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Abstract. Inter-block backtracking (IBB) computes all the solutions of
sparse systems of non-linear equations over the reals. This algorithm, in-
troduced in 1998 by Bliek et al., handles a system of equations previously
decomposed into a set of (small) k×k sub-systems, called blocks. Partial
solutions are computed in the different blocks and combined together to
obtain the set of global solutions.
When solutions inside blocks are computed with interval-based tech-
niques, IBB can be viewed as a new interval-based algorithm for solv-
ing decomposed equation systems. Previous implementations used Ilog
Solver and its IlcInterval library. The fact that this interval-based
solver was more or less a black box implied several strong limitations.
The new results described in this paper come from the integration of IBB
with the interval-based library developed by the second author. This
new library allows IBB to become reliable (no solution is lost) while
still gaining several orders of magnitude w.r.t. solving the whole system.
We compare several variants of IBB on a sample of benchmarks, which
allows us to better understand the behavior of IBB. The main conclusion
is that the use of an interval Newton operator inside blocks has the
most positive impact on the robustness and performance of IBB. This
modifies the influence of other features, such as intelligent backtracking
and filtering strategies.

Keywords: intervals, decomposition, solving sparse systems

1 Introduction

Interval techniques are promising methods to compute all the solutions of a
system of non-linear constraints over the reals. They are general-purpose and
become more and more efficient. They have an increasing impact in several
domains such as robotics [21] and robust control [12]. However, it is acknowledged
that systems with hundreds (sometimes tens) non-linear constraints cannot be
tackled in practice.

In several applications made of non linear constraints, systems are sufficiently
sparse to be decomposed by equational or geometric techniques. CAD, scene
reconstruction with geometric constraints [23], molecular biology and robotics
represent such promising application fields. Different techniques can be used
to decompose such systems into k × k blocks. Equational decomposition tech-
niques work on the constraint graph made of variables and equations [2, 15]. The
simplest equational decomposition method computes a maximum matching of



the constraint graph. The strongly connected components (i.e., the cycles) yield
the different blocks, and a kind of triangular form is obtained for the system.
When equations model geometric constraints, more sophisticated geometric de-
composition techniques generally produce smaller blocks. They work directly on
a geometric view of the entities and use a rigidity property [13, 10, 15].

Once the decomposition has been obtained, the different blocks must be
solved in sequence. An original approach of this type has been introduced in
1998 [2] and improved in 2003 [14]. Inter-Block Backtracking (IBB) follows the
partial order between blocks yielded by the decomposition, and calls a solver to
compute the solutions in every block. IBB combines the obtained partial solutions
to build the solutions of the problem.

Contributions

The new results described in this paper come from the integration of IBB with
our own interval-based library.

– This new library allows IBB to become reliable (no solution is lost) while
still gaining several orders of magnitude w.r.t. solving the whole system.

– An extensive comparison on a sample of CSPs allows us to better understand
the behavior of IBB and its interaction with interval analysis.

– The use of an interval Newton operator inside blocks has the most positive
impact on the robustness and performance of IBB. Interval Newton modifies
the influence of other features, such as intelligent backtracking and filtering
on the whole system (inter-block interval filtering – IBF).

2 Assumptions

We assume that the systems have a finite set of solutions. This condition also
holds on every sub-system (block), which allows IBB to combine together a finite
set of partial solutions. Usually, to produce a finite set of solutions, a system
must contain as many equations as variables. In practice, the problems that can
be decomposed are under-constrained and have more variables than equations.
However, in existing applications, the problem is made square by assigning an
initial value to a subset of variables called input parameters. The values of input
parameters may be given by the user (e.g., in robotics, the degrees of freedom,
determined during the design of the robot, serve to pilot it), read on a sketch,
or are given by a preliminary process (e.g., in scene reconstruction [23]).

3 Description of IBB

IBB works on a Directed Acyclic Graph of blocks (in short DAG) produced
by any decomposition technique. A block i is a sub-system containing equations
and variables. Some variables in i, called input variables (or parameters),
are replaced by values when the block is solved. The other variables are called
(output) variables. There exists an arc from a block i to a block j iff an
equation in j involves at least one input variable assigned to a “value” in i.
The block i is called parent of j. The DAG implies a partial order in the solving
process.



3.1 Example

To illustrate the principle of IBB, we take the 2D mechanical configuration ex-
ample introduced in [2] (see Fig. 1). Various points (white circles) are connected
with rigid rods (lines). Rods impose a distance constraint between two points.
Point h (black circle) is attached to the rod 〈g, i〉. The distance from h to i is
one third of the distance from g to i. Finally, point d is constrained to slide on
the specified line. The problem is to find a feasible configuration of the points so
that all constraints are satisfied. An equational decomposition method produces
the DAG shown in Fig. 1-right. Points a, c and j constitute the input parameters
(see Section 2).
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Fig. 1. Didactic problem and its DAG.

3.2 Description of IBB[BT]

The algorithm IBB[BT] is a simple version of IBB based on a chronological
backtracking (BT). It uses several arrays:

– solutions[i,j] is the jth solution of block i.
– #sols[i] is the number of solutions in block i.
– solIndex[i] is the index of the current solution in block i (between 0 and

#sols[i] −1).
– assignment[v] is the current value assigned to variable v.

Respecting the order of the DAG, IBB[BT] follows one of the induced to-
tal orders, yielded by the list blocks. The blocks are solved one by one. The
procedure BlockSolve computes the solutions of blocks[i]. It stores them in
solutions and computes #sols[i], the number of solutions in block i. The
found solutions are assigned to block i in a combinatorial way. (The procedure
assignBlock instantiates the variables in the block: it updates assignmentwith
the values given by solutions [i, solIndex[i] ].) The process continues re-
cursively in the next block i + 1 until a solution for the last block is found: the
values in assignment are then stored by the procedure storeTotalSolution.
Of course, when a block has no (more) solution, one has to backtrack, i.e., the
next solution of block i − 1 is chosen, if any.

The reader should notice a significant difference between IBB[BT] and the
chronological backtracking schema used in finite CSPs. The domains of variables



in a CSP are static, whereas the set of solutions of a given block may change
every time it is solved. Indeed, the system of equations itself may change from a
call to another because the input variables, i.e., the parameters of the equation
system, may change. This explains the use of the variable recompute set to true
when the algorithm goes to a block downstream.

Algorithm IBB[BT] (blocks: a list of blocks, #blocks: the number of blocks)
i ← 1
recompute ← true
while i ≥ 1 do

if recompute then
BlockSolve (blocks, i, solutions, #sols)
solIndex[i] ← 0

end
if solIndex[i] ≥ #sols[i] /* all solutions of block i have been explored */ then

i ← i − 1
recompute ← false

else
/* solutions [i, solIndex[i] ] is assigned to block i */
assignBlock (i, solIndex[i], solutions, assignment)
solIndex[i] ← solIndex[i] +1
if (i == #blocks) /* total solution found */ then

storeTotalSolution (assignment)

else
i ← i + 1
recompute← true

end

end

end

end.

Let us emphasize this point on the didactic example. IBB[BT] follows one
total order, e.g., block 1, then 2, 3, 4, and finally 5. Calling BlockSolve on block
1 yields two solutions for xb. When one replaces xb by one of its two values in
the equations of subsequent blocks (2 and 3), these equations have a different
coefficient xb. Block 2 must thus be solved twice, and with different equations,
in case of backtracking, one for each value of xb.

3.3 BlockSolve with interval-based techniques

IBB can be used with any type of solver able to compute all the solutions of a
system of equations (over the real numbers). In a long term, we intend to use
IBB for solving systems of geometric constraints in CAD applications. In such
applications, certain blocks will be solved by interval techniques while others,
corresponding to theorems of geometry, will be solved by parametric hard-coded
procedures obtained (off-line) by symbolic computation. In this paper, we con-
sider only interval-based solving techniques, and thus view IBB as an interval-
based algorithm for solving decomposed systems of equations.

We present here a brief introduction of the most common operators used to
solve a system of equations. The underlying principles have been developed in
interval analysis and in constraint programming communities.

The whole system of equations, as well as the different blocks in the decom-
position, are viewed as numeric CSPs.



Definition 1 A numeric CSP P = (X, C, B) contains a set of constraints C

and a set X of n variables. Every variable xi ∈ X can take a real value in the
interval xi (B = x1× ...×xn). A solution of P is an assignment of the variables
in V such that all the constraints in C are satisfied.

The n-set of intervals B can be represented by an n-dimensional paral-
lelepiped called box. Because real numbers cannot be represented in computer
architectures, the bounds of xi are floating-point numbers. A solving process
reduces the initial box until a very small box is obtained. Such a box is called
an atomic box in this paper. In theory, an interval could be composed by two
consecutive floats in the end. In practice, the process is interrupted when all
the intervals have a width less than w1, where w1 is a user-defined parameter.
It is worthwhile noting that an atomic box does not necessarily contain a so-
lution. Indeed, evaluating an equation with interval arithmetic may prove that
the equation has no solution (when the image of the corresponding box does
not contain 0), but cannot assert that there exists a solution in the box. How-
ever, several operators from interval analysis can often certify that there exists
a solution inside an atomic box.

Our interval-based solver uses interval-based operators to handle the blocks
(BlockSolve). In the most sophisticated variant of IBB, the following three steps
are iteratively performed. The process stops when an atomic box of size less than
w1 is obtained.

1. Bisection: One variable is chosen and its domain is split into two inter-
vals (the box is split along one of its dimensions). This yields two smaller
sub-CSPs which are handled in sequence. This makes the solving process
combinatorial.

2. Filtering/propagation: Local information is used on constraints handled in-
dividually to reduce the current box. If the current box becomes empty, the
corresponding branch (with no solution) in the search tree is cut [19, 9, 17].

3. Interval analysis/unicity test: Such operators use the first and/or second
derivatives of equations. They produce a “global” filtering on the current
box. If additional conditions are fulfilled, they may ensure that a unique
solution exists inside the box, thus avoiding further bisection steps.

Filtering/propagation

Propagation is performed by an AC3-like fix-point algorithm. Several types of
filtering operators reduce the bounds of intervals (no gap is created in the cur-
rent box). The 2B-consistency (also known as Hull-consistency - HC) and the
Box-consistency [9] algorithms both consider one constraint at a time (like
AC3) and reduce the bounds of the implied variables. Box-consistency uses
an iterative process to reduce the bounds while 2B-consistency uses projec-
tion functions. The more expensive job performed by Box-consistency may
pay when the equations contain several occurrences of a same variable. This
is not the case with our benchmarks mostly made of equations modeling dis-
tances between 2D or 3D points, and of other geometric constraints. Hence,
Box-consistency has been discarded. The 3B-consistency [19] algorithm uses



2B-consistency as sub-routine and a refutation principle (shaving; similar to
the Singleton Arc Consistency [5] in finite domains CSPs) to reduce the bounds
of every variable iteratively. On the tested benchmarks our experiments have
led us to use the 2B-consistency operator (and sometimes 3B-consistency)
combined with an interval Newton.

Interval analysis

We have implemented in our library two operators: the Krawczyck operator and
the interval Newton (I-Newton) operator [22]. Both use an iterative numerical
process, based on the first derivatives of equations, and extended to intervals.
Without detailing these algorithms, it is worth understanding the output of
I-Newton. Applied to a box B0, I-Newton provides three possible answers:
1. When the jacobian matrix is not strongly regular, the process is immediatly

interrupted and B0 is not reduced [22]. This necessarily occurs when B0

contains several solutions. Otherwise, different iterations modifies the current
box Bi to Bi+1.

2. When Bi+1 exceeds Bi in at least one dimension, Bi+1 is intersected with Bi

before the next iteration. No existence or unicity property can be guaranteed.
3. When the box Bi+1 is included or equal to Bi, then Bi+1 is guaranteed to

contain a unique solution (existence and unicity test).

In the last case, when a unique solution has been detected, the convergence
onto an atomic box of width w1 in the subsequent iterations is very fast, i.e.,
quadratic. Moreover, the width of the obtained atomic box is often very small
(even less than w1), which highlights the significant reduction obtained in the
last iteration (see Section 7.2).

Interval techniques and block solving

Let us stress a characteristic of the equation systems corresponding to blocks
when they are solved by interval-based techniques: the equations contain coef-
ficients that are not scalar but (small) intervals. Indeed, the solutions obtained
in a given block are atomic boxes and become parameters in subsequent blocks.
For example, the two possible values for xb in block 1 are replaced by atomic
boxes in block 2. This characterictic has several consequences.

The precision sometimes decreases as long as blocks are solved in sequence. A
simple example is the a 1×1 block x2 = p where the parameter p is [0, 10−10]. Due
to interval arithmetics, solving the block yields a coarser interval [−10−5, 10−5]
for x. Of course, these pathological cases related to the proximity to 0, occur
occasionnally and, as discussed above, interval analysis renders the problem more
seldom by sometimes producing tiny atomic boxes.

The second consequence is that it has no sense to talk about a unique solution
when the parameters are not scalar and can thus take an infinite set of possible
real values. Fortunately, the unicity test of I-Newton still holds. Generalizing
the unicity test to non scalar parameters has the following meaning: if one takes
any scalar real value in the interval of every parameter, it is ensured that exactly
one point inside the atomic box found is a solution. Of course, this point changes
according to the chosen scalar values. Although this proposition has not been
published (to our knowledge), this is straightforward to extend the “scalar” proof
to systems in which the parameters are intervals.



Remark. In the old version using the IlcInterval library of Ilog Solver, the
unicity test was closely associated to the Box-consistency. It made difficult to
understand why mixing Box and 2B was fruitful. An interesting consequence of
the integration of our interval-based solver in IBB is that we now know that it
was not due to the Box-consistency itself, but related to the unicity test that
avoids bisection steps in the bottom of the search tree, and to the use of the
centered form of the equations that produces additional pruning.

4 Variants of IBB

Since 1998, several variants of IBB have been tested [2, 14]. In particular, sophis-
ticated versions have been designed to exploit the partial order between blocks.
Indeed, IBB[BT] uses only the total order between blocks and forgets the actual
dependencies between them. Figure 1-right shows an example. Suppose block 5
had no solution. Chronological backtracking would go back to block 4, find a
different solution for it, and solve block 5 again. Clearly, the same failure will be
encountered again in block 5.

It is explained in [2] that the Conflict-based Backjumping and Dynamic back-
tracking schemes cannot be used to take into account the structure given by the
DAG. Therefore, an intelligent backtracking, called IBB[GPB], was introduced,
based on the partial order backtracking [20, 2]. In 2003, we have also proposed
a simpler variant IBB[GBJ] [14] based on the Graph-based BackJumping (GBJ)
proposed by Dechter [6].

4.1 The recompute condition

In addition to intelligent backtracking schemes mentioned above, there is an
even simpler way to exploit the partial order yielded by the DAG of blocks: the
recompute condition. This condition states that it is useless to recompute the
solutions of a block with BlockSolve if the parent variables have not changed.
In that case, IBB can reuse the solutions computed the last time the block has
been handled. In other words, when handling the next block i + 1, the variable
recompute is not always set to true. This condition has been implemented in
IBB[GBJ] and in IBB[BT]. In the latter case, the variant is named IBB[BT+].

Let us illustrate how IBB[BT+] works on the didactic example. Suppose that
the first solution of block 3 has been selected, and that the solving of block 4 has
led to no solution. IBB[BT+] then backtracks on block 3 and the second position
of point f is selected. When IBB[BT+] goes down again to block 4, that block
should normally be recomputed from scratch due to the modification of f . But
xf and yf are not implied in equations of block 4, so that the two solutions of
block 4, which had been previously computed, can be reused. It is easy to avoid
this useless computation by using the DAG: when IBB goes down to block 4, it
checks that the parent variables xe and ye have not changed.

4.2 Inter-block filtering (IBF)

Inter-block filtering (in short IBF) can be incorporated into any variant of IBB
using an interval-based solver. The principle of IBF is the following. Instead of
limiting the filtering process to the current block i, we have extended the scope



of filtering to all the variables. More precisely, before solving a block i, one forms
a subsystem extracted from the friend blocks F ′i of block i:

1. take the set Fi = {i...#blocks} containing the blocks not yet “instantiated”,
2. keep in F ′i only the blocks in Fi that are connected to i in the DAG1.

IBF is integrated into IBB in the following way. When a bisection is applied
in a given block i, the filtering operators described above, i.e., 2B and I-Newton,
are first called inside the block. Second, IBF is launched on friend blocks of i.

To illustrate IBF, let us consider the DAG of the didactic example. When
block 1 is solved, all the other blocks are considered by IBF since they are
all connected to block 1. Any interval reduction in block 1 can thus possibly
perform a reduction for any variable of the system. When block 2 is solved, a
reduction has potentially an influence on blocks 3, 4, 5 for the same reasons.
(Notice that block 3 is a friend block of block 2 that is not downstream to block
2 in the DAG.) When block 3 is solved, a reduction can have an influence only
on block 5. Indeed, once blocks 1 and 2 have been removed (because they are
“instantiated”), block 3 and 4 do not belong anymore to the same connected
component. Hence, no propagation can reach block 4 since the parent variables
of block 5, which belong to block 2, have an interval of width at most w1 and
thus cannot be reduced further.

IBF implements only a local filtering on the friend blocks, e.g., 2B-consis-
tency on the tested benchmarks. It turns out that I-Newton is counterproductive
in IBF. First, it is expensive to compute the jacobian matrix of the whole system.
More significantly, it is likely that I-Newton does not prune at all the search space
(except when handling the last block) because it always falls in the singular case.
As a rule of thumb, if the domain of one variable x in the last block contains
two solutions, then the whole system will contain at least two solutions until x

is bisected. This prevents I-Newton from pruning the search space.
The experiments confirm that it is always fruitful to perform a sophisticated

filtering process inside blocks, whereas IBF (on the whole system) produces
sometimes, but not always, additional gains in performance.

4.3 Mixing IBF and the recompute condition

Incorporating IBF into IBB[BT] is straightforward. This is not the case for the
other variants of IBB. Reference [14] gives guidelines for the integration of IBF
into IBB[GBJ]. More generally, IBF adds in a sense some edges between blocks.
It renders the system less sparse and complexifies the recomputation condition.
Indeed, when IBF is launched, the parent blocks of a given block i are not the
only exterior cause of interval reductions inside i. The friend blocks of i have an
influence as well and must be taken into account.

For this reason, when IBF is performed, the recompute condition is more
often true. Since the causes of interval reductions are more numerous, it is more

1 The orientation of the DAG is forgotten at this step, that is, the arcs of the DAG are
transformed into non-directed edges, so that the filtering can also be applied on
friend blocks that are not directly linked to block i.



seldom the case that all of them have not changed. This will explain for in-
stance why the gain in performance of IBB[BT+] relatively to IBB[BT] is more
significant than the gain of IBB[BT+,IBF] relatively to IBB[BT,IBF].

4.4 Two implementations of IBB

A simple variant of IBB, called BB, is directly implemented in our interval-based
solver. BB handles the entire system of equations as a numeric CSP, and uses
a bisection heuristics based on blocks. The heuristics can only choose the next
variable to be split inside the current block i. The specific variable inside the
block i is chosen with a standard round robin strategy. Since a total solution is
computed with a depth-first search in a standard interval-based solving, the re-
compute condition cannot be incorporated. Subsystems corresponding to blocks
must be created to prune inside the blocks. Filtering on the whole system im-
plements IBF in a simple way and produces the BB[BT,IBF] version. Otherwise
we get the simple BB[BT] version.

It appears that BB is not robust against the multiple solutions problem
that often occurs in practice. With interval solving, multiple solutions occur
when several atomic boxes are close to each other: only one of them contains a
solution and the others are not discarded by filtering. Even when the number
of multiple solutions is small, BB explodes because of the multiplicative effect
of the blocks (the multiple partial solutions are combined together). In order
that this problem occurs more rarely, one can reduce the precision (i.e., enlarge
w1) or mix several filtering techniques together. The use of interval analysis
operators like I-Newton is also a right way to fix most of the pathological cases
(see experiments).

Our second implementation, called IBB, does not explode because it takes the
union of the multiple solutions (i.e., the hull of the solutions). IBB considers the
different blocks separetely, so that all the solutions of a block can be computed
before solving the next one. This allows IBB to merge multiple solutions to-
gether. This implementation is completely independent from the interval-based
solver and allows more freedom in the creation of new variants (those with the
prefix IBB in their name). Intelligent backtracking schemes and the recompute
condition can be incorporated. However, as compared to BB, a slight overcost is
sometimes caused by the explicit management of the friend blocks. Note that
the previous implementations of IBB might lose some solutions because only one
of the multiple partial solutions inside blocks was selected (i.e., no hull was per-
formed) and might lead to a failure in the end when the selected atomic box did
not contain a solution.

5 New contributions

The integration of our interval-based solver underlies three types of improve-
ments of IBB. As previously mentioned, using a white box allows us to better
understand what happens. Second, IBB is now reliable. The multiple solutions
problem has been handled and an ancient midpoint heuristics is now aban-
doned. This heuristics replaced every parameter, i.e., input variable, of a block
by a floating-point number in the “middle” of its interval. This heuristics was



necessary because the IlcInterval library previously used did not allow the
use of interval coefficients. Our new solver accepts non scalar coefficients so that
no solution is lost anymore, making thus IBB reliable. The midpoint heuristics
would however allow the management of sharper boxes, but the gain in running
time would be less than 5% in our benchmarks. The price of reliability is not so
high!

Finally, as shown in the experiments reported below, the most significant
impact on IBB is due to the integration of an interval Newton inside the blocks.
I-Newton has a good power of filtering, can often reach the finest precision (which
is of great interest due to the multiplicative effect of the blocks) and often certifies
the solutions. Hence, the combinatorial explosion due to multiple solutions has
been drastically limited. Moreover, the use of I-Newton alters the comparison
between variants. In particular, in the previous versions, we concluded that IBF
was counterproductive, whereas it is not always true today. Also, the interest of
intelligent backtracking algorithms is clearly put into question, which confirms
the intuition shared by the constraint programming community that a better
filtering removes backtracks (and backjumps). Moreover, since I-Newton has a
good filtering power, obtaining an atomic box requires less bisections. Hence,
the number of calls to IBF is reduced in the same proportion.

6 Benchmarks

Exhaustive experiments have been performed on 10 benchmarks made of ge-
ometric constraints. They compare different variants of IBB and show a clear
improvement w.r.t. solving the whole system.

Some benchmarks are artificial problems, mostly made of quadratic distance
constraints. Mechanism and Tangent have been found in [16] and [3]. Chair is a
realistic assembly made of 178 equations induced by a large variety of geometric
constraints: distances, angles, incidences, parallelisms, orthogonalities.

Ponts
(Sierpinski2)

StarTangent
Mechanism

Fig. 2. 2D benchmarks: general view

The DAGs of blocks for the benchmarks have been obtained either with an
equational method (abbrev. equ.) or with a geometric one (abbrev. geo.). Ponts
and Tangent have been decomposed by both techniques. A problem defined
with a domain of width 100 is generally similar to assigning ]−∞, +∞[ to every
variable. The intervals in Mechanism and Sierp3 have been selected around a
given solution in order to limit the total number of solutions. In particular, the
equation system corresponding to Sierp3 would have about 240 solutions, so



that the initial domains are limited to a width 1. Sierp3 is the fractal Sierpinski
at level 3, that is, 3 Sierpinski at level 2 (i.e., Ponts) put together. The time
spent for the equational and geometric decompositions is always negligible, i.e.,
a few milliseconds for all the benchmarks.

Chair
Tetra Hour−glass

Fig. 3. 3D benchmarks: general view

GCSP Dim. Dec. Size Size of blocks Dom. #sols w1

Mechanism 2D equ. 98 98 = 1x10, 2x4, 27x2, 26x1 10 448 5.10−6

Sierp3 geo. 124 124 = 44x2, 36x1 1 198 10−8

PontsE equ. 30 30 = 1x14, 6x2, 4x1 100 128 10−8

PontsG geo. 38 38 = 13x2, 12x1 100 128 10−8

TangentE equ. 28 28 = 1x4, 10x2, 4x1 100 128 10−8

TangentG geo. 42 42 = 2x4, 11x2, 12x1 100 128 10−8

Star equ. 46 46 = 3x6, 3x4, 8x2 100 128 10−8

Chair 3D equ. 178 178 = 1x15,1x13,1x9,5x8,3x6,2x4,14x3,1x2,31x1 100 8 5.10−7

Tetra equ. 30 30 = 1x9, 4x3, 1x2, 7x1 100 256 10−8

Hourglass equ. 29 29 = 1x10, 1x4, 1x3, 10x1 100 8 10−8

Table 1. Details on the benchmarks. Type of decomposition method (Dec.); number
of equations (Size); Size of blocks: NxK means N blocks of size K; Interval widths of
variables (Dom.); number of solutions (#sols); bisection precision, i.e., domain width
under which bisection does not split intervals (w1).

7 Experiments

We have applied several variants of IBB on the benchmarks described above.
All the tests have been conducted using the interval-based library implemented
in C++ by the second author [4]. The hull consistency (i.e., 2B-consistency)
is implemented with the famous HC4 that builds a syntactic tree for every con-
straint [1, 17]. A “width” parameter w2 equal to 10−4 has been chosen: a con-
straint is not pushed in the propagation queue if the projection on its variables
has reduced the corresponding intervals less than w2. I-Newton is run when
the largest interval in the current box is less than 10−2. Two atomic boxes are
merged iff a unique solution has not been certified inside both and the boxes are
sufficiently close to each other, that is, for every variable, there is a distance dist
less than 10−2 between the two boxes (10−4 for the benchmark Star). Most of
the reported CPU times have been obtained on a Pentium IV 3 Ghz.

7.1 Interest of system decomposition
The first results show the drastic improvement due to IBB as compared to four
interval-based solvers tuned to obtain the best results on the benchmarks. All



the solvers use a round-robin splitting strategy. Ilog Solver [11] uses a filtering
process mixing 2B-consistency and Box-consistency. The relatively bad CPU
times simply show that the IlcInterval library has not been improved for
several years. They have been obtained on a Pentium IV 2.2 Ghz.

GCSP Home RealPaver Ilog Solver Best IBB Home/(Best IBB) Precision

Mechanism 85 256 > 4000 1.37 62 2.10−5

Sierp3 1426 > 4000 > 4000 1.18 1208 4.10−11

Chair > 4000 > 4000 > 128 equations 0.5 > 8000 10−7

Tetra 461 98∗

> 4000 0.92 501 2.10−14

PontsE 10.3 9.5 103 0.97 10 7.10−14

PontsG 5.6 15.7 294 0.31 18 10−13

Hourglass 15.3 12.6∗ 247 0.4 38 10−13

TangentE 58 25.9∗ 191 0.1 580 5.10−14

TangentG 2710 2380 XXX 0.09 30000 4.10−14

Star 2381 237∗ 1451 0.08 30000 2.10−11

Table 2. Interest of IBB. The columns in the left report the times (in seconds) spent
by three interval-based solvers to handle the systems globally. Home corresponds to
our own library. The column Best IBB reports the best time obtained by IBB. Gains
of 1, 2, 3 or 4 orders of magnitude are highlighted by the column Home/(Best IBB).
The last column reports the size of the obtained atomic boxes. The obtained precision
is often good (as compared to the specified parameter w1 – see Table 1) thanks to the
use of I-Newton. An entry XXX means that the solver is not able to isolate solutions.

RealPaver [7, 8] and our library use a HC4+Newton filtering and obtain in this
case comparable performances. RealPaver uses HC4+Newton+weak3B on several
benchmarks (entries with a ∗) and obtains better results. This highlights the in-
terest of the weak 3B-consistency [7]. Our library uses a HC4+Newton+3B filtering
on Hourglass.

We have also applied the Quad operator [18] that is sometimes very efficient
to solve polynomial equations. This operator appears to be very slow on the
tested benchmarks.

7.2 Main results

Tables 3, 4 and 5 report the main results we have obtained on several variants
of IBB. Table 3 first shows that the different variants obtain similar CPU time
results provided that HC4+Newton filtering is used. The conclusion is different
otherwise, as shown in Table 4.

– BT+ vs BT: BT+ always reduces the number of bisections and the num-
ber of recomputed blocks. The reason why BB[BT,IBF] is better in time than
IBB[BT+,IBF] on Sierp3 and PontsG is the more costly management of friend
blocks in the IBB implementation (see Section 4.4).

– IBB implementation vs BB: Table 4 clearly shows the combinatorial explosion
of BB involved by the multiple solution problem. The use of I-Newton limits
this problem, except for Mechanism (see Table 3, columns 4 and 5). However, it
is important to explain that the problem needed also to be fixed by manually



1 2 3 4 5 6
GCSP IBB[BT] BB[BT] IBB[BT+] IBB[BT,IBF] BB[BT,IBF] IBB[BT+,IBF]

137 188 132 176 243 172
Mechanism 6186 6186 6101 6164 6808 6142

1635 1635 1496 1629 1629 1570
284 228 177 269 118 234

Sierp3 19455 19455 9537 2874 2874 2136
21045 21045 11564 3671 3671 3035

50 51 18 107 86 76
Chair 3814 3814 1176 3806 3806 2329

344 344 97 344 344 148
100 125 92 136 137 123

Tetra 3936 3936 3391 3942 3942 3397
235 235 99 235 235 99
98 97 97 121 122 120

PontsE 3091 3091 3046 3072 3072 3031
131 131 86 115 115 74
117 96 83 50 31 51

PontsG 8415 8415 5524 1303 1303 1303
9283 9283 6825 1011 1011 1011

40 41 40 43 45 42
Hourglass 995 995 995 994 994 994

19 19 15 19 19 19
11 10 10 19 16 19

TangentE 186 186 172 186 186 186
427 427 405 427 427 427
11 13 9 20 17 20

TangentG 402 402 83 402 402 402
411 411 238 411 411 396
28 25 17 18 18 8

Star 1420 1420 584 479 479 90
457 457 324 251 251 31

Table 3. Variants of IBB with HC4 + I-Newton filtering. Every entry contains three
values: (top) the CPU time for obtaining all the solutions (in hundredths of second);
(middle) the total number of bisections performed by the interval solver; (bottom) the
total number of times BlockSolve is called.

selecting an adequate value for the parameter w1. In particular, BB undergoes a
combinatorial explosion on Chair and Mechanism when the precision is higher
(i.e., when w1 is smaller). On the contrary, the IBB implementation automatically
adjusts w1 in every block according to the width of the largest input variable
(parameter) interval. This confirms that the IBB implementation is rarely worse
in time than the BB one, is more robust and it can add the recompute condition.

– Moderate interest of IBF: Table 4 shows that IBF is not useful when only
HC4 is used to prune inside blocks. As explained at the end of Section 5, when
I-Newton is also called to prune inside blocks, IBF becomes sometimes useful:
three instances benefit from the inter-block filtering (see Table 3). Moreover, IBF
avoids using sophisticated backtracking schemas, as shown in the last table.

– No Interest of intelligent backtracking: Table 5 reports the only two bench-
marks for which backjumps actually occur with an intelligent backtracking. It
shows that the gain obtained by an intelligent backtracking (IBB[GBJ], IBB[GPB])
is compensated by a gain in filtering with IBF. The number of backjumps is dras-
tically reduced by the use of IBF (6 → 0 on Star; 2974 → 135 on Sierp3). The
times obtained with IBF are better than or equal to those obtained with intelli-
gent backtracking schemas. Only a marginal gain is obtained by IBB[GBJ,IBF]
w.r.t. IBB[BT+,IBF] for Sierp3.



GCSP IBB[BT] BB[BT] IBB[BT+] IBB[BT,IBF] BB[BT,IBF] IBB[BT+,IBF] Precision
281 277 361 890 354

Mechanism 52870 XXX 52711 40696 40696 40650 7.10−4

1635 1496 1629 1629 1570
326 201 306 260

Sierp3 116490 XXX 64538 15594 XXX 12228 7.10−6

21045 11564 3671 3035

50 104 17 110 82
Chair 4408 1385 4316 XXX 2468 7.10−6

344 97 344 148
347 336 506 484

Tetra 47406 XXX 42420 28140 XXX 24666 6.10−6

235 101 235 100
843 839 1379 1365

PontsE 96522 XXX 95949 66033 XXX 65630 3.10−7

131 86 115 74
117 134 69 70

PontsG 8415 XXX 51750 7910 XXX 7910 7.10−7

9283 9283 1011 1011
130 879 132 221 465 220

Hourglass 12308 12308 11599 22007 11599 4.10−7

19 15 19 39 19

Table 4. Variants of IBB with HC4 filtering. The last column highlights the rather bad
precision obtained.

1 2 3 4 5 6 7 8
GCSP IBB[BT] IBB[BT+] IBB[GBJ] IBB[GPB] BB[BT,IBF] IBB[BT,IBF] IBB[BT+,IBF] IBB[GBJ,IBF]

284 177 134 118 269 234 230
Sierp3 19455 9537 6357 > 64 blocks 2874 2874 2136 2088

21045 11564 7690 3671 3671 3035 2867
BJ=2974 BJ=135

28 17 15 8 18 18 8 8
Star 1420 584 536 182 479 479 90 90

457 324 277 64 251 251 31 31
BJ=6 BJ=0

Table 5. No interest of intelligent backtracking.

Remarks

IBB can often certify solutions of a decomposed system. A straightforward induc-
tion ensures that a solution is certified iff all the corresponding partial solutions
are certified in every block. Only solutions of Mechanism and Chair have not
been certified.

8 Conclusion

IBB[BT+] is often the best tested version of IBB. It is fast, simple to implement
and robust (IBB implementation). Its variant IBB[BT+,IBF] can advantageously
replace a sophisticated backtracking schema in case some backjumps occur.

Anyway, the three tables above clearly show that the main impact on robust-
ness and performance is due to the mix of local filtering and interval analysis
operators inside blocks. To complement the analysis reported in Section 5, a
clear indication is the good behavior of simple versions of IBB, i.e., IBB[BT] and
BB[BT,IBF], when such filtering operators are used (see Table 3). Tables 4 and
5 show that the influence of IBF or intelligent backtracking is less significant.

Apart from minor improvements, IBB is now mature enough to be used in
CAD applications. Promising research directions are the computation of sharper
jacobian matrices (because, in CAD, the constraints belong to a specific class)
and the design of solving algorithms for equations with non scalar coefficients.
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