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Abstract. Information processing in modern pattern recognition systems is becoming increasingly complex due to the flood of 
data and the need to deal with different aspects of information imperfection. In this paper a simple and efficient possibilistic 
evidential method is defined, taking account of data heterogeneity, combined with proportional conflict redistribution to in-
clude information conflict, paradox, and scarcity, within a fusion framework. It ponders information constraints and updating 
for dynamic fusion, and appropriately considers training set elements imperfection, class set continuity, and system output 
information scalability, encompassing a significant range of issues encountered in current databases. One example of know-
ledge sources processing with those constraints is given to explain the main processing phases, followed by suitable applica-
tion instances in satellite and medical image recognition. 

Keywords: Possibility theory, Proportional conflict Redistribution, Hybrid Dezert-Smarandache Model, Pattern Recognition, 
Satellite Images, Gastroenterology endoscopic images. 

 

1.  Introduction 

Many problems related to information processing 
in pattern recognition systems have been addressed 
and pointed out in the literature [25], like information 
imperfection, heterogeneity, conflict, paradox, scarci-
ty, constraints, dynamism, etc. [6], [14], [17], [19], 
[22], [27-29]. In general, these problems have been 
approached separately [15], using specific methods 
according to particular restricted conditions [6], [17]. 
Nevertheless, in real practical applications, it is often 
very likely that all these aspects take place simulta-
neously, given the significant amount of processed 
data, besides the complexity of systems, the sought 
tasks and purposes [6], [14]. Consequently, this paper 
proposes a method adequate for managing all the 
aforementioned points under a conjoined framework. 

 
None of the proposed theoretical models available 

today like for example, fuzzy set, probability, possi-
bility, evidence, etc., can fit or appropriately deal 
with all types of information elements imperfection, 

due to their multiform [25]. On the contrary, these 
models are complementary (not concurrent), and 
each of them aims at describing a given aspect of 
imperfection. Accordingly, we intend to make use of 
several models combined within the scheme of pos-
sibility theory, in a pattern recognition context to 
handle a significant set of imperfection elements. 

    
Our latest work [1], addressed some information 

processing problems like imperfection, heterogeneity, 
conflict, scarcity and scalability, ignoring other com-
parably important issues like information paradox, 
contradiction, continuity, constraints and updating 
(dynamism). As a result, we search to ameliorate our 
approach in such a way that all the aforementioned 
elements are considered. 

 
Information Imperfection can take place when 

labeling the patterns of the training set (examples) 
via an automatic system [4], [22], [28], or when as-
signing imprecise, ambiguous, evidential, probabilis-
tic, uncertain, or missing values to pattern features 



[1-3]. Unlike the first type of imperfection that has 
rarely been studied [28], pattern feature imperfection 
appears to be markedly disregarded in the literature. 
This unsolved question inevitable leads to considera-
ble difficulties in measuring the similarity between 
the observed and the training set patterns [2, 3], 
which is a pivotal task in recognition [7], [9, 10], due 
to the inherent limitations and application constraints 
of reported similarity measures [2]. Yet recent works 
[7], [9] underline the importance and the need of a 
general measure, capable to take account of all rele-
vant aspects of imperfection, simultaneously in a 
rather simple and fast way. Such claim relies on the 
ground that similarity measurement represents the 
corner stone in a significant number of data mining 
tasks and techniques, and is motivated by the fact 
that similarity measures proposed until now, only 
consider some aspects of imperfection, disregarding 
the rest [6], [14], [17]. For instance, some approaches 
merely take account of imprecision [17], whereas 
others only address the ambiguity [4]. 

 
Information Heterogeneity is another important 

aspect to be considered in pattern recognition, be-
cause patterns generally consist of information ele-
ments having different measuring scales (binary, qua-
litative, quantitative, ordinal, etc.) [6], [13, 14], [26]. 
As a result, various data conversion approaches have 
been proposed to transform all the scales to one type 
[13], [26]. Nonetheless, these techniques have been 
implemented arbitrarily and did not demonstrate how 
to deal with real complex patterns, containing a re-
markable number of different attributes, especially in 
the presence of imperfection. Recent applied works 
[6], [14] have stressed the importance of assessing 
information imperfection and heterogeneity together 
under a unified context, when making similarity 
measures. On the contrary, those methods have only 
examined the heterogeneity, without including ordin-
al or imperfect information elements. We show in 
this paper that possibilistic similarity measures deal-
ing with both of the aforementioned points, play a 
vital role to improve similitude appraisal, between 
the observed objects and the examples. 

 
Information Conflict and Scarcity are two other 

important prospects to be studied when managing 
pattern recognition information. The first issue could 
take place when a pattern is close to several training 
examples from different categories, whereas the 
second arises when a pattern is far away from any 
pattern in the training set (outlier). In this case, the 
most probably pattern belongs to an unknown class, 

for which no information has been gathered in the 
training set, and as a consequence should be rejected. 
These two points have been very well discussed in 
[23], [28] using evidence theory. 

 
Information Scalability is a complementary and 

interesting issue in the system we are looking for. 
Owing to the fact that pattern recognition could be 
used systematically as a pre-processing step, preced-
ing other data mining tasks like rule extraction, out-
lier and anomaly detection, our system output infor-
mation elements must be flexibly transformable to 
other forms suitable for the next steps. It was clearly 
illustrated in [2], [27] that if it is feasible to build an 
evidential partition of the information using belief 
masses, then the transformation into other types of 
partitions like possibilistic, fuzzy or hard partition is 
direct. Therefore, we aim at producing our results in 
this form, by using instead an enhanced version of 
belief masses that apply the model proposed by De-
zert and Smarandache [11], [12]. 

 
Information Continuity or Vagueness is also an 

important characteristic to be considered in order to 
assure the simplicity and the efficiency of the pro-
posed method [11]. In [1] we supposed that the 
classes of our system were exclusive or could be 
converted to exclusive elements, by finding an ap-
propriate refinement of the class set. That is, we as-
sumed the association of observed patterns with one 
and only one class. Consequently, the belief masses 
were defined upon the power class set according to 
Shafer’s model [11], assuming that there were not 
intersections between classes, i.e. for any two differ-
ent classes iω  and jω  from the class set Ω : 

φωω =∩ ji  and therefore no belief can be distrib-

uted to this set, 0)( =∩ jim ωω . 
 
However, in a large spectrum of practical prob-

lems the categories intrinsic nature is only vague and 
imprecise. Given that these classes cannot be identi-
fied or precisely separated, further refinement of the 
associated categories is either very complex or not 
feasible at all. Many problems involving fuzzy con-
tinuous and relative concepts described in natural 
language and having no absolute interpretation like 
tallness/smallness, pleasure/pain, cold/hot, etc., enter 
in these types. Consequently, in order to guarantee 
the generality and the integrity of the proposed sys-
tem, we use Dezert-Smarandache model (DSm), in 
which belief masses are defined on the hyper power 



set that contains all the classes, their intersections, 
and their unions. The DSm model includes the 
Dempster Shafer model (DS), a particular case char-
acterized by empty intersections, implying that the 
hyper power set is reduced to the power set. Addi-
tionally, it has been reported that the DS model could 
give sometimes counter-intuition results, particularly 
when the conflicting mass takes significant values 
[11, 12]. 

 
Information Constraints and Updating can be 

regarded as a fundamental issue for the development 
of reliable modern pattern recognition systems, be-
cause they are directly related to the properties and 
the characteristics of pattern classes. Problems with-
out intersection or union between some classes are 
representative examples. For instance, if Ω  is a set 
of three different pathologies { }321 ,, ωωω=Ω , and 
according to specialized knowledge, it is inconceiv-
able that a patient has two pathologies 1ω  and 2ω  at 
the same time, given the observed completely differ-
ent symptoms, then the information - φωω =∩ 21  

or 0)( 21 =∩ωωm  - must be taken into account by 
the recognition system in the reasoning phase. This 
issue was neither included in our previous work [1]. 

 
When the classes are exclusive, then 

φωωωωωω =∩=∩=∩ 323121 .  
 
The belief masses of these intersections are con-

sidered in this case as conflicting masses that should 
be redistributed to the non empty sets. The hybrid 
DSm model proposed in [11, 12] represents an ap-
propriate framework to deal with class sets submitted 
to intersection and/or union constraints. When there 
are only exclusivity constraints, this model is equiva-
lent to Shafer’s model implemented in [11], and 
when no assumption or constraint is applied to the 
system it is called free DSm model. Thanks to this 
property, hybrid DSm is adapted in our work with a 
slight modification related to the redistribution of 
total and partial conflicts (section 2). 

 
 Indeed, the most interesting property of this 

model is its capability to give coherent and robust 
results in dynamic fusion [11], for information updat-
ing, when the class data set changes through time 
with revision of the available knowledge. For in-
stance, let us suppose that in the previous example 
and according to new evidence, we knew that our 

database has no object belonging to the class 3ω  

( φω =3 ). In this case, we can be sure that the hy-
brid DSm model is capable to efficiently distribute 
the new conflicting mass )( 3ωm  to the other non-
empty sets. 

 
 Information Paradox or Contradiction is a very 

important issue related to training set elements care-
fully pondering in pattern recognition systems. At a 
practical level, the examples of a training set can 
never be ideally selected, and sometimes different 
training patterns give incoherent information about 
the observed pattern class. This contradiction can be 
materialized as seen in [1] by the conflicting mass. 
Nevertheless, instead of distributing this mass to all 
the belief masses of all the examples, Dezert and 
Smarandache proved that it is more reasonable and 
logic to only redistribute the conflict to the examples 
involved in it, proportionally to their belief masses 
[12]. Accordingly, they established five different 
versions of proportional conflict redistribution ap-
proach (PCR1, PCR2, …, PCR5), showing that this 
redistribution (except PCR1) satisfies the three main 
properties of a good combination rule: the coherence, 
the commutativity, and the neutral impact of the va-
cuous belief assignments. 

 
 In addition to these properties, PCR6 proposed by 

Martin and Osswald is quasi-associative, stable in 
terms of decision, and more coherent than the other 
versions, when there are more than two evidence 
sources [5]. For two bodies of belief, PCR6 coincides 
with PCR5 [12]. We propose the use of the PCR ap-
proach at the output of our system, since it can prop-
erly work for any degree of conflict, for each DSm 
model (Shafer’s model, free DSm model or the hy-
brid DSm models), and for every type of fusion 
(static or dynamical). 

 
The proposed general simple method, essentially 

based on possibility theory and Dezert-Smarandache 
proportional conflict redistribution, is described in 
the following section, supported by a concrete illustr-
ative example in section 3. This technique is then 
analyzed in section 4, regarding two compatible ap-
plication instances, related to satellite and medical 
image recognition. Finally, and as a way of conclu-
sion, these points will be discussed and analyzed in 
the last section. 

 



2. Possibilistic evidential pattern recognition 
system 

Suppose that a set of observed patterns 
{ }n

j
i
jjj AAAA ,...,,...,, 21=Θ , is to be classified de-

pending on a training pattern set 
{ }tkl

kkk AAAAT ,...,,...,, 21=  into the class set 

{ }Nc ωωωω ,...,,...,, 21=Ω  (fig. 1). Given that A  
represents a multivariate feature vector of the consi-
dered pattern, its variables could have imperfect (im-
precise, ambiguous, uncertain, or missing) values, 
and could be heterogeneous (quantitative, qualitative, 
ordinal, etc.). We will also suppose that the class 
membership of the training pattern is assessed by an 
expert or by another automatic system as a possibility 
distribution [1-2]. Specifically, each example l

kA  for 

tl ,...,2,1=  is associated with a possibilistic label 
modeled as: 

 
 
[ ])(...)(...)()( 21 Nlclll ωμωμωμωμ

 
 in such a way that: 

 

]1,0[∈μ  and 1)(
1

=∑
=

N

c
cl ωμ   (1) 

 
In the first phase, the similarity between the ob-

served patterns and all the patterns of the training set 
is calculated via the necessity degree that the two 
patterns are similar (lower bound) and the possibility 
degree of resemblance (the upper degree) as we pro-
posed in [1]. These degrees are the average of inter-
attribute necessity and possibility degrees that take 
into account, if required, specific physicians’ points 
of view, to adjust the similarity of each attribute be-
tween the patterns modeled by the tolerance function. 
Even if, sometimes necessity and possibility degrees 
are aggregated using the minimum or the maximum 
operator [16], this strategy does not work for our 
purpose. In those cases the value of the most dissimi-
lar attribute will dominate, determining the final 
computation result, regardless of the other attributes, 
for which similarity values may be extremely close. 
Therefore, we suggest the average as a fair estimation 
that considers the values of all the attributes.      

  
 
 
 

Fig. 1. A pattern recognition system. 



The inter-attribute necessity and possibility de-
grees of similarity between the attribute value 

fja given in i
jA , { }ni ,...,2,1∈∀  modeled by its 

possibility distribution (represented on the axis y) 
),(

,
ya fjaA fjj

π and the value fka  given in l
kA , 

{ }tl ,...,2,1∈∀  provided by its possibility distribu-

tion (represented on the axis x) ),(
, fkaA

ax
fkk

π , 

{ }Sf ,...,2,1∈∀  (S is the number of attributes in 
each pattern), are calculated  as follows. 

 
Supposing that D is the definition domain of the 

considered attribute ( DDU ×= ) and that Λ  is the 
tolerance function associated to this attribute, the 
conjoint possibility distribution Dπ  is calculated by: 

 
))(),(min(),( ,, yxaa

fkkfjj aAaAfkfjD πππ =        (2) 

 
In this case, the inter-attribute necessity and possi-

bility degrees of similarity, fN  and fΠ , can be 
calculated respectively as [15]: 
 

)](1),([max(),( uuInfaaN DUufkfjf π−Λ= ∈  (3)           

)](),([min(),( uuSupaa DUufkfjf πΛ=Π ∈  (4)
  

We consider that if the value of an attribute is giv-
en in a pattern and is unassigned in the other (the 
case of missing values), it is completely possible that 
these values are similar 1=Π f , but we are entirely 

uncertain, 1=fN . 
 
After calculating the degrees of similarity between 

Θ∈i
jA  and TAl

k ∈ , denoted as ilN  and ilΠ , 

{ }ni ,...,2,1∈∀  and { }tl ,...,2,1∈∀ , the basic 
belief assignments of the observed patterns are calcu-
lated according to the following algorithm: 

 
For each Θ∈i

jA , { }ni ,...,2,1∈∀  

        For each  TAl
k ∈ , { }tl ,...,2,1∈∀  
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Where l

iN
M  represents the necessity-based evi-

dence, and l

i
M
Π

 represents the possibility-based evi-

dence, provided by the example TAl
k ∈ , concerning 

the membership of the observed pattern Θ∈i
jA  to 

all the classes of Ω . 
 
As we might remark, each training pattern plays 

the role of an item of evidence (witness) influenced 
by similarity necessity and possibility degrees, con-
sidering that the higher is the similarity of the ob-
served pattern to it, the more is our belief that it be-
longs to its classes with the same degree. 

For each element X  from the hyper power set of 
the class set (Dedekind’s lattice) denoted ΩD , we 
apply the conjunctive consensus combination rule as: 

 

∑ ∏
=∩∩ =

=
XYY

t

l
llc

t

YmXm
... 11

)()(   (6) 

 
Where Ω∈DYl  is the response of the witness l   

(evidence source), and )( ll Ym  the associated belief 
function. 

 

(5) 



Then PCR6 rule proposed by Martin and Osswald 
[5] is applied in the following manner: 
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where lσ  counts from 1 to t  avoiding l : 
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  As lY  is a focal element of the witness l , then 

0)()(
1

1
)()( ≠+∑

−

=

t

j
jjl ll

YmXm σσ . 

This rule is applied twice: initially to the neces-
sity-measure-based testimony of the examples in the 
training set, and then to the possibility-based testi-
mony. Afterwards, the two results are combined us-
ing DSm model. Thereafter, the generalized pignistic 
probability transformation is applied to take a deci-
sion about the class of the pattern under considera-
tion [11]. This transformation is more general than 
the pignistic probability utilized in our previous work 
and is given as follows: 
 

Ω∈∀ DA  ,   

{ } )(
)(

)( Xm
XC

AXCABetP
DX M

M∑
Ω∈

∩
=  (9) 

 
 
where )(XCM  denotes DSm cardinal of the propo-
sition X  for DSm model M of the problem [18]. 

3. An illustrative example of knowledge sources 
treatment 

Let us suppose that our system consists of three 
elements { }21 ,, kkj AAA  where jA  is the observed 

object, while 1
kA  and 2

kA  are the training patterns. 
Each object is described by three attributes 
{ }321 ,, aaa  as follows: 1a  is a nominal binary at-
tribute that takes its values in the set {positive, nega-
tive}; 2a  is an imprecise quantitative measure; and 

3a  is characterized according to other measures or 
automatic systems like the one that we proposed in 
[4], or by a probability distribution. The values as-
signed to these three attributes in the three aforemen-
tioned patterns are depicted in fig. 2-a. In order to 
estimate the similarity between these three objects – 
which is a fundamental step in any recognition sys-
tem - we assume that experts’ viewpoints about the 
resemblance between each pair of variables can be 
modeled by tolerance functions [1-3]. As schema-
tized in fig. 2-a, the true/false tolerance function is 
designed for the first attribute. Such representation 
means that, in the expert’s opinion, the two values of 
this attribute are identical, only if they are considered 
completely similar, elsewhere they are totally dis-
similar. Otherwise for the second attribute, similarity 
is modeled by f2 (fig. 2-a). According to f2, two val-
ues of an attribute are totally similar if the difference 
between them is null. This similarity decreases when 
the difference increases up to 30± . Beyond these 
values, the similarity is equal to 0. Regarding the last 
attribute, we suppose that the expert did not have a 
particular opinion to formulate the similarity view-
point between two attributes. Nevertheless, similarity 
necessity and possibility degrees between the values 
of this attribute must be considered and computed 
even if the expert is not capable to indicate or to ex-
press an opinion, due to knowledge insufficiency, 
problem complexity, need of other evidences or 
proofs, etc. We suppose in this apprehensible exam-
ple that even if the expert (a physician, for instance) 
is incapable of describing the similarity between two 
attributes, estimated as probability distributions, ob-
tained for example from a patient record database, 
the similarity between those attributes can be calcu-
lated. Since tolerance functions are a way to person-
alize the process by taking account of experts’ simi-
larity standpoints, it is not appropriate to consider 
those values as weights. In this case, similarity de-
grees can be easily evaluated using conventional 
equations, after transforming the probability distribu-
tions to possibility distributions, through an adapted 
method like Dubois-Prade transformation [24]. 

 
 

(7)



 

 
 
 
 

 

 
 
 
 

Fig. 2. Illustrative example: a- the observed object and the training patterns, with their assigned values, inter-
variable necessity and possibility degrees, and the global degrees. b- the pattern recognition system. 



The values of inter-attribute similarities modeled 
by the similarity possibility degrees and the similarity 
necessity degrees are shown in fig. 2-a. These values 
have been averaged in order to calculate the inter-
pattern similarity between jA  and l

kA , 

{ }( , ) l 1 2∀ ∈ , modeled by l
jkΝ  and l

jkΠ  [1].     
 
Measuring the similarity between these patterns 

that contain heterogeneous values (qualitative, quan-
titative, etc.), and imperfect information elements 
(imprecise, probabilistic, etc), is extremely complex 
and uncertain using the conventional and the prior 
measures and approaches (section 1), particularly 
when experts’ points of view must also be taken into 
account. On the contrary, this calculation is com-
pletely straightforward and efficient applying the 
proposed framework. 

 
It can be noticed that the observed object is close 

to both training patterns, 1
kA  which is mostly as-

signed to 1ω , and 2
kA  which is approximately as-

signed to 3ω . Therefore, the paradox resulting from 
these two information elements must be considered, 
in addition to information uncertainty, when assign-
ing the classes to the training patterns.  

 
We also assume that there are three classes, 
{ }321 ,, ωωω=Ω , and according to expert’s knowl-

edge, neither 1ω  and 3ω , nor 2ω  and 3ω  can occur 

at the same time. Nonetheless, 1ω  and 2ω  can hap-
pen simultaneously. These information constraints 
resulting from our knowledge about the nature of 
classes must be pondered in the process (fig. 2-b). 

 
  Applying the given values of the computed simi-

larity necessity and possibility degrees on the one 
hand, the class membership values of the first train-
ing pattern ( ,90.0)( 11 =ωμ

kA
,0)( 21 =ωμ

kA
 and 

10.0)( 31 =ωμ
kA

) and those of the second training 

object ( ,0)( 12 =ωμ
kA

,80.0)( 22 =ωμ
kA

 and 

20.0)( 31 =ωμ
kA

), on the other hand, to equation 5, 

we obtain: 
 

693.090.077.0)( 11 =×=ωIm , 

 

90.090.01)( 11 =×=ωIm ; 
 

0077.0)( 21 =×=ωIm , 001)( 21 =×=ωIm ; 

 
077.010.077.0)( 31 =×=ωIm ,  

 

10.010.01)( 31 =×=ωIm ; 
 

0053.0)( 12 =×=ωIm ,  001)( 12 =×=ωIm ; 

 
 

42.080.053.0)( 22 =×=ωIm , 

 

80.080.01)( 22 =×=ωIm ;  
 

 
110.020.053.0)( 32 =×=ωIm , 

 

 200.020.01)( 32 =×=ωIm ; 
 

Accordingly: 
 

]90.0,693.0[)( 11 =ωIm , 

0)( 21 =ωIm  

]10.0,077.0[)( 31 =ωIm  
 

0)( 12 =ωIm  

]80.0,42.0[)( 22 =ωIm  

]20.0,110.0[)( 32 =ωIm . 
 
Supposing that information conflict and paradox 

must be precisely taken into account, we implement 
the proportional conflict redistribution approach in 
the hybrid DSm model. Even so, as these belief 
masses are admissible, the imprecise version of 
PCR5 [12] can be applied as well to facilitate the 
calculation. 

 



  Working with sets, and supposing that there is 
not any constraint that dominates the system, the fol-
lowing masses are obtained for the free DSm model: 

 
0)( 1 =ωI

FreeDSmm , 0)( 2 =ωI
FreeDSmm , 

 
]02.0,0085.0[)( 3 =ωI

FreeDSmm  
 

]18.0,0762.0[)( 31 =∩ωωI
FreeDSmm  

 
]08.0,0323.0[)( 32 =∩ωωI

FreeDSmm  
 

]72.0,2911.0[)( 21 =∩ωωI
FreeDSmm  

 
0)( 321 =∩∩ ωωωI

FreeDSmm  
 
Presuming that part of the partial conflict redis-

tributed to 1ω , 2ω , and 3ω , are 
1ω

x , 
2ω

x  and 
3ω

x  
respectively, then the partial conflicting mass 

( ) [ . , . ] I
FreeDSm 1 3m 0 0762 0 18ω ω∩ =  will be 

redistributed to 1ω , and 3ω as follows: 
 

]10.1,8030.0[
]18.0,0762.0[

]20.0,11.0[]90.0,693.0[
31 == ωω xx

 
Whence,  

 

]2.0,048.0[
]100.1,8030.0[
]1620.0,0528.0[

1
==ωx  

 
And 

 

]045.0,00764.0[
]10.1,8030.0[
]036.0,0084.0[

3
==ωx  

 
Once again, the proportional conflict redistribution 

approach is applied to the second partial conflict 
mass given by the second information constraint as 
follows: 
 

]90.0,4970.0[
]08.0,0323.0[

]10.0,077.0[]80.0,42.0[
32 == ωω xx

 

Whence  
 

]1288.0,0151.0[
]90.0,497.0[
]064.0,0136.0[

2
==ωx   

 
And 
 

]0161.0,0028.0[
]90.0,4970.0[
]0080.0,0025.0[

3
==ωx . 

 
As a result: 
 

]20.0,048.0[)( 1 =ωI
PCRm , 

]1288.0,0151.0[)( 2 =ωI
PCRm , 

]0811.0,0189.0[)( 3 =ωI
PCRm , 

0)( 31 =∩ωωI
PCRm , 

0)( 32 =∩ωωI
PCRm , 

]720.0,2911.0[)( 21 =∩ωωI
PCRm , 

0)( 321 =∩∩ ωωωI
PCRm . 

 
We can notice by closely looking at the result ob-

tained above that the greatest belief will be given to 
the occurrence of both 1ω and 2ω , and not to one of 
them, which is very reasonable and logical. Contrar-
ily, the fusion methods proposed in [1] cannot deal 
with this type of problem taking account of the im-
posed constraints, the imprecise belief masses of 
sources, and the composed hypotheses like 21 ωω ∩ , 
since their power class sets are closed on unions only. 
Furthermore, the traditional fusion approaches, Yager, 
Shafer’s model, etc., cannot fairly redistribute the 
conflicting mass to the elements involved in the 
paradox, like the proportional conflict redistribution 
approach applied in this conflict scenario.  

 
If we assume the exclusivity of the classification 

system as Shafer’s model does by adding the con-
straint φωω =∩ 21   to the other two constraints, 
then the partial conflicting mass 

( ) [ . , . ] I
FreeDSm 1 2m 0 2911 0 72ω ω∩ =  will be re-

distributed as follows: 
 



[ . , . ]
[ . , . ] [ . , . ] [ . , . ]     

1 2
x x 0 2911 0 72

0 693 0 90 0 42 0 80 1 113 1 70
ω ω= =  

 
 

[ . , . ] [ . , . ]
[ . , . ]

   
 1

0 2017 0 6480x 0 1187 0 5838
1 113 1 70ω = =  

 
 And 
 

[ . , . ] [ . , . ]
[ . , . ]

   
 2

0 1223 0 5760x 0 0719 0 5175
1 113 1 70ω = =  

 
As a result: 
 

]7838.0,1667.0[)( 1 =ωI
PCRm , 

 
]6463.0,087.0[)( 2 =ωI

PCRm , 
 

]0811.0,0189.0[)( 3 =ωI
PCRm ; 

 
0)( 31 =∩ωωI

PCRm , 
 

0)( 32 =∩ωωI
PCRm , 

 
0)( 21 =∩ωωI

PCRm , 
 

0)( 321 =∩∩ ωωωI
PCRm . 

 
While applying Shafer’s model in such type of 

problems leads to: 
 

1)( 3 =ωShaferm
, 

0)( =XmShafer , 
{ }3/2 ωΩ∈∀X .  

 
Nonetheless, this result is illogical, since the belief 

has been totally given to the element 3ω , which has 
received a very small amount of it from the examples 
in the training set. 

 
This example illustrates a simple, coherent and 

unified processing scheme, to treat multiple types of 
information imperfection and limitations, as well as 
user personalization and system’s constraints. Two 

straightforward envisioned utilization instances are 
discussed in the next section. 

 

4. Image recognition applications 

Thanks to its simplicity, flexibility, and generality, 
the previous example can be extended to a significant 
number of pattern recognition problems, where all or 
some of the aforementioned information limitations 
and challenges are encountered. 

 
This section introduces two interesting applica-

tions in which our technique can be exploited analo-
gously, following equivalent phases of reasoning and 
calculation, to recognize similar objects, in satellite 
and medical images. Other types of pattern identifi-
cation could be extrapolated from these two exam-
ples, likewise. 

 
In remote sensing images, the objective is to as-

sign each pixel to a particular class (vegetation, crops, 
rivers, etc.) depending on the fusion of several in-
formation sources, like the spectral bands of the sat-
ellite image, or the a priori knowledge of the expert 
about the studied area. In fig. 3, we give an example 
in which the objective is to classify the pixels of 512 
×  512 LANDSAT images, to one of nine different 
categories of vegetation, based on its spectral bands 
MSS. 

 
To accomplish this task, the training dataset is 

constructed by choosing the most significant and 
representative regions of pixels (samples) with 
known labels in the images, and by extracting the 
characterizing features of each class (called the spec-
tral signature) that allow to distinguish it from the 
others [4].  

 
Actually, the selected samples that play a funda-

mental role in the fusion process can be heterogene-
ous, i.e. their composing pixels may belong to several 
classes, and this heterogeneity must be considered 
during the fusion. For instance, in fig. 3-a each sam-
ple corresponds to the spectral responses of every 
object in the ground of a rectangle of 57 meters ×  79 
meters, and consequently it may have more than one 
class. 

 
 
 



 
 
 

 
 
 

Fig. 3. Information processing in satellite image classification [23], a) four spectral bands of Palni, b) the 
training samples and the classes, c) the class histograms. 



Such problem is found when examining the sam-
ples in the centre of the image (fig. 3-b), where it can 
be remarked that class 4 and class 5 coexist simulta-
neously in the majority of them. Moreover, the two 
samples of class 3 in the upper right corner are com-
pletely heterogeneous and their membership degrees 
to the classes which are closely related to the resolu-
tion of the spectral band MSS of LANDSAT, must 
be different too. Accordingly, one can deduce that 
pixel regions can be assigned to more than one class 
with different weights. Hence, this system cannot be 
treated within Shafer’s model that tends to exagger-
ate the classes exclusivity principle [11]. 

 
By analyzing the histograms of the nine system 

classes (fig 3-c), for the spectral band 4MSS  (fig. 
3-a), it can be remarked that some of them are spread 
out, of low amplitude, and are embedded among the 
others. This is the case of classes 3 and 4, character-
ized by a poorly spread out histogram that can be 
merged with classes 1 and 2, whose histogram is very 
narrow. Consequently, these classes (3 and 4) will be 
deficiently recognized in the absence of other infor-
mation sources. Actually, the paradox and the con-
flict between the classes resulting from each band, 
can be properly pondered using DSm model and the 
PCR approach.   

 
Considering fig. 3-c histograms, it can be pointed 

out that the classes are roughly divided into two main 
groups: the first one contains classes 1, 2, .., 6 whose 
histograms have rather low grey levels (from 0 to 
100), while the second consists of the other classes 
for which histograms have higher grey levels (from 
60 to 200). This is because samples of the first group 
correspond to forest or savannah situated in moun-
tains, while the second group corresponds to cultures 
and thickets found in plains. Adding this knowledge 
in the form of intersection and union constraints can 
notably enhance the performance of the system.  

 
The proposed possibilistic framework appears as 

the most appropriate for this system, to estimate simi-
larity between histograms of the training and the ob-
served patterns, or the resemblance of other features 
between different information sources [21]. In the 
first case histograms are normalized before applying 
an appropriate probability-possibility distribution 
transformation on which our possibilistic similarity 
measuring can be carried out [16]. In the second case, 
an equivalent operation can be carried out even if the 
attributes are described by means of heterogeneous 

and imperfect information elements [3]. Another im-
portant issue in this type of applications is informa-
tion updating, because information sources can fre-
quently change through time. For instance, some 
elements can spread (like the towns), others can be 
transformed (i.e. a forest replaced by a field), while 
some features change their appearance during sum-
mer and winter (vegetation) [23]. 

 
In the medical domain, the same issues can be 

found, but in other forms. Fig. 4 shows an example of 
lesions observed in gastroenterology images, which 
are described by an expert physician. Those de-
scribed characteristics have different measure scales 
(information heterogeneity) and can have imprecise 
or missing data (information imperfection) [8]. Given 
the descriptions complexity, in some cases it is not 
feasible to solve pattern recognition problems apply-
ing the conventional similarity measure framework, 
particularly when the physician’s viewpoint must be 
considered in the calculation [2, 3]. 

 
 Again, the proposed possibilistic fusion frame-

work leads to significantly improved results, in 
agreement with ground truth. Previously formulated 
algorithms have materialized different aspects of our 
possibilistic framework through iterative-projection-
optimization-based representational visualization 
models, validating their concordance with the ex-
perts’ diagnosed patterns or classes [1-3], [20]. Fig. 5 
presents two scaling-based visualization models, and 
two graphical representational models, applied to an 
image dataset containing 18 described images of 5 
different lesions { }54321 ,,,, PPPPP=Ω  structured 
in the following manner according to the ground-
truth provided by the specialist [8]: P1 = {O1, O2} 
corresponds to the “Dilated Lumen” pathology; P2 = 
{O3, O4, O5, O6, O7, O8, O9, O10} conforms with the 
description of “Esophagus Stenosis”; P3 = {O11, O12, 
O13, O14} is a set of images that represent the “Extrin-
sic Compression” pathology; P4 = {O15} describes 
the “Web Shape” pathology; P5 = {O16, O17, O18} is a 
set of images on which the “Ring Shape” pathology 
is visible.  

 
The results displayed in fig. 5 represent strong 

similarity relations existing between objects that be-
long to the same pathology. Namely, an object that 
corresponds to a given pathology is more similar to 
any other object of the same class, than to objects of 
other pathologies. For instance, fig. 5-b depicts those 
relations using possibilistic similarity, as a closed 



circular continuum via the circular unidimensional 
scaling, and fig. 5-c shows these values in a 3D space 
applying multidimensional scaling. Accordingly, the 
coordinates of examined objects’ points form sepa-
rated groups of similar patterns, which spatially as-
semble elements of the same class, in agreement with 
the clinical ground truth. Alternatively, dissimilarity 
is represented by the distances between correspond-
ing points in the space. In addition to the two afore-
mentioned similarity spatial representational model, 
two graphical visualization models have been used: 
the additive trees in fig 5-d and the ultrametric tree in 
fig 5.e. Analogously, objects that fit in the same 
category are attached together to the same internal 
node of the graph, and the dissimilarity is represented 
by the length of the shortest path that joints the repre-
sentative points of the objects. Due to such differen-
tiation, robust pattern recognition, retrieval or case 
diagnostic and reasoning could be achieved. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As previously stated, in addition to the heterogene-

ity and imperfection, domain information constraints 
must be pondered in any recognition system. For 
instance, it is impossible to have stenosis and dilated 
light in the same esophagus (fig. 6), because these 
two lesions have different distinct nature 

( { } { } φ=∩ dilatationstenosis ). On the other 
hand, the two images of stenosis in fig. 6, have ero-
sion ulcer at the same time, i.e. 
{ } { } φ≠∩ ererosionulcstenosis  . Thus, the le-
sions that never or always come together must be 
stressed and considered to ameliorate the pattern rec-
ognition results. 

 
Generally, we assume that the classes are exclu-

sive and consequently each object is assigned to only 
one class (Shafer’s class), as we have showed in [1]. 
Nevertheless, in some cases physicians may desire to 
consider some describing attributes, neglecting the 
others in order to look for new potential diagnosis 
rules. Accordingly, two or more different lesions may 
share the same considered attributes values, allowing 
object’s descriptions to belong to several classes si-
multaneously. This issue cannot be solved in Shafer’s 
model. For that reason, we preferred to use DSm ap-
proach, which can deal with both the aforementioned 
cases, in the system output.   

 
 
 
 
 
Because of the shared values of some attributes in 

the described images, it may happen that an observed 
object has the same similarity degrees of two training 
elements that belong to different lesions, and logi-
cally, this paradox presented by the conflicting mass 
must be fairly redistributed to the conflicting pattern. 

Fig. 4. The describing attributes of two lesions (patterns) in a gastroenterology image [8]. 



This can be assured using the proportional conflict 
redistribution approach used in our system, as ex-
plained in the above numeric example (section 3). 

 
 
 
 

 
 

 
 
 
 

Fig. 5. Possibilistic similarity representational models in a gastroenterology image dataset. a) The medical 
image database, b) the circular unidimensional scaling model, c) the multidimensional scaling model, d) the 

additive tree representation, and e) the ultrametric tree representation.. 



 
Fig. 6. Two exclusive esophagus lesions (the dilatation and the 

stenosis), given as an example of information constraints [8]. 

5. Discussion and conclusion 

A general efficient technique to easily manage in-
formation challenges in pattern recognition systems 
has been proposed. The method is essentially based 
on possibility theory to deal with pattern information 
element heterogeneity and imperfection, as well as 
the proportional conflict redistribution approach, in 
order to take account of information conflict, paradox, 
and scarcity. This latest approach is applied in the 
framework of hybrid DSm model with the goal of 
pondering the information constraints and frame, 
concerning the categories in the class set, and infor-
mation updating when another constraint must be 
considered due to new knowledge elements (dynamic 
fusion). We showed also that this model can take into 
consideration information imperfection associated to 
the training set element classes, information continu-
ity linked to the class set, and information scalability 
related to the total output of the system. Despite the 
proposed method simplicity, it has been able to suc-
cessfully provide a clear insight to process, within a 
fusion framework, several complex information 
problems, commonly encountered in real practical 
databases. 

 
A corresponding simplified example has been 

given to numerically present the proposed technique, 
analyzing patterns between an observed object and 
two training patterns, permitting to easily follow the 
different steps and to interpret the results. It also fa-

cilitated the understanding of how to exploit system 
information sources, by overcoming their inherent 
limitations and problems. 

 
The applications in satellite and medical image 

recognition systems, stress the importance and con-
venience of the proposed approach, by underlying the 
needs it is intended to fulfill. In fact, the same steps 
of processing and calculation used in the numeric 
example can be applied to these applications or to 
any other domain. 
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