n + 1) points, so that all the eigenvalues of the co-

variance matrix are positive, then we update that computation by adding the points

one by one.

We chose to use the bound given by Theorem 1 as an indicator on the accuracy

of the successive computations of PCA. At one step of the computation of recursive

PCA, given the estimate on the eigenvalues λ = (λ1, . . . , λn), the number of points

used p, and the maximum distance between two points r we can compute the bound

of Theorem 1 for every D between 1 and (n − 1). Let fD(λ, p, r) = 4r2

√
p(λD−λD+1)

(see Eq. 1).

The Frobenius norm of the projector on the high variance subspace of dimension

D is D, so the relative error made on evaluating that subspace is δ/D.

For a given ǫ, if fD(λ, p, r)/D ≤ ǫ/1.707 (choosing ξ = 1 in Eq. 1), we get,

with probability at least 1− e−1, δ/D ≤ ǫ. In our implementation, we chose ǫ = 0.1
as a convergence criterion: if for some D ∈ [1, n − 1], fD(λ, p, r)/D ≤ 0.059, we

stop the recursive PCA computation and use the results as they are.

Remark

The Theorem 1 uses the real eigenvalues of the local covariance matrix of CSfree,

while we only have access to an estimate of it. Therefore, we can not guarantee that

the bound is valid. We still found that this convergence criterion was both theoreti-

cally founded and experimentally efficient. Fig. 6 shows an example of the successive

evaluation of the convergence criterion for a robot with 20 degrees of freedom. The

criterion is met when the PCA uses 50 points to describe CSfree. This data is actu-

ally taken from a trial of the PCA-RRT algorithm on the example shown on Fig. 1,

Problem 3.

This whole computation needs an incremental version of the PCA, in order not

to recompute the diagonalization of the covariance matrix at each step. A good de-

scription of incremental PCA can be found in (Erdogmus et al., 2004). It uses matrix

perturbation theory, and basically computes a rank one update on the PCA computa-

tion each time we add a point4.

4 Note to the reviewers: the algorithm behind recursive PCA is well explained in the cited

paper, and we were able to implement it without trouble. Therefore, we did not find relevant

to go over it here. However, you can find it, for review purpose, in Annex 2.
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Number of points

min
D∈[1,n−1]

(fD(λ, p, r)/D)

20 50

0.8

0.2 PCA computation precision

Fig. 6. Convergence of the estimate of the distance between the real high variance subspace

of CSfree and the subspace identified by the PCA. The computation stops when that estimate

reaches a lower threshold, which happens for 50 points. The data is taken from a trial of the

PCA-RRT algorithm on the example shown on Fig. 1, Problem 3.

5.3 Complexity

The complexity of the algorithm at each step of diffusion depends only on two pa-

rameters : the dimension of the space n and the number p of nearest neighbours used

to do the PCA.

The computation of the original PCA, with (n + 1) points is done in O(n3)
operations. Afterwards, each step of recursive PCA involves one (n × n)-matrix

product, so the overall complexity is O(n3 × p). Unfortunately, we have no way of

predicting the value of p. We will show in the experimental section its average value

for the considered problems, as well as the relative costs of PCA computation and

collision detection.

6 Experimental Results

In this section, we compare our PCA-RRT algorithm with classical RRT. The algo-

rithm has been implemented in KineoWorksTM(Laumond, 2006), we used its imple-

mentation of RRT as a reference. The default expansion method used in KineoWorks

is RRT-Connect. Since our expansion method only uses CS information, it can be

useful in any motion planing problem, as long as the configuration space contains

narrow passages that slow down classical diffusion methods. To show the range of

uses of our method, we present results in various motion planning problems: an in-

dustrial disassembly problem, the three computer animation problems presented in

introduction, and an industrial animation problem. In a previous version of this pa-

per (Dalibard & Laumond, 2009), the PCA-RRT algorithm was compared to OBRRT

(Rodriguez et al., 2006) on two motion planning benchmarks. Because of differences
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in the RRT implementations and in the computers used to do the tests, computation

time comparison is not relevant. (Dalibard & Laumond, 2009) presented a compar-

ison based only on the number of iterations needed by the motion planner to solve

the benchmark. PCA-RRT generally required more iterations than OBRRT, how-

ever, one should notice that PCA-RRT does not need any tuning, while the results of

OBRRT taken from (Rodriguez et al., 2006) correspond to a tuned version, adapted

to each problem. We chose to focus here on the computation gain between classical

RRT and PCA-RRT.

All the experiments presented here were performed on a 2.13 GHz Inter Core 2

Duo PC with 2 GB RAM. Each method was tested a hundred times on each envi-

ronment and we show the average results of all test runs. The initial and final con-

figurations were fixed for each problem. The results report the time taken by each

method, the number of expansion steps and the number of nodes needed. We have

also indicated the average length of each expansion step, in an arbitrary unit, to show

the benefit of PCA-RRT in narrow passages.

For each trial, we stopped the motion planner after one million iterations if it

had not found a path. The results indicate the percentage of failed trials. One should

note that for a given problem and planner, the higher this percentage is, the more we

underestimate the computation time average.

6.1 Industrial Disassembly Problem

This environment (Fig. 7) is the back of a car. The robot, the exhaust, must be disas-

sembled. This industrial environment was provided as a motion planning benchmark

with KineoWorksTM. The initial configuration is the mounted position, and the ran-

dom tree must get out of the narrow passage to the unmounted position. For that

problem both RRT and PCA-RRT found a solution every time. Fig. 7 shows the

problem, and a solution path.

Fig. 7. Exhaust disassembly problem. Start and goal configurations and solution path.

Tab. 1 shows the average results over one hundred trials. The PCA used in av-

erage 14.5 nodes to describe locally CSfree. For the PCA-RRT algorithm, the PCA

cost 1% of the computation time, and collision detection 93%. Because the dimen-

sion of CS is small (6), the PCA does not cost a lot compared to collision detection.
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The gain of using PCA, however is not very significant in terms of number of itera-

tions, since dimensionality reduction does help much on a 6-dimensional space. On

the following examples, PCA will cost much more relatively to collision detection,

but will help in finding solution paths in very few iterations.

Iterations Nodes Average Computation Time Standard Deviation Distance

RRT 7748.3 5241.2 272.239 s 87.855 s 96.5

PCA-RRT 4725.2 3362.2 196.405 s 82.978 s 118.3

Table 1. Experimental results for the exhaust disassembling problem.

6.2 Animation Problems

This algorithm was first designed to overcome the limitations of traditional motion

planing algorithms. Among others, highly dimensioned problems are hard to solve

for diffusion algorithms. The problems presented in Fig. 1 deal with a rather highly

dimensioned robot: the upper body of a virtual character. The robot can move its

torso, head and both arms. These adds up to 20 degrees of freedom. It should get into

position to fix a pipe. Its left hand holds a wrench and its right hand should hold a bolt

that lies into a hole, inside a large torus shaped obstacle. The obstacle is represented

by 1,000 triangles. The difficulties in that environment come from the narrow space

the right hand has to go through, the dimension of CS and the collisions caused by

the arms and wrench. We considered the two problems presented in the introduction

in the following order:

• One where the character’s right hand is already inside the hole. The motion plan-

ner has to find a path around a linear submanifold of CS.

• One where the character has to move both hands to get into position. The most

difficult part is finding a way for the right hand. Here, the narrow passage to find

in CSfree is non-linear.

Right hand already positioned

For the first set of problems, the right hand is already inside the hole. The motion

planner has to find a path to get the right hand in position. To do so, the random

diffusion algorithm has to find a path around a linear submanifold of CS.

To evaluate how the advantage of PCA is related to the narrowness of the passage,

we varied the size of the hole the right hand is in. The first experiment is done without

an obstacle, which means the right hand degrees of freedom hardly slow down the

path finding process for the left hand, than the size of the hole is successively 24 cm,

16 cm, 12 cm and 8 cm. The initial and final configurations do not change for the

different problems. Fig. 8 shows the different environments, from the easiest to the

hardest.
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Fig. 8. Different scenarios where the diffusion process gets more difficult because of the nar-

rowness of the hole in which the right hand is.

Fig. 9 shows a solution path for this problem. The results of PCA-RRT and RRT

on those problems are indicated in Table 2 and 3. The average number of nodes used

by the PCA is 32.2. It varies slightly between 31.6 for the easiest problem and 33.1

for the most difficult. For these problems, the PCA computation represents 80% of

the total computation time, the rest of it being mainly collision detection. That rate

does not vary significantly over the different problems. The PCA-RRT algorithm

always found a path for these problems. On the other hand, classical RRT often

failed to find a path in less than 1,000,000 iterations. We indicated the failure rate

of the algorithm for each problem. One should keep in mind that the higher that rate

is, the more the estimate on the average computation time is an underestimate of the

real average computation time.

One can see that PCA-RRT outperforms classical RRT for every problem, as

expected on those benchmarks. An interesting point is that as the hole gets narrower,

Fig. 9. Solution path for the first problem. The character only has to move its left hand.
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Size of the hole Iterations Nodes Average Computation Time Standard Deviation Distance

No obstacle 2027.2 119.7 11.823 s 16.298 s 8.86

24 cm 11,643 206.8 78.138 s 124.667 s 2.62

16 cm 12,801 184.7 87.276 s 150.817 s 2.59

12 cm 17,714 198.5 124.376 s 278.344 s 1.57

8 cm 29,393 217.5 222.273 s 417.551 s 1.27

Table 2. Results of PCA-RRT for the first set of animation problems. The average number of

nodes used by the PCA is 32.2.

Size of the hole Iterations Nodes Average Computation Time Standard Deviation Distance Failure Rate

No obstacle 54,345 190.3 137.696 s 463.852 s 1.09 3%

24 cm 199,816 186.5 432.112 s 799.452 s 0.352 16%

16 cm 213,819 173.9 458.903 s 798.752 s 0.254 16%

12 cm 296,811 180.0 609.035 s 854.029 s 0.152 23%

8 cm 317,740 157.5 639.031 s 874.861 s 0.0982 26%

Table 3. Results of RRT for the first set of animation problems

the average gain of using the PCA increases. Fig. 10 shows the evolution of the ratio

between the average distance between two nodes with PCA-RRT and classical RRT

on this set of problems. Recalling the analysis summarized by Fig. 5 we should

expect that ratio to diverge to infinity when the thickness of the narrow passage

approaches 0 in CS.

Size of

the hole

Ratio between the

average extension of

PCA-RRT and RRT

24 cm 16 cm 12 cm 8 cm

7

8

9

10

11

12

13

Fig. 10. Evolution of the ratio between the average distance between two nodes with PCA-

RRT and classical RRT. As the hole gets smaller, the passage in CS gets narrower and the gain

of using PCA for diffusion is higher.



18 Sébastien Dalibard and Jean-Paul Laumond

Two hand motion

The environment is the same as before, but this time, the character has to get both

hands into position. For this problem, we used a bi-RRT -i.e. one tree is rooted at

the initial configuration and an other one at the goal configuration. That way, the

difficulty is not to find the entrance of the narrow passage - the final configuration

is inside the passage, but to follow it. The path to find in CS is non linear. Fig. 11

shows a solution path for this problem.

Fig. 11. Solution path for the second problem. The character has to move both hands.

We ran the classical RRT algorithm a hundred times on the problem where the

hole size is 24 cm and it never found a solution in less than 1,000,000 iterations. We

did not find relevant to make the hole smaller, as we did on the previous problem.

The results of both algorithms are shown on Tab. 4 and Tab. 5. The average number

Size of the hole Iterations Nodes Average Computation Time Standard Deviation Distance Failure Rate

No obstacle 1,167 136.8 5.535 s 3.192 s 1.01 0%

24 cm 35,981 4,938 541.437 s 546.243 s 0.56 6%

Table 4. Results of PCA-RRT for the second set of animation problems. The average number

of points used by the PCA is 33.6.

Size of the hole Iterations Nodes Average Computation Time Standard Deviation Distance Failure Rate

No obstacle 4,774 244.8 10.074 s 6.104 s 0.13 0%

24 cm 1,000,000 653.7 2,312.744 s 146.540 s 0.012 100%

Table 5. Results of RRT for the second set of animation problems
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of points used by the PCA is 33.6. Its computation cost is 70% of the total com-

putation time. Note that for the problem without the torus, the algorithms perform

better than when the right hand was already in position thanks to the bi-RRT. The

standard deviation of the computation time for the classical RRT is irrelevant, since

the algorithm was always stopped at the same number of iterations, before finding a

solution. For that problem, the ratio between the extension length of classical RRT

and PCA-RRT jumps to almost 50.

Industrial animation problem

This problem was given to us in the scope of the French ANR-RNTL project PerfRV2

by Dassault Aviation. The picture on Fig. 12 and the corresponding 3D model of the

plain hold is their courtesy.

In that problem, two characters have to cooperate to fix a part of a plain hold.

Getting into position is easy for the character above the hold, but difficult for the

character underneath it. We considered the motion planning problem consisting in

moving the upper part of the body of the character beneath the hold. As in the previ-

ous animation benchmarks, the robot has 20 degrees of freedom. Fig. 12 shows the

3D model of the hold and of the virtual characters. On the left is the initial configu-

ration of the mannequin underneath the hold and on the right its final configuration.

Fig. 13 shows a solution path for that problem.

The results of PCA-RRT and classical RRT on that problem are shown in Tab. 6

and 7. As in the last animation benchmark, the path to follow is not linear, but the

use of PCA speeds up the diffusion process a lot, because of the presence of narrow

passages. The PCA used in average 32.4 points to describe CSfree. The computation

of PCA represented 88% of the total computation time.

Iterations Nodes Average Computation Time Standard Deviation Distance Failure Rate

186,769 2602 1,406.818 s 868.773 s 1.07 34%

Table 6. Results of PCA-RRT for the industrial animation problem. The average number of

points used by the PCA is 32.4.

Iterations Nodes Average Computation Time Standard Deviation Distance Failure Rate

870,852 1424 2,484.212 s 786.087 s 0.0402 72%

Table 7. Results of RRT for the industrial animation problem.
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Fig. 12. Motion planning problem for a virtual actor. The main difficulty is to place both hands

of the character beneath the plain hold. Picture and 3D model of the plain hold are under a

Copyright of Dassault Aviation. They were given to us in the scope of the French ANR-RNTL

project PerfRV2.
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Fig. 13. Solution path for the plain hold problem.

7 Discussion on the choice of the dimensionality reduction

technique

7.1 Non-linear steering methods

As we said in the introduction, the method presented earlier is only valid for linear

local methods. If the motion planner does not connect configurations by straight

lines - for instance if we are dealing with car-like robots, the sets of free trajectories

starting from a given point of CS can not be well approximated by linear subspaces.

In order to use the same algorithm, we need to do the linearization in a mapping

of CS, in which the local paths are mapped into straight lines. This can be done by

using Kernel-PCA. The classical computation of PCA can be done using only the eu-

clidean inner product rather than the variance and covariance matrix. If the steering

method we are using defines a distance - as it is the case for Reeds and Shepp curves

(Reeds & Shepp, 1990), we can define what would be the inner product correspond-

ing to that distance in the mapping of CS and use it to compute the KPCA. This

method is valid if there is actually a space where our operator is an inner product.

Intuitively, that means that the notions of orthogonality and alignment are valid for

the local method we consider. For a good description of Kernel-PCA, one can refer

to (Schoelkopf et al., 1997).

We have not shown that Reeds and Shepp curves actually define an inner product,

but we have used KPCA with what would be the Reeds and Shepp inner product,

and it showed better results that naive PCA on some examples. We chose not to
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present these results because for car-like robots, i.e. devices with only three degrees

of freedom, there is no need for dimensionality reduction techniques and classical

RRT outperformed PCA-RRT as well as KPCA-RRT.

7.2 Non-linear dimensionality description of the space

In the work presented here, we chose PCA as our dimensionality reduction technique

because it is easy to implement and provides good results. The main limitation of this

method is that it is globally linear. The subspaces found by PCA are therefore linear,

and could be of higher dimension than necessary if the true underlying structure of

the data is not linear.

Some methods for non-linear dimensional reduction have been proposed to over-

come this limitation. Some of them are widely used in fields where dimensionality

reduction is a critical issue, for instance the isomap method, proposed by Tenenbaum

et. al (Tenenbaum et al., 2000), or the locally linear embedding method, proposed

by Roweis and Saul (Roweis & Saul, 2000).

Several cases can appear while using PCA to control random diffusion in motion

planning:

1. The sub-manifold to find is actually linear. This is the case for the animation

benchmark where the right hand of the character was in the right position in the

initial configuration: some of the degrees of freedom should not be moved (the

ones corresponding to the right arm), which forces the diffusion to take place

in an intersection of hyperplans, i.e a linear submanifold of CS. In that case,

using PCA as our dimensionality reduction technique is appropriate. These are

the cases we first had in mind while designing the algorithm.

2. The sub-manifold CS lies around is non-linear but is smooth. Because our use

of the PCA is local, the result it will give can be seen as the tangent space of

that manifold rather than the manifold itself. PCA then helps solving the motion

planning problem, as some of our experiments showed: the exhaust disassembly

problem, and more remarkably, the animation benchmarks with the torus shaped

obstacle. In these last examples, we even gained more with PCA in the second

problem, where the passage to follow was non-linear than in the first one, where

the free space lied around a linear submanifold of CS.

3. The free space makes a right angle (i.e. goes from a direction to an other or-

thogonal one). In that case, the PCA description does not help at all. However,

the fact we use classical RRT every other step guaranties us that we will find

the turn. Once the turn is found the new points will be taken into account in the

PCA description which will make our algorithm deal equally with the two or-

thogonal directions at the point where the free space makes a right angle. Thus,

our technique does not slow down the diffusion -except for the useless PCA

computations- in terms of number of steps of diffusion.

4. The free space is a T-shape tunnel. The use of the PCA induces an inertia in the

straight line direction, and the exploration will go faster in that direction than in

the orthogonal one. In a sense, our method could slow down the RRT algorithm
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here if the path to find takes the turn and the straight line is a dead-end. This is

an other reason why we use classical RRT half of the iterations: the turn will be

found with probability one and not that slower than the classical RRT would do.

8 Conclusion

An adaptation of randomized diffusion motion planning algorithms is proposed. The

statistical method we used, PCA, is well-known and widely used in literature, but

not yet to control motion planning algorithms. Using dimensional reduction tool in

diffusion planning, and analyzing the result of it is the contribution of this work.

As expected, we observed that this technique could significantly improve diffusion

algorithm performances in constrained environments. Note that it does not solve the

problem of finding the entrance of a narrow passage, but only accelerate the diffusion

within the passage. Our method has been used on several motion planning problems,

coming from different domains of application, and has shown good results. Its main

strength is the fact that it does not need any tuning and adapts itself automatically to

the difficulty and dimension of the problem. The class of problems where we found

it to be the most useful are highly dimensioned animation problems in confined and

complex environments.
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Appendix 1: about PCA convergence (for review purpose)

The results presented here have been found in (Zwald & Blanchard, 2005). We

present here simplified versions.

The interest variable X takes its value in a measurable space X , following the

distribution P . We have access to n realizations of X , on which we compute a PCA.

Let C be the covariance matrix of P , and Cn the empirical covariance (measured af-

ter n realizations). We are also interested in the subspace of dimension D spanned by

the eigenvectors associated with the D largest eigenvalues of C. Let SD be that space

and PSD
the orthogonal projector on that space. Its empirical equivalent (obtained

with Cn) is ŜD (respectively P cSD
).

The following results deal with the convergence speed of Cn to C and P cSD
to

PSD
.

Lemma 1. Supposing that there exists M such that for all x ∈ X , ||x||2 ≤ M , then

for all ξ > 0, with probability greater than 1 − e−ξ,

||Cn − C|| ≤ 2M√
n

(
1 +

√
ξ

2

)

Theorem 2. Assume that there exists M such that for all x ∈ X , ||x||2 ≤ M . De-

noting λ1 > λ2 > . . . the eigenvalues of C, if D > 0 is such that λD > 0, put

δD = (λD − λD+1)/2 and

BD =
2M

δD

(
1 +

√
ξ

2

)

Then provide that n ≥ B2
D, for all ξ > 0, the following bound holds with probability

at least 1 − e−ξ: ∣∣∣
∣∣∣P cSD

− PSD

∣∣∣
∣∣∣ ≤ BD√

n

Appendix 2: about recursive PCA (for review purpose)

We found several ways to compute PCA recursively in literature. The one presented

here was found in (Erdogmus et al., 2004). The following calculus shows how to
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diagonalize the covariance matrix of (k+1) points when we have done it already for

k points.

Assume we have already computed a PCA on k points (xi)i=1..k. We have mea-

sured xk+1 and we want to update the result of the PCA. The new covariance Ck+1

is equal to:

Ck+1 =
1

k + 1

k+1∑

i=1

xixi
T =

k

k + 1
Ck +

1

k + 1
xk+1xk+1

T (2)

We have already diagonalized Ck and we want to diagonalize Ck+1. Let Ck =
QkΛkQT

k and Ck+1 = Qk+1Λk+1Q
T
k+1, where Q and Λ denote the orthonormal

eigenvector and diagonal eigenvalue matrices, respectively. Also define yk+1 =
QT

k xk+1. Substituting these notations in 2, we get:

Qk+1Λk+1Q
T
k+1 = Qk

[
k

k + 1
Λk +

1

k + 1
yk+1yk+1

T

]
QT

k (3)

Thus, we just have to diagonalize k
k+1Λk + 1

k+1yk+1yk+1
T to get Qk+1 and Λk+1.

Denoting
k

k + 1
Λk +

1

k + 1
yk+1yk+1

T = V DV T

where D is diagonal and V orthogonal, we get:

{
Qk+1=QkV
Λk+1= D

The matrix to be diagonalized has a very specific structure, it is the sum of a diag-

onal matrix and a very small matrix compared to the diagonal one. The following

calculus shows how to approximate the result of this diagonalization with rank one

approximations on yk+1yk+1
T .

We need to diagonalize (Λ + ααT ) where ααT << ||Λ||. Let (Λ + ααT ) =
V DV T . Because the matrix to be diagonalized is close to Λ, denote D = Λ + PΛ

and V = I + PV , where PΛ and PV are small perturbation matrices. With these

definitions, expanding V DV T gives:

V DV T = (I + PV )(Λ + PΛ)(I + PV )T

=Λ + PΛ + DPT
V + PV D + PV ΛPT

V + PV PΛPT
Λ

(4)

Assuming PV ΛPT
Λ and PV PΛPT

V are negligible, and equating 4 to Λ + ααT , we

get:

ααT = PΛ + DPT
V + PV D (5)

We also know that V is orthogonal, which gives (I + PV )(I + PV )T = I . PV PT
V is

negligible, so PV = −PT
V . Combining this with the fact that PΛ and D are diagonal,

the solutions for the perturbation matrices are found from 5 as follows:
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




(PΛ)ij= 0 (if i 6= j)
(PΛ)ii= α2

i

(PV )ij=
αiαj

λj+α2
j
−λi−α2

i

(if i 6= j)

(PV )ii= 0

Given these matrices, we are able to update the eigenvectors and eigenvalues of the

covariance matrix.


