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Abstract—This paper presents techniques for generating or-
thogonal bases of signals with jointly optimized spectra, in the
sense that they are made as close as possible. To this end, we
propose new criteria, the minimization of which leads to signals
with close energy inside a set of prescribed subbands. We present
a first algorithm that performs this spectrum balancing and that
we apply to Walsh-Hadamard codes. As an example, we build
balanced Walsh codes in CDMA comunications. Alternatively,
we propose another way to perform spectrum balancing in two
steps and that makes use of joint diagonalization techniques.
As an example application, we show how balancing of Prolate
Spheroidal Wave Functions (PSWFs) can be used to build
orthogonal families of brief impulses with flat spectra that are of
potential interest for Ultra Wide Band (UWB) communications.

Keywords orthogonal signaling bases, spectrum balancing,
PSWF, Walsh-Hadamard, scrambling, CDMA.

I. INTRODUCTION

A few studies have been carried out to build orthogonal
signals with flat spectrum. Several of these studies are based
on the invariance property of Hadamard matrices with respect
to orthogonal transforms. In particular, [19] and [18] consider
permutations of rows of the Walsh matrix code, the codes be-
ing given by the columns of the matrix. For these methods, flat
spectrum is just a mean property, obtained when considering
average spectra over code permutations.

Alternatively, from white noise sequences with flat spectra,
orthonormality can be achieved via singular value decompo-
sition [3]. Another interesting technique that enables better
control of spectral shape consists of splitting the spectral
bandwidth of signals into a set of subbands of interest. In each
subband, the Fourier transfoms of the sequences are chosen as
orthogonal Walsh codes with fixed amplitudes [2]. Proceeding
so in each subband yields orthogonal signals in the Fourier
domain and thus in the time domain. Note however that with
these approaches the shape of the signal in the time domain
is not controlled.

In this paper we are interested in building orthogonal signals
with similar spectra that belong to some fixed vector space.
This will enable to control properties such as signals duration
or shape. We shall provide example of their interest for CDMA
and UWB communications.

In a CDMA (Code Division Multiple Access) context [21],
users transmit simultaneously and inside the same frequency
band. They are distinguished thanks to distinct signaling codes.

Often, Walsh codes are considered for multiusers spread spec-
trum communications. Walsh codes of given length show very
variable spectra and thus they fail to achieve an homogeneous
robustness of all users signaling against multipath fading
that occurs during transmission. Classicaly, users signals are
whitenned through the use of a scrambling sequence which
consists of a sequence with long period that is multiplied,
chip by chip, with users’ spread data [20]. Scrambling also
enables neighbouring base stations insulation in mobile com-
munication networks.

In radiolinks, synchronization of scrambling sequences be-
tween base stations and mobiles is not much a problem. But
it can be a problem in applications such as an acoustic under-
water CDMA communication [11], because low propagation
speed results in propagation delays that can correspond to
thousands of symbols.

In such difficult situations, we shall not consider complex
scrambling code synchronization. Rather, we propose to build
orthogonal families of codes made of spreading sequences
with flat spectra inside the sequences bandwidth. In addition,
we would like to be able to build large sets of such signaling
bases, for using distinct ones in neighbouring basestations
and/or to be able to change codes during the communications
of a given basestation, for instance for robustness against
communication interception.

In order to build such codes, starting from a given othonor-
mal code family, we propose to transform it by means of an
orthogonal transform. This orthogonal transform is built by
minimizing jointly the mean squared errors among energies
of all transformed sequences inside fixed subbands that form
a partition of the whole sequences bandwidth. Flatness will
result from spectrum averaging among the elements of the
family. We shall call this algorithm SBA (Spectral Balancing
Algorithm).

This technique enables building arbitrarily large number of
bases of spectrally balanced orthogonal codes. This is achieved
by changing the initialization of the algorithm that we describe
in the paper. In particular, distinct bases can be considered for
neighbouring bases stations in replacement of scrambling se-
quences. In addition, for a given basestation it is also possible
to change the codes family during transmission. Finally, base
station insulation , spectrum whiteness of transmitted signals
and data protection that are achieved by scrambling can also
be obtained through balanced sequences generation.
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We shall consider balancing of CDMA sequences. Without
loss of generality, balancing of CDMA codes will be stud-
ied for Walsh codes. We shall see that the corresponding
balanced sequences exhibit several nice suitable properties
such as low auto-correlation and cross-correlation peaks and
good multiuser detection BER performance in asynchronous
transmissions.

We shall also consider an alternative balancing technique.
Here the idea consists first in a joint diagonalization of a set
of matrices that yields spectrally maximaly separated spectra
of signals. Then, we recombine these signals by using binary
orthogonal weightings that can be supplied for instance by
Walsh codes. This yields approximately balanced ortogonal
signals. Two implementations of this idea that we shall refer
to as Spectral Unbalancing-Balancing Algorithm (SUBA) are
proposed and denoted by SUBA1 and SUBA2 respectively.

As an example of application, we propose to build highly
concentrated waveforms with flat spectrum. These waveforms
can be useful for example for UWB signaling where short
impulses are emitted [12]. Here, we propose building such
waveforms from a set of Prolate Spheroidal Wave Functions
(PSWFs) [17], [16].

The remainder of the paper is organized as follows. In
section II, we show how energies of an orthogonal family of
signals can be equalized simultaneously over a set of frequency
subintervals thanks to an orthogonal matrix transform, preserv-
ing thus orthogonality of transformed signals. This matrix is
obtained through an iterative minimizing algorithm. In section
III, we consider Walsh codes balancing. Simulations show
that spectrum whitenning achieved by balancing yields good
correlation properties of balanced sequences, resulting thus in
improved performance of multiuser asynchronous communi-
cations. In section IV, the alternative SUBA algorithms are
presented and an example of short signals with flat spectra is
supplied.

II. SPECTRUM BALANCING OF AN ORTHONORMAL FAMILY
OF SIGNALS

In this section, we present an orthogonal transform that
enables transforming an orthonormal family of signals into
another orthonormal family, the elements of which have about
the same energy in prescribed frequency intervals. It was
introduced first in [7] for energy balancing in a single interval
and in [8] for its generalization to jointly equalize energies of
a set of signals in a prescribed set of frequency intervals.

Let us denote by v1, . . . ,vL an initial family of sampled
orthonormal signals, with vn = (vn1, . . . ,vnN )T . The energy
of vn inside a given frequency interval, say B = [f1, f2], is

given by

EB(vn) =
∫ f2

f1

|
N∑
a=1

vnae−2iπfa|2df

=
N∑

a,b=1

vnav∗nbe
iπ(f1+f2)(b−a)

× sinπ(f2 − f1)(b− a)
π(b− a)

,

=
∑N
a,b=1 vnav∗nbS

B
ba,

(1)

where SB is the matrix with general term SBba =
eiπ(f1+f2)(b−a) sin(π(f2 − f1)(b− a))/(π(b− a)).

Considering Eq. (1), we define a set of matrices
{Sk}k=0,K−1 associated with a partition {Bk}k=0,K−1 of the
frequency support of signals. For real valued signals, spectra
are even functions, letting [−KF,KF ] denote the bandwidth
of signals v1, . . . ,vL, we can take frequency subbands in the
form

Bk = [(−k − 1)F, (−k + 1)F ] ∪ [(k − 1)F, (k + 1)F ]. (2)

Then, corresponding matrices Sk are written as

S0
ab =

sin 2πF (a− b)
π(a− b)

,

and, for k = 1, . . . ,K − 1,

Skab = 2 cos(2πkF (a− b))× sin 2πF (a− b)
π(a− b)

,

(3)

where Skab is a compact form for [Sk]ab. Although extension to
the complex case is straightforward, for this paper we restrict
ourself to the case of real valued signals.

A. Balancing algorithm

We shall denote by U the orthogonal transform applied
to the signals matrix V = [v1, . . . ,vL] and we shall note
Mk = UT (VTSkV)U, for k = 0, . . . ,K − 1. Diagonal
entries of Mk represent the energies of the signals given by the
columns of the matrix VU that lie inside Bk. Our goal is to
build a matrix U such that the diagonal parts of all matrices
(Mk)k=0,...,K−1 become as close as possible. This will be
achieved by successive updatings of U by means of Givens
rotations. The update U → URab(θ)T of U amounts to the
update Mk → Rab(θ)MkRab(θ)T of Mk. In order to jointly
equalize diagonal terms of Mk, we can choose θ such that it
is a solution of the following minimization problem:

θ = arg minφ
∑K−1
k=0 |[Rab(φ)TMkRab(φ)]aa

− [Rab(φ)TMkRab(φ)]bb|2,
(4)

the minimum of which is of the form

θ =
1

4
arctan

(
2
∑K−1

k=0 (Mk
ab + Mk

ba)(Mk
aa −Mk

bb)∑K−1
k=0 (Mk

ab + Mk
ba)2 − (Mk

aa −Mk
bb)

2

)
+
nπ

4
,

(5)
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where n = 0, 1, 2 or 3. The optimum value for n can be
obtained by checking which of the four possible values 0, 1,
2 or 3 achieves the minimum. In practice, it appears that after
a few rotation updates the optimum n is always 0, because
θ becomes small. It can be checked that taking n = 0 at
any iteration of the algorithm does not modify significantly
its behavior. Thus, for the sake of simplicity we assume that
it is always 0.

On another hand, we have checked that the term (Mk
aa −

Mk
bb)

2 in the denominator of the arctan(.) function in Eq.
(5) is a source of unstability. Since it should become close
to zero at convergence (Mk

aa ≈ Mk
bb), we set it to 0 from

the beginning of the algorithm. Then we obtain a spectrum
balancing algorithm that is summarized in Table II. We shall
cal it Spectral Balancing Algorithm (SBA). One can observe
that this algorithm resorts to ideas quite similar to those
developed for joint diagonalization of matrices [5], [1].

TABLE I
SBA (SPECTRAL BALANCING ALGORITHM).

- Set U = U0 with UT
0 U0 = I,

Mk = UT (VT SkV)U, M−
k = 0 (k = 0, . . . ,K − 1

- Iterations:
while

∑K−1
k=0 ‖Mk −M−

k ‖≥ ε, (ε� 1)

M−
k = Mk, (k = 0, . . . ,K − 1)

loop a = 1→ L− 1
loop b = a+ 1→ L

θ =
1

4
arctan

(
2
∑K−1

k=0 (Mk
ab + Mk

ba)(Mk
aa −Mk

bb)∑K−1
k=0 (Mk

ab + Mk
ba)2

)
Mk = R(a,b)(θ) Mk R(a,b)(−θ), (k = 0, . . . ,K − 1)
U = U R(a,b)(−θ)

end loop b
and loop a

end while
W = VU,

III. WALSH CODES BALANCING

It is sometimes interesting to be able to control the vector
space the generated sequences lie in. In particular, CDMA
systems employ chip-shaped sequences. This structure has
given rise to specific processing techniques. For instance,
in downlink CDMA systems, the emitted signal is made of
multi-user chip symbols shaped by the chip waveform at
the transmitter output. At the receiver side, chip rate MMSE
(Minimum Mean Square Error) equalizers are an efficient tool
for downlink CDMA receivers that exploit this data structure
[13]. Clearly, chip level equalization cannot be considered for
continuously varying signalings such as those considered in
[3] and [2]. This motivates our search for sequences defined
at the chip rate.

Since we are looking for signals that are constant over chip
intervals, a natural approach is to search for them in the space
spanned by the orthogonal Walsh-Hadamard basis. Then, if
the sampled signals of this basis are given columnwise in a
matrix form, any new orthogonal basis of the vector space is
achieved by applying an orthogonal matrix transform on the
right hand side. Note that methods in [19] and [18], discussed
in the introduction, apply matrix permutations on the left hand
side of the matrix of code sequences.

A. Spectral balancing of Walsh sequences

We illustrate Walsh codes spectral balancing with length 8
and 32 in Fig. 1 and 2 respectively. In Fig. 1 and in 2, spectrum
balancing is searched over K = 8 and K = 32 subbands
respectively and codes of lengths 8 and 32 chips respectively.
In Fig. 2, only 8 randomly chosen codes are plotted among
the 32 codes of length 32. Code vectors are sampled with 8
samples per chip. Convergence is achieved after one hundred
to several hundred iterations of the main loop of the algorithm.
Fig. 3 has been obtained when balancing Walsh codes of length
256 over K = 256 frequency intervals, showing thus that long
spreading sequences can be produced by the algorithm.

Fig. 1. (a) Walsh codes of length 8 (b) corresponding spectra (c) spectrally
balanced codes (d) spectra of balanced codes.

Fig. 2. (a) Walsh codes of length 32 (b) corresponding spectra (c) spectrally
balanced codes (d) spectra of balanced codes.

B. Correlation and cross-correlation of sequences

Correlation and cross-correlation properties of codes dictate
the performance of a multiuser communication system at
high SNR [6]. For simple receivers based on single user
matched filter, correlation properties are important in particular
for receiver synchronization, while in asynchronous systems
cross-correlations of codes limits performance. Thus, we are
going to consider these properties and compare them between
Walsh codes and balanced codes.

Balanced sequences appear to have useful correlation prop-
erties. This is illustrated in Fig. 4. The two first subfigures
on the first line in Fig. 4 show superimposed correlation
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Fig. 3. (a) spectra of a few Walsh codes of length 256 (b) spectrally balanced
codes (c) spectra of balanced codes.

functions of the 32 Walsh and balanced codes respectively.
Clearly, balanced codes have good autocorrelation properties.
In particular, correlation coefficients around the main peak
are close to zero. This is an interesting property for CDMA
communications, for instance for multipath detection and
estimation, but also for using such codes in applications such
as synchronization or localization with radars or positioning
systems [14].

Since Walsh codes have high correlation sidelobes and high
cross-correlation level, we also made a comparison with brute
force codes considered in [15]. These codes are obtained
by means of an exhaustive search algorithm among codes
with good cross-correlation properties. Fig. 4 shows that these
codes achieve quite poor correlation performance, even when
removing the constant code autocorrelation (the one with
triangular shape).

As far as cross correlations are considered, the second line in
Fig. 4 shows that both balanced and brute force codes achieve
good performance, unlike Walsh codes.

Finally, above results advocate in favor of multilevel bal-
anced codes that can achieve higher correlation performance,
at the expense of relaxation of the constant amplitude property.

Fig. 4. Superimposed correlations (up) and cross-correlations (down) of
Walsh, balanced and brute force codes.

C. Asynchronous transmission

Let us now consider an asynchronous transmissions with the
above families of codes and simple matched-filter detection.

Transmission on an AWGN (additive white gaussian noise)
in the presence of 2 users are presented for Walsh, balanced
and brute force codes in Fig. 5. Clearly, balanced and brute
force codes achieve similar performance while Walsh codes
perform poorly at high SNR. The stars in Fig. 5 represent the
performance lower bound for matched filter detectors under
the standard Gaussian asumption of interference [6] while the
lower curve is the single user performance bound. We see that
both balanced and brute force codes reach the bound, proving
thus their optimality in terms of the level of interference.
Another example is supplied in Fig. 6 for codes of length
256 and 32 users. For this code length, brute force codes are
not available in [15]. Balanced codes still show performance
closer to the interference lower bound than Walsh codes.

Of course, for a fixed spreading code length, the matched
filter receiver performs worse as the number of interfering
users increases and decorrelator or MMSE detectors would
lead to improved BER curves [21]. However, here we only
considered the simpler matched filter receiver to focus on code
properties rather than on receiver performance.

Fig. 5. Asynchronous transmission with Walsh, balanced and brute force
codes. Code length = 32 and 2 users. Lower curve: single user BER; Stars:
2 users interference lower bound.

Fig. 6. Asynchronous transmission with Walsh and balanced codes. Code
length = 256 and 32 users. Lower curve: single user BER; Stars: 32 users
interference lower bound.
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IV. AN ALTERNATIVE BALANCING ALGORITHM

A. Maximal unbalancing

In the previous section, we have looked for spectrally maxi-
maly balanced families of signals. Now, we are going to study
this problem via an opposite approach consisting in looking
to maximaly unbalanced families of signals. This amounts to
performing orthogonal transformation of an orthogonal family
of vectors that represents initial signals in such way that the
new signals have spectral supports as distinct as possible.

Letting as above Mk = UT (VTSkV)U and defining Z =
VU, maximum concentration of the energy of the kth column
of Z inside the kth subband amounts to maximizing the energy
of [Mk]kk. Jointly maximizing these matrix entries leads to
the following optimization problem :{

maxU

∑K
k=1[Mk]kk

UTU = I.
(6)

Proceeding as in the previous section, we can maximize
iteravely the criterion by solving the optimization problem
over rotations in two-dimensional subspaces with entries (a, b)
and letting U→ URab(θ)T , where Rab(θ)T is the optimum
rotation. One can check that for Rab(θ) the angle should now
be of the form

θ = −1
2

arctan
(

2([Ma]ab − [Mb]ba)
([Mb]aa − [Ma]aa)− ([Mb]bb − [Ma]bb)

)
.

(7)
We shall call this procedure Spectral Unbalancing Algorithm
(SUA).

The result of this procedure is to supply orthogonal signals
with spectral supports as much distinct as possible. Going
back to our initial problem that amounts to build orthogonal
families with balanced spectra, we can benefit from the fact
that maximaly unbalanced signals in Z have roughly disjoint
spectra that cover the bandwidth spanned by the columns
of V. Denoting by H an N × N orthogonal matrix with
entries ±1, such as the Walsh-Hadamard orthogonal matrix,
and W = ZH, then, from the properties of Z and H, the
columns of W are orthogonal and should have spectra with
close amplitude. All this can be summarized in the procedure
summerized in Table II and named spectral unbalancing-
balancing algorithm (SUBA1).

TABLE II
1 ALGORITHM.

- Set U = U0 with UT
0 U0 = I,

Mk = UT (VT SkV)U, M−
k = 0 (k = 0, . . . ,K − 1

- Iterations:
while

∑K−1
k=0 [Mk −M−

k ]2kk ≥ ε, (ε� 1)

M−
k = Mk, (k = 0, . . . ,K − 1)

loop a = 1→ L− 1
loop b = a+ 1→ L

θ = −
1

2
arctan

(
2([Ma]ab − [Mb]ba)

([Mb]aa − [Ma]aa)− ([Mb]bb − [Ma]bb)

)
Mk = R(a,b)(θ) Mk R(a,b)(−θ), (k = 0, . . . ,K − 1)
U = U R(a,b)(−θ)

end loop b
and loop a

end while
W = VUH.

Alternatively, we have defined a procedure called SUBA2
that differs from SUBA in the construction of matrix Z.
The matrices Sk can be seen as matrices of correlation
coefficients associated to spectra equal to the index functions
of the corresponding frequency intervals Bk. Thus, from
Whittle’s approximation, the eigenmatrix of all the matrices
Sk is approximately the discrete Fourier transform matrix. In
addition, corresponding eigenvalues of Sk are approximately
1 or 0 depending on whether the frequency of the Fourier
approximate eigenvector is in Bk or not. This suggests that
performing the approximate joint diagonalization of matrices
Mk should lead to eigenvectors with roughly disjoint spectra.
Finally, SUBA2 can be summarized as follows:

TABLE III
SUBA2 ALGORITHM.

- Compute Q, the matrix of joint approximate
eigenvectors of matrices Tk (k = 0, . . . ,K − 1)
- W = VQH.

In practice, the joint eigenvalue decomposition can be
achieved by any standard algorithm. In the simulation part,
we have applied the algorithm in [10], that can be found on
the web [4]. We have checked on examples that as N increases
SUBA2 performs better than SUBA1. In addition, one should
note that the number K of frequency intervals must be set to N
with SUBA1, while it can be chosen differently with SUBA2,
although this has little effect on balancing performance.

B. Example
One may look for signaling functions basis that concentrate

all their energy within frequency interval [−F, F ] and with
most of their energy concentrated in a time interval of length
T . The solution of this problem is supplied by Slepians’s
prolate spheroidal wave functions (PSWFs) basis [17] that
consists in a family of orthogonal functions that are solutions
of the following integral equation∫ T/2

−T/2

sin(πF (t− t′))
π(t− t′)

v(t)dt = λv(t). (8)

Spectrum balancing of Slepian sequences or PSWFs can
be of interest in Ultra Wide Band (UWB) communications.
Indeed, in UWB, M-ary pulse shape modulation has been
proposed and it can be achieved with orthogonal signals
such as PSWFs [12]. The spectra of Slepian sequences or
PSWFs are slightly shifted upward as order increases. Instead,
spectrally balanced pulses have spectra that better occupy the
whole bandwidth.

More generally, spectrum balancing could be considered for
other UWB orthogonal pulses, such as Gaussian, Hermite or
Legendre functions, where elements of the family of increas-
ing order tend to have spectra with energy concentrated at
increasing frequencies [9].

In fig. 7, maximum unbalancing of N = 8 PSWFs obtained
with SUBA1 and SUBA2 respectively are presented. energy
concentration in contiguous subbintervals appears clearly in
both cases as well as the bandlimited property of the whole
set of unbalanced sequences.
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Fig. 7. Spectrum unbalancing of first 8 PSFWs. The spectra of 4 randomly
chosen sequences obtained by SUBA1 (left) and SUBA2 (right) are presented.

The second unbalancing procedure yields more regular spec-
tra. For this procedure, SUBA2 algorithm yields the signals
and spectra in fig. 8 that show optimal time concentration and
flat spectra in the bandwidth.

Fig. 8. Balancing of first 8 PSFWs with SUBA2: signals (up) and spectra
(down).

V. CONCLUSION

We have proposed general purpose procedures for deriving
spectrally balanced bases of signals in a given signal subspace,
approximated as a subspace of RN . As an example, we
have shown how it is possible to build efficient signalization
sequences for CDMA multiuser communications that show
performance similar in terms of BER to brute force optimized
binary sequences. Large numbers of such families of codes can
be built thanks to the relaxation upon the constant amplitude
constraint. Clearly using such balanced signals in applications

such as synchronization or for designing radar waveforms is
promising, due in particular to useful correlation properties
and the wide variety of waveforms that can be generated.
We have also proposed alternative algorithms for spectral
balancing of an orthogonal family of signals via maximum
spectral unbalancing as an intermediate step. We have shown
how bandlimited signals with flat spectra and short duration
can be built from this approach.
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