
HAL Id: hal-00486680
https://hal.science/hal-00486680v1

Preprint submitted on 26 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Relaxed algorithms for p-adic numbers
Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf

To cite this version:
Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf. Relaxed algorithms for p-adic numbers.
2010. �hal-00486680�

https://hal.science/hal-00486680v1
https://hal.archives-ouvertes.fr

Relaxed algorithms for p-adic numbers
∗

Jérémy Berthomieu

Laboratoire d’Informatique
UMR 7161 CNRS
École polytechnique
Route de Saclay

91128 Palaiseau Cedex
France

Email: berthomieu@lix.polytechnique.fr
Web: www.lix.polytechnique.fr/~berthomieu

Joris van der Hoeven

Laboratoire d’Informatique
UMR 7161 CNRS
École polytechnique
Route de Saclay

91128 Palaiseau Cedex
France

Email: vdhoeven@lix.polytechnique.org
Web: www.lix.polytechnique.fr/~vdhoeven

Grégoire Lecerf

Laboratoire de Mathématiques
UMR 8100 CNRS

Université de Versailles
45 avenue des États-Unis
78035 Versailles Cedex

France

Email: Gregoire.Lecerf@math.uvsq.fr
Web: www.math.uvsq.fr/~lecerf

May 26, 2010

Current implementations of p-adic numbers usually rely on so called zealous
algorithms, which compute with truncated p-adic expansions at a precision that
can be specified by the user. In combination with Newton-Hensel type lifting tech-
niques, zealous algorithms can be made very efficient from an asymptotic point of
view.

In the similar context of formal power series, another so called lazy technique is
also frequently implemented. In this context, a power series is essentially a stream
of coefficients, with an effective promise to obtain the next coefficient at every
stage. This technique makes it easier to solve implicit equations and also removes
the burden of determining appropriate precisions from the user. Unfortunately,
naive lazy algorithms are not competitive from the asymptotic complexity point of
view. For this reason, a new relaxed approach was proposed by van der Hoeven in
the 90’s, which combines the advantages of the lazy approach with the asymptotic
efficiency of the zealous approach.

In this paper, we show how to adapt the lazy and relaxed approaches to the
context of p-adic numbers. We report on our implementation in the C++ library
algebramix of Mathemagix, and show significant speedups in the resolution of
p-adic functional equations when compared to the classical Newton iteration.

Keywords: p-adic numbers, power series, algorithms

A.M.S. subject classification: 68W30, 11Y40, 11Y16

∗. This work has been partly supported by the French ANR-09-JCJC-0098-01 MaGiX project, and by the
Digiteo 2009-36HD grant of the Région Ile-de-France.

1

1. Introduction

Let R be an effective commutative ring, which means that algorithms are available for
all the ring operations. Let (p) be a proper principal ideal of R. Any element a of the
completion Rp of R for the p-adic valuation can be written, in a non unique way, as
a power series

∑

i>0 ai p
i with coefficients in R. For example, the completion of K[x] for

the ideal (x) is the classical ring of power series K[[x]], and the completion of Z for any
prime integer p is the ring of p-adic integers written Zp.

In general, elements in Rp give rise to infinite sequences of coefficients, which cannot
be directly stored in a computer. Nevertheless, we can compute with finite but arbit-
rarily long expansions of p-adic numbers. In the so called zealous approach, the preci-
sion n of the computations must be known in advance, and fast arithmetic can be used
for computations in R/(pn). In the lazy framework, p-adic numbers are really promises,
which take a precision n on input, and provide an n-th order expansion on output.

In [Hoe97] appeared the idea that the lazy model actually allows for asymptotically
fast algorithms as well. Subsequently [Hoe02], this compromise between the zealous and
the naive lazy approaches has been called the relaxed model. The main aim of this
paper is the design of relaxed algorithms for computing in the completion Rp. We will
show that the known complexity results for power series extend to this setting. For more
details on the power series setting, we refer the reader to the introduction of [Hoe02].

1.1. Motivation

Completion and deformation techniques come up in many areas of symbolic and analytic
computations: polynomial factorization, polynomial or differential system solving, ana-
lytic continuation, etc. They make an intensive use of power series and p-adic integers.

1.1.1. Recursive equations

The major motivation for the relaxed approach is the resolution of algebraic or func-
tional equations. Most of the time, such equations can be rewritten in the form

Y = Φ(Y), (1)

where the indeterminate Y is a vector in Rp
d and Φ some algebraic or more complicated

expression with the special property that

ỹ − y ∈ pn Rp
d � Φ(ỹ)−Φ(y)∈ pn+1 Rp

d,

for all y, ỹ ∈ Rp
d and n ∈ N. In that case, the sequence 0, Φ(0), Φ2(0), 	 converges to

a solution y ∈Rp
d of (1), and we call (1) a recursive equation.

Using zealous techniques, the resolution of recursive equations can often be done
using a Newton iteration, which doubles the precision at every step [BK78]. Although
this leads to good asymptotic time complexities in n, such Newton iterations require the
computation and inversion of the Jacobian of Φ, leading to a non trivial dependence of
the asymptotic complexity on the size of Φ as an expression. For instance, at higher
dimensions d, the inversion of the Jacobian usually involves a factor O(d3), whereas Φ
may be of size O(d). We shall report on such examples in Section 5.

The main rationale behind relaxed algorithms is that the resolution of recursive
equations just corresponds to a relaxed evaluation of Φ at the solution itself. In partic-
ular, the asymptotic time complexity to compute a solution has a linear dependence on
the size of Φ. Of course, the technique does require relaxed implementations for all oper-
ations involved in the expression Φ. The essential requirement for a relaxed operation ϕ

is that ϕ(y)n should be available as soon as y0,	 , yn are known.

2 Relaxed p-adic numbers

1.1.2. Elementary operations

A typical implementation of the relaxed approach consists of a library of basic relaxed
operations and a function to solve arbitrary recursive equations built up from these
operations. The basic operations typically consist of linear operations (such as addition,
shifting, derivation, etc.), multiplication and composition. Other elementary operations
(such as division, square roots, higher order roots, exponentiation) are easily imple-
mented by solving recursive equations. In several cases, the relaxed approach is not only
elegant, but also gives rise to more efficient algorithms for basic operations.

Multiplication is the key operation and Sections 2, 3 and 4 are devoted to it. In situ-
ations were relaxed multiplication is as efficient as naive multiplication (e.g. in the naive
and Karatsuba models), the relaxed strategy is optimal in the sense that solving a
recursive equation is as efficient as verifying the validity of the solution. In the worst
case, as we will see in Proposition 6, relaxed multiplication is O(log n) times more
expensive than zealous multiplication modulo pn. If Fp contains many 2p-th roots of

unity, then this overhead can be further reduced to O(e2 log 2log log n
√

) using similar tech-
niques as in [Hoe07a]. In practice, the overhead of relaxed multiplication behaves as
a small constant, even though the most efficient algorithms are hard to implement.

In the zealous approach, the division and the square root usually rely on Newton
iteration. In small and medium precisions the cost of this iteration turns out to be
higher than a direct call to one relaxed multiplication or squaring. This will be illus-
trated in Section 6: if p is sufficiently large, then our relaxed division outperforms
zealous division.

1.1.3. User-friendly interface

An important advantage of the relaxed approach is its user-friendliness. Indeed, the
relaxed approach automatically takes care of the precision control during all interme-
diate computations. A central example is the Hensel lifting algorithm used in the factor-
ization of polynomials in Q[x]: one first chooses a suitable prime number p, then com-
putes the factorization in Z/pZ[x], lifts this factorization into Qp[x], and finally one
needs to discover how these p-adic factors recombine into the ones over Q (for details
see for instance [GG03, Chapter 15]). Theoretically speaking, Mignotte’s bound [GG03,
Chapter 6] provides us with the maximum size of the coefficients of the irreducible
factors, which yields a bound on the precision needed in Qp. Although this bound is
sharp in the worst case, it is pessimistic in several particular situations. For instance, if
the polynomial is made of small factors, then the factorization can usually be discovered
at a small precision. Here the relaxed approach offers a convenient and efficient way to
implement adaptive strategies. In fact we have already implemented the polynomial fac-
torization in the relaxed model with success, as we intend to show in detail in a forth-
coming paper.

1.2. Our contributions

The relaxed computational model was first introduced in [Hoe97] for formal power
series, and further improved in [Hoe02, Hoe07a]. In this article, we extend the model to
more general completions Rp. Although our algorithms will be represented for arbitrary
rings R, we will mainly focus on the case R = Z when studying their complexities. In
Section 2 we first present the relaxed model, and illustrate it on a few easy algorithms:
addition, subtraction, and naive multiplications.

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 3

In Section 3, we adapt the relaxed product of [Hoe02, Section 4] to p-adic numbers.
We first present a direct generalization, which relies on products of finite p-expansions.
Such products can be implemented in various ways but essentially boil down to mul-
tiplying polynomials over R. We next focus on the case R = Z and how to take
advantage of fast hardware arithmetic on small integers, or efficient libraries for compu-
tations with multiple precision integers, such as Gmp [G+91]. In order to benefit from
this kind of fast binary arithmetic, we describe a variant that internally performs conver-
sion between p-adic and 2-adic numbers in an efficient way. We will show that the per-
formance of p-adic arithmetic is similar to power series arithmetic over R/(p).

For large precisions, such conversions between p-adic and 2-adic expansions involve
an important overhead. In Section 4 we present yet another blockwise relaxed multiplic-
ation algorithm, based on the fact that Rp D Rpk for all k > 1. This variant even outper-
forms power series arithmetic over R/(p). For large block sizes k, the performance actu-
ally gets very close to the performance of zealous multiplication.

In Section 5, we recall how to use the relaxed approach for the resolution of recursive
equations. For small dimensions d, it turns out that the relaxed approach is already
competitive with more classical algorithm based on Newton iteration. For larger num-
bers of variables, we observe important speed-ups.

Section 6 is devoted to division. For power series, relaxed division essentially reduces
to one relaxed product [Hoe02, Section 3.2.2]. We propose an extension of this result to
p-adic numbers. For medium precisions, our algorithm turns out to be competitive with
Newton’s method.

In Section 7, we focus on the extraction of r-th roots. We cover the case of power
series in small characteristic, and all the situations within Zp. Common transcendental
operations such as exponentiation and logarithm are more problematic in the p-adic set-
ting than in the power series case, since the formal derivation of p-adic numbers has no
nice algebraic properties. In this respect, p-adic numbers rather behave like floating
point numbers. Nevertheless, it is likely that holonomic functions can still be evaluated
fast in the relaxed setting, following [Bre76, CC90, Hoe99, Hoe01, Hoe07b]. We also
refer to [Kob84, Kat07] for more results about exponentiation and logarithms in Qp.

Algorithms for p-adic numbers have been implemented in several libraries and com-
puter algebra systems: P-pack [Wan84], Maple, Magma, Pari-gp [PAR08], Mathem-
atica [DS04], Sage [S+09], Flint [HH09], etc. These implementations all use the
zealous approach and mainly provide fixed-precision algorithms for R = Z. Only Sage
also proposes a lazy interface. However, this interface is not relaxed and therefore ineffi-
cient for large precisions.

Most of the algorithms presented in this paper have been implemented in the C++

open source library algebramix of Mathemagix [H+02] (revision 4791, freely available
from http://www.mathemagix.org). Although we only report on timings for p-adic
integers, our code provides support for general effective Euclidean domains R.

2. Data structures and naive implementations

In this section we present the data structures specific to the relaxed approach, and the
naive implementations of the ring operations in Rp.

4 Relaxed p-adic numbers

2.1. Finite p-adic expansions

As stated in the introduction, any element a of the completion Rp of R for the p-adic
valuation can be written, in a non unique way, as a power series

∑

i>0 ai pi with coeffi-
cients in R. Now assume that M is a subset of R, such that the restriction of the pro-
jection map π: R → R/(p) to M is a bijection between M and R/(p). Then each ele-
ment a admits a unique power series expansion

∑

i>0 ai pi with ai ∈ M . In the case

when R =Z and p∈N\ {0}, we will always take M = {0,	 , p− 1}.
For our algorithmic purposes, we assume that we are given quotient and remainder

functions by p

quo(·, p): R → R

rem(·, p): R → M,

so that we have

a= quo(a, p) p + rem(a, p),

for all a∈R.
Polynomials

∑

i=0
n−1

ai pi ∈ M [p] will also be called finite p-adic expansions at
order n. In fact, finite p-adic expansions can be represented in two ways. On the one
hand, they correspond to unique elements in R, so we may simply represent them by ele-
ments of R. However, this representation does not give us direct access to the coeffi-
cients ai. By default, we will therefore represent finite p-adic expansions by polynomials
in M [p]. Of course, polynomial arithmetic in M [p] is not completely standard due to the
presence of carries.

2.2. Classical complexities

In order to analyze the costs of our algorithms, we denote by M(n) the cost for mul-
tiplying two univariate polynomials of degree n over an arbitrary ring A with unity, in
terms of the number of arithmetic operations in A. Similarly, we denote by I(n) the time
needed to multiply two integers of bit-size at most n in the classical binary representa-
tion. It is classical [SS71, CK91, Für07] that M(n) = O(n log n log log n) and I(n) =
O(n log n 2log

∗ n), where log∗ represents the iterated logarithm of n. Throughout the
paper, we will assume that M(n)/n and I(n)/n are increasing. We also assume that
M(O(n)) =O(M(n)) and I(O(n)) =O(I(n)).

In addition to the above complexities, which are classical, it is natural to introduce
Ip(n) as the time needed to multiply two p-adic expansions in Zp at order n with coeffi-
cients in the usual binary representation. When using Kronecker substitution for mul-
tiplying two finite p-adic expansions, we have Ip(n) = I(n (log p + log n)) [GG03, Corol-
lary 8.27]. We will assume that Ip(n)/n is increasing and that Ip(O(n))= O(Ip(n)).

It is classical that the above operations can all be performed using linear space.
Throughout this paper, we will make this assumption.

2.3. The lazy and relaxed computational models

For the description of our relaxed algorithms, we will follow [Hoe02] and use a C++-
style pseudo-code, which is very similar to the actual C++ implementation in Math-
emagix. As in [Hoe02], we will not discuss memory management related issues, which
have to be treated with care in real implementations, especially when it comes to
recursive expansions (see Section 5 below).

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 5

The main class Padicp for p-adic numbers really consists of a pointer (with reference
counting) to the corresponding “abstract representation class” Padic_repp. On the one
hand, this representation class contains the computed coefficients ϕ: M [p] of the
number a up till a given order n: N. On the other hand, it contains a “purely virtual
method” next, which returns the next coefficient an:

class Padic_repp

ϕ: M [p]
n:N
virtual next ()

Following C++-terminology, the purely virtual function next is only defined in
a concrete representation class which derives from Padic_repp. For instance, to construct
a p-adic number from an element in M , we introduce the type Constant_Padic_repp

that inherits from Padic_repp in this way:

class Constant_Padic_repp Q Padic_repp

c: M
constructor (c̃ : M)

c6 c̃
method next ()

if n= 0 then return c else return 0

In this piece of code n represents the current precision inherited from Padic_repp. The
user visible constructor is given by

padic (c: M)→Padicp 6 (Padicp) new Constant_Padic_repp (c).

This constructor creates a new object of type Constant_Padic_repp to represent c, after
which it address can be casted to the abstract type Padicp of p-adic numbers. From now
on, for the sake of conciseness, we no longer describe such essentially trivial user level
functions anymore, but only the concrete representation classes.

It is convenient to define one more public top-level function for the extraction of the
coefficient ak, given an instance a of Padicp and a positive integer k: N. This function
first checks whether k is smaller than the order a.n of a. If so, then ak = (a.ϕ)k is
already available. Otherwise, we keep increasing a.n while calling next, until ak will
eventually be computed. For more details, we refer to [Hoe02, Section 2]. We will now
illustrate our computational model on the basic operations of addition and subtraction.

2.4. Addition

The representation class for sums of p-adic numbers, written Sum_Padic_repp, is imple-
mented as follows:

class Sum_Padic_repp Q Padic_repp

a, b: Padicp

γ: R
constructor (ã: Padicp, b̃ : Padicp)

a6 ã; b6 b̃ ; γ6 0
method next ()

t6 an + bn + γ
γ6 quo(t, p)
return rem(t, p)

In the case when R = Z, we notice by induction over n that we have γ ∈ {0, 1}, each
time that we enter next, since 0 6 an + bn + γ 6 2 p − 1. In that case, it is actually more
efficient to avoid the calls to quo and rem and replace the method next by

6 Relaxed p-adic numbers

method next ()
t6 an + bn + γ
if t < p then

γ6 0
return t

else
γ6 1
return t− p

Proposition 1. Given two relaxed p-adic integers a and b, the sum a + b can be com-
puted up till precision n using O(n log p) bit-operations.

Proof. Each of the additions ak + bk + γ and subsequent reductions modulo p take
O(log p) bit-operations. �

2.5. Subtraction in Zp

In general, the subtraction is the same as the addition, but for the special case when
R = Z, we may use the classical school book method. In our framework, this yields the
following implementation:

class Sub_Padic_repp Q Padicp

a, b: Padicp

γ: R
constructor (ã: Padicp, b̃ : Padicp)

a6 ã; b6 b̃ ; γ6 0
method next ()

t6 an − bn − γ
if t > 0 then

γ6 0
return t

else
γ6 1
return t+ p

Proposition 2. Given two relaxed p-adic integers a and b, the difference a − b can be
computed up till precision n using O(n log p) bit-operations.

Proof. Each call to the function next costs O(log p) bit-operations. �

2.6. Naive product

Here we consider the school book algorithm: each coefficient (a b)n is obtained from the
sum of all products of the form ak bn−k plus the carry involved by the products of the
preceding terms. Carries are larger than for addition, so we have to take them into
account carefully. The naive method is implemented in the following way:

class Naive_Mul_Padic_repp Q Padic_repp

a, b: Padicp

γ: a vector with entries in R, with indices starting at 0.
constructor (ã: Padicp, b̃ : Padicp)

a6 ã; b6 b̃ ;
Initialize γ with the empty vector

method next ()
Append a zero γn =0 at the end of γ
t6 0
for i from 0 to n do

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 7

s6 ai bn−i + γi

t6 t+ s
γi6 quo(t, p)
t6 rem(t, p)

return t

Proposition 3. Given two relaxed p-adic integers a and b, the product a b can be com-
puted up till precision n using O(n2

I(log p)) bit-operations.

Proof. We show by induction that, when entering in next to compute the coeffi-
cient (a b)n, the vector γ has size n and entries in M . This clearly holds for n = 0.
Assume that the hypothesis is satisfied until a certain value n > 0. When entering next
the size of γ is increased by 1, so that it will be n + 1 at the end. Then, at step
i∈{0,	 , n} of the loop we have s 6 (p − 1)2 + p − 1 = p2 − p. Since t 6 p − 1 it follows
that s+ t 6 p2− 1, whence γi 6 p − 1 on exit. Each of the O(n2) steps within the loop
takes O(I(log p)) bit-operations, which concludes the proof. �

Since hardware divisions are more expensive than multiplications, performing one
division at each step of the above loop turns out to be inefficient in practice. Especially
when working with hardware integers, it is therefore recommended to accumulate as
many terms ai bn−i as possible in s before a division. For instance, if p fits 30 bits and if
we use 64 bits hardware integers then we can do a division every 16 terms.

2.7. Lifting the power series product

In this subsection we assume that we are given an implementation of relaxed power
series over R, as described in [Hoe02, Hoe07a]. The representation class is written
Series_repR and the user level class is denoted by SeriesR, in the same way as for p-adic
numbers. Another way to multiply p-adic numbers relies on the relaxed product
in R[[p]]. This mainly requires a lifting algorithm of M [[p]] into R[[p]] and a projection
algorithm of R[[p]] onto M [[p]], The lifting procedure is trivial:

class Lift_Series_repR Q Series_repR

a: Padicp

constructor (ã: Padicp)
a6 ã

method next ()
return an

Let lift denote the resulting function that converts a p-adic number a: Padicp into
a series in SeriesR. The reverse operation, project, is implemented as follows:

class Project_Padic_repp Q Padic_repp

f : SeriesR
γ: R
constructor (f̃ : SeriesR)

f6 f̃ ; γ6 0
method next ()

t6 fn + γ
γ6 quo(t, p)
return rem(t, p)

Finally the product c = a b is obtained as project (lift (a) lift (b)).

Proposition 4. Given relaxed p-adic integers a and b, the product a b can be computed
up till precision n using O(I(log p + log n) M(n) log n) or O(I(n (log p + log n)) log n) bit-
operations.

8 Relaxed p-adic numbers

Proof. The relaxed product of two power series in size n can be done with
O(M(n) log n) operations in R by [Hoe02, Theorem 4.1]. In our situation the size of the
integers in the product are in O(log p + log n). Then, by induction, one can easily verify
that the size of the carry γ does not exceed O(log p + log n) during the final projection
step. We are done with the first bound.

The second bound is a consequence of the classical Kronecker substitution: we can
multiply two polynomials in Z[x] of size n and coefficients of bit-size O(log p) with
O(I(n (log p+ logn))) bit operations [GG03, Corollary 8.27]. �

This strategy applies in full generality and gives a “softly optimal algorithm”. It
immediately benefits from any improvements in the power series product. Nevertheless,
when n is not much larger than p, practical implementations of this method involve
a large constant overhead. In the next sections, we will therefore turn our attention
to “native” counterparts of the relaxed power series products from [vdH02, Hoe07b].

2.8. Timings
We conclude this section with some timings for our C++ implementation of naive mul-
tiplication inside the Algebramix package of the Mathemagix system [H+02]. Tim-
ings are measured using one core of an Intel Xeon X5450 at 3.0 GHz running Linux
and Gmp 5.0.0 [G+91]. As a comparison, we display timings on the same platform,
obtained for the Maple 13 package Padic. Precisely, we created two random numbers
to precision n, did their product via the function evalp, and then asked for the coeffi-
cient of order n/2. Notice that timings for small precisions are not very relevant for
Maple because of the overhead due to the interpreter.

n 8 16 32 64 128 256 512 1024
Naive_Mul_Padicp 2.9 3.8 8.3 22 68 250 920 3600
Maple 13 240 320 520 1200 3500 11000 38000 160000

Table 1. Naive products, for p = 536870923, in microseconds.

3. Relaxed product

In this section, we extend the relaxed product of [Hoe02, Section 4.3.1] to more general
p-adic numbers. We also present a special version for R = Z, which uses internal base
conversions between base 2 and base p, and takes better advantage of the fast arithmetic
in Gmp [G+91].

3.1. Fast relaxed multiplication algorithm

Let a and b denote the two p-adic numbers that we want to multiply, and let c be their
product. Let us briefly explain the basic idea behind the speed-up of the new algorithm
with respect to naive lazy multiplication.

The first coefficient c0 is simply obtained as the remainder of a0 b0 in the division
by p. The corresponding quotient is stored as a carry in a variable γ similar to the one
used in Naive_Mul_Padic_repp. We next obtain c1 by computing a0 b1 + a1 b0 + γ and
taking the remainder modulo p; the quotient is again stored in γ. At the next stage,
which basically requires the computation of a0 b2 + a1 b1 + a2 b0 + γ, we do a little bit
more than necessary: instead of a1 b1, we rather compute (a1 + a2 p) (b1 + b2 p). For c3, it
then suffices to compute a0 b3 and a3 b0 since a1 b2 + a2 b1 has already been computed as
part of (a1 + a2 p) (b1 + b2 p). Similarly, in order to obtain c4, we only need to compute
a0 b4, a4 b0, a3 b1 and a1 b3, since a2 b2 is already known. In order to anticipate more
future computations, instead of computing a3 b1, a1 b3, we compute (a1 + a2 p) (b3 + b4 p)
and (a3 + a4 p) (b1 + b2 p).

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 9

In Figure 1 below, the contribution of each ai bj to the product ci+j, corresponds to
a small square with coordinates (i, j). Each such square is part of a larger square which
corresponds to a product

(ak +
 + ak+2q−1 p2q−1) (bl +
 + bl+2q−1 p2q−1).

The number inside the big square indicates the stage k + l at which this product is com-
puted. For instance the products

(

a3 + a4 p+ a5 p2 + a6 p3
)(

b7 + b8 p+ b9 p2 + b10 p3
)

,
(

a7 + a8 p+ a9 p2 + a10 p3
)(

b3 + b4 p+ b5 p2 + b6 p3
)

.

correspond to the two 4× 4 squares marked with 10 inside.

2 3 4 5 6 7 8 9 1011121314
1
2
3
4
5
6
7
8
9
10
11
12
13
14

1

84 6 10 12 142

4

6

8

10

12

14

6

10

14

10 14

14

0

Figure 1. Relaxed product.

Given a p-adic number a, it will be convenient to denote

ai	 j = ai + ai+1 p+
 + aj−1 pj−1−i.

For any integer n, we also define ln to be the largest integer such that 2ln divides n + 2 if
n + 2 is not a power of 2. Otherwise, if n + 2 = 2m, we let ln = m − 1. For instance, l0 =
0, l1 = 0, l2 =1, l3 =0, l4 = 1, etc.

We can now describe our fast relaxed product. Recall that ϕ is the finite p-expansion
inherited from Padic_repp that stores the coefficients known to order n. In the present
situation we also use ϕ for storing the anticipated products.

class Relaxed_Mul_Padic_repp Q Padic_repp

a, b: Padicp

γa, γb: vectors of vectors over R, with indices starting from 0

constructor (ã: Padicp, b̃ : Padicp)

a6 ã, b6 b̃
Initialize γa and γb with the empty vector

method next ()
On entry, γa and γb have size 2 n; resize them to 2 (n+ 1)

Initialize γ2n
a and γ2n

b with the zero vector of size l2n + 1

Initialize γ2n+1
a and γ2n+1

b with the zero vector of size l2n+1 +1

ta6 0, tb6 0
for q from 0 to ln do

10 Relaxed p-adic numbers

k6 (n+ 2)/2q

ta7 γn,q
a , tb7 γn,q

b

ta7 a2q−1	 2q+1−1 b(k−1)2q−1	 k2q−1

if k =2 then break
tb7 a(k−1)2q−1	 k2q−1 b2q−1	 2q+1−1

sa6 ϕn	 n+2ln+1 + ta

Replace ϕn,	 ., ϕn+2ln+1−1 by s0
a,	 ., s2ln+1−1

a

if n+ 2� 2ln+1 then γn+2ln+1,ln
a 6 s2ln+1

a

sb6 ϕn	n+2ln+1 + tb

Replace ϕn,	 , ϕn+2ln+1−1 by s0
b,	 , s2ln+1−1

b

if n+ 2� 2ln+1 then γn+2ln+1,ln

b 6 s2ln+1
b

return ϕn

Example 5. Let us detail how our algorithm works with the first four steps of the mul-
tiplication c= a b with

a = 676=4 + 5× 7 +6× 72 + 73,

b = −1 =6 + 6× 7 + 6× 72 + 6× 73 + O
(

74
)

.

Computation of c0. Since l0 = l1 = 0, the entries γ0
a, γ0

b, γ1
a, γ1

b are set to (0). In the for

loop, q takes the single value 0, which gives k = 2, ta = a0 b0 = 3 + 3× 7, and tb = 0. Then
we deduce sa =3 + 3× 7, and we set ϕ0 =3, ϕ1 =3. In return we have c0 =3.

Computation of c1. We have l1 = 0, l2 = 1 and l3 = 0, so that γ2
a and γ2

b are initialized
with (0, 0), while γ3

a and γ3
b are initialized with (0). In the for loop, q takes again the

single value 0, and k is set to 3. We obtain ta = a0 b1 =3 + 3× 7 and tb = a1 b0 =2 + 4× 7.
It follows that sa = 6 + 3× 7, and then that sb = 1 + 1× 7 + 1× 72. Finally we set ϕ1 = 1,
ϕ2 =1, γ3,0

b = s2
b =1, and we return c1 =1.

Computation of c2. We have l2 = 1, l4 = 1 and l5 = 0, so that γ4
a and γ4

b are initialized
with (0, 0) and γ5

a and γ5
b with (0). During the first step of the for loop we have q = 0,

k = 4, ta = a0 b2 = 3 + 3 × 7 and tb = a2 b0 = 1 + 5 × 7. In the second step we have q = 1,
k = 2, and we add a1	 3 b1	 3 = (a1 + a2 × 7) (b1 + b2 × 7) = 2 + 4 × 72 + 6 × 73 to ta, its
value becomes 5 + 3 × 7 + 4 × 72 + 6 × 73. Then we get sa = 6 + 3 × 7 + 4 × 72 + 6 × 73,
and then sb = 2 × 7 + 5 × 72 + 6 × 73. Finally we set ϕ2 = 0, ϕ3 = 2, ϕ4 = 5, ϕ5 = 6, and
return 0 for c2.

Computation of c3. We have l3 = 0, l6 = 2 and l7 = 0, hence γ6
a and γ6

b are set to (0, 0, 0),
and γ7

a and γ7
b to (0). In the for loop, q takes the single value 0. We have k = 5, ta =

a0 b3 = 3 + 3 × 7 and tb = γ3,0
b + a3 b0 = 7. Then we deduce sa = 5 + 7 + 72 which yields

γ5,0
a = 1, and then sb = 5 +2× 7. In return we thus obtain c3 = 5.

Proposition 6. Given relaxed p-adic integers a and b, the product a b can be computed
up till precision n using O

(

Ip(n) log n) bit-operations. For this computation, the total

amount of space needed to store the carries γa and γb does not exceed O(n).

Proof. The proof is essentially the same as for [Hoe02, Theorem 4.1], but the carries
require additional attention. We shall prove by induction that all the entries of γa

and γb are always in {0, 1} when entering next for the computation of ϕn. This holds for
n = 0. Assume now that it holds for a certain n > 0. After the first step of the loop,
namely for q =0, we have ta 6 (p − 1)2 + 1 6 p2 − 1. After the second step, when q = 1,
we have ta 6 (p2 − 1)2 + p2 − 1 + 1 6 p4 − 1. By induction, it follows that ta 6 p2q+1 − 1,
at the end of the q-th step.

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 11

At the end of the for loop, we thus get ta 6 p2ln+1 − 1. This implies sa 6 2 p2ln+1 − 2,
whence γn+2ln+1,ln

a ∈ {0, 1}. The same holds for superscripts b instead of a. Notice that

if n + 2 � 2ln+1 then 2ln+1 6 n + 1, hence n + 2ln+1 6 2 n + 1. This implies that
γn+2ln+1,ln

a and γn+2ln+1,ln
b are well defined.

If n + 2 = 2ln+1, then s2ln+1
a = s2ln+1

b = 0, since sa and sb are bounded by
(pn+1− 1)2/pn < pn+2. On the other hand, the map n � (n + 2ln+1, ln) is injective, so
that each entry of γa and γb can be set to 1 at most once. It thus follows that all the
carries are carefully stored in the vectors γa and γb.

If n + 2 = 2ln u, with u > 2, then n + 2ln+1 + 2 = 2ln (u + 2), with u + 2 > 2. This
implies that, when we arrive at order n′ = n + 2ln+1, then the value ln′ is at least ln.
Therefore all the carries are effectively taken into account. This proves the correctness of
the algorithm.

The cost of the algorithm at order n is

O

∑

i=0

n
∑

q=0

li

Ip(2
i)

= O

(

∑

2q6n

n

2q Ip(2
q)

)

= O

(

Ip(n)
∑

2q6n

1

)

=O(Ip(n) logn),

using our assumption that Ip(n)/n is increasing. Finally,

O

(

∑

i=0

n

(1 + li)

)

= O

∑

i=0

n
∑

q=0

li

1

= O

(

∑

2q6n

n

2q

)

= O(n)

provides enough space for storing all the carries. �

In practice, instead of increasing the sizes of carry vectors by one, we double these
sizes, so that the cost of the related memory allocations and copies becomes negligible.
The same remark holds for the coefficients stored in ϕ.

When multiplying finite p-adic expansions using Kronecker substitution, we obtain
a cost similar to the one of Proposition 4. Implementing a good product for finite p-adic
expansions requires some effort, since we cannot directly use binary arithmetic available
in the hardware. In the next subsection, we show that minor modifications of our
relaxed product allow us to convert back and forth between the binary representation in
an efficient manner. Finally, notice that in the case when R = K[x] and (p) = (x), the
carries γa and γb are useless.

3.2. Variant with conversion to binary representation

In this subsection, we assume that R = Z and we adapt the above relaxed product in
order to benefit from fast binary arithmetic in available in the processor or Gmp.
Informally speaking, we perform conversions between bases p and 2 in a relaxed manner.

class Binary_Mul_Padic_repp Q Padic_repp

a, b: Padicp

βa, βb, δa, δb, γ: vectors over Z, with indices starting from 0.

constructor (ã: Padicp, b̃ : Padicp)

a6 ã, b6 b̃
Initialize βa, βb, δa, δb, γ with empty vectors

method next ()
If n+ 2 is a power of 2, then

12 Relaxed p-adic numbers

Resize βa, βb, δa, δb, and γ to ln + 1
Fill the new entries with zeros

εa6 an, εb6 bn, τ 6 0

for q from 0 to ln do
if q > 0 then

εa6 βq−1
a + p2q−1

εa

εb6 βq−1
b + p2q−1

εb

if n+2 = 2q+1 then
δq
a6 εa, δq

b6 εb

τ7 δq
a εb + γq

if n+2 = 2q+1 then break
τ7 εa δq

b

βln
a 6 εa, βln

b 6 εb

for q from ln down to 0 do
γq6 quo(τ , p2q

), τ 6 rem(τ , p2q

)

return τ

Proposition 7. Given two relaxed p-adic integers a and b, the computation of the pro-
duct a b up till precision n can be done using O(I(n log p) log n) bit-operations and
O(n log p) bit-space.

Proof. When computing ϕn, the vectors βa, βb, δa, δb, and γ are resized to rn, where
rn is the largest integer such that 2rn 6 n + 2. From 2rn+1 > n + 2 > 2ln+1, we deduce
that rn > ln, which means that the read and write operations in these vectors are licit.

For any integers n and q such that 2q+1 < n + 2, we write µ(n, q) for the largest
integer less than n such that lµ(n,q) = q. We shall prove by induction that, when entering
next for computing ϕn, the following properties hold for all q > 0 such that 2q+1 <n +2:

a) βq
a = a(k−1)2q−1	 k2q−1 = aµ(n,q)−2q+1	 µ(n,q)+1 where k =

µ(n, q)+ 2

2q , and similarly

for βq
b,

b) δq
a = a2q−1	 2q+1−1, and similarly for δq

b, and

c) γq 6 2 p2q

.

These properties trivially hold for when n = 0. Let us assume that they hold for a cer-
tain n > 0.

Now we claim that, at the end of step q of the first loop, the value of εn
a is

a(k−1)2q−1	 k2q−1 = an−2q+1	 n+1 with k = (n + 2)/2q. This clearly holds for when q = 0

because εa = an and k = n + 2. Now assume that this claim holds until step q − 1 for
some q > 1. When entering step q, we have that µ(n, q − 1) = n − 2q−1, and part (a) of
the induction hypothesis gives us that βq−1

a = an−2q+1	n−2q−1+1. From these quantities,
we deduce:

βq−1
a + p2q−1

εa = an−2q+1	n−2q−1+1 + p2q−1

an−2q−1+1	n+1

= an−2q+1	n+1 = a(k−1)2q−1	 k2q−1,

with k = (n + 2)/2q, which concludes the claim by induction. If n + 2 is not a power of 2
then part (a) is clearly ensured at the end of the computation of ϕn. Otherwise n + 2 =

2ln+1, and βln
a is set to an−2ln+1	n+1, and part (a) is again satisfied when entering the

computation of ϕn+1.

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 13

When δq
a is set to εa, the value of εa is a(k−1)2q−1	 k2q−1 with k = 2. This ensures

that part (b) holds when entering the computation of ϕn+1.
As to (c), during step q of the first loop, the value of τ is incremented by at most

2 (p2q − 1)2 + 2 p2q

6 2 p2q+1− 2 p2q

+ 2.

At the end of this loop, we thus have

τ 6 2 p2ln+1− 2 p+2 (ln + 1).

It follows that τ/p2ln
< 2 p2ln

+ 2 (ln + 1)/p2ln
. If ln ∈ {0, 1} then it is clear that 2 (ln +

1) 6 p2ln
, since p > 2. If ln > 1 then d (p2ln

)

d ln
= log(2) log(p) 2ln p2ln

> 8 (log 2)2 > 2. We

deduce that 2 (ln + 1) 6 p2ln
holds for all integer ln > 0. Before exiting the function we

therefore have that γln 6 2 p2ln
, γln−1 6 p2ln−1

6 2 p2ln−1

, etc, which completes the induc-
tion.

Since n+2 =2ln u, with u > 2, we have n+ 2k + 2 = 2k (2ln−k u + 1), whence ln+2k > k,
for any k 6 ln. All the carries stored in γ are therefore properly taken into account. This
proves the correctness of the algorithm.

At precision n, summing the costs of all the calls to next amounts to

O

∑

i=0

n
∑

q=0

li

I(2q log p)

 = O

(

∑

2q6n

n

2q I(2q log p)

)

= O

(

I(n log p)
∑

2q6n

1

)

= O(I(n log p) logn).

Furthermore,

O

(

∑

2q+16n+2

2q log p

)

= O(n log p)

provides a bound for the total bit-size of the auxiliary vectors βa, βb, δa, δb, and γ. �

Again, in practice, one should double the allocated sizes of the auxiliary vectors each
time needed so that the cost of the related memory allocations and copies becomes neg-
ligible. In addition, for efficiency, one should precompute the powers of p.

3.3. Timings

In following Table 2, we compare timings for power series over Fp, and for p-adic
integers via Series_Mul_Padic_repp of Section 2.7, and via Binary_Mul_Padic_repp of
Proposition 7. In Series_Mul_Padic_repp the internal series product is the relaxed one
reported in the first line.

n 8 16 32 64 128 256 512 1024 2048 4096
Relaxed mul. in Fp[[x]] 2 7 20 50 140 360 930 2300 5700 14000
Series_Mul_Padicp 19 59 160 420 1100 2600 6200 14000 34000 79000
Binary_Mul_Padicp 8 16 37 89 170 360 800 1900 4300 10000
Naive_Mul_Padicp 2.9 3.8 8.3 22 68 250 920 3600 14000 56000

Table 2. Fast relaxed products, and naive lazy product, for p= 536870923, in microseconds.

14 Relaxed p-adic numbers

For convenience, we recall the timings for the naive algorithm of Section 2.6 in the
last line of Table 2. We see that our Binary_Mul_Padic_repp is faster from size 512 on.
Since handling small numbers with Gmp is expensive, we also observe some overhead for
small sizes, compared to the fast relaxed product of formal power series. On the other
hand, since the relaxed product for power series makes internal use of Kronecker substi-
tution, it involves integers that are twice as large as those in Binary_Mul_Padic_repp.
Notice finally that the lifting strategy Series_Mul_Padic_repp, described in Section 2.7,
is easy to implement, but not competitive.

4. Blockwise product

As detailed in Section 4.1 below for R = Z, the relaxed arithmetic is slower than direct
computations modulo pn in binary representation. In [Hoe07a], an alternative approach
for relaxed power series multiplication was proposed, which relies on grouping blocks
of k coefficients and reducing a relaxed multiplication at order n to a relaxed multiplica-
tion at order n/k, with FFT-ed coefficients in M2k−1.

Unfortunately, we expect that direct application of this strategy to our case gives
rise to a large overhead. Instead, we will now introduce a variant, where the blocks of
size k are rather rewritten into an integer modulo pk. This aims at decreasing the over-
head involved by the control instructions when handling objects of small sizes, and also
improving the performance in terms of memory management by choosing blocks well
suited to the sizes of the successive cache levels of the platform being used.

We shall start with comparisons between the relaxed and zealous approaches. Then
we develop a supplementary strategy for a continuous transition between the zealous
and the relaxed models.

4.1. Relaxed versus zealous

The first line of Table 3 below displays the time needed for the product modulo pn of
two integers taken at random in the range 0, 	 , pn−1. The next line concerns the per-
formance of our function binary that converts a finite p-expansion of size n into its
binary representation. The reverse function, reported in the last line, and written expan-
sion, takes an integer in 0,	 , pn − 1 in base 2 and returns its p-adic expansion.

n 8 16 32 64 128 256 512 1024 2048 4096 8192
mod. mul. 0.38 0.52 1.0 2.9 9.0 27 85 250 690 1800 4500
binary 1.0 2.2 4.5 9.8 20 44 100 250 560 1400 3300
expansion 2.5 5.2 10 22 46 96 220 490 1200 3000 7300

Table 3. Zealous product modulo pn and conversions, for p= 536870923, in microseconds.

Let us briefly recall that binary can be computed fast by applying the classical divide
and conquer paradigm as follows:

binary(a, pn) = binary(a0	h, ph) + ph binary(ah	n, pn−h),whereh = ⌊n/2⌋,

which yields a cost in O(I(n log p) log n). Likewise, the same complexity bound holds for
expansion. Within our implementation we have observed that these asymptotically fast
algorithms outperform the naive ones whenever pn is more than around 32 machine
words.

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 15

Compared to Tables 1 and 2, these timings confirm the theoretical bounds: the
relaxed product does not compete with a direct modular computation in binary repres-
entation. This is partly due to the extra O(log n) factor for large sizes. But another
reason is the overhead involved by the use of Gmp routines with integers of a few words.
In Table 4, we report on the naive and the relaxed products in base p32. Now we see
that our naive product becomes of the same order of efficiency as the zealous approach
up to precision 1024. The relaxed approach starts to win when the precision reaches 256
in base p32.

k l 32 64 128 256 512 1024 2048 4096 8192
Naive_Mul_Padicpk 1.8 4.1 10 27 84 280 1000 3900 15000
Binary_Mul_Padicpk 3.2 6.1 16 53 170 570 1800 5300 15000

Table 4. Relaxed product modulo (pk)l, for p = 536870923 and k = 32, in microseconds.

4.2. Monoblock strategy

If one wants to compute the product a b of two p-adic numbers a and b, then: one can
start by converting both of them into pk-adic numbers A and B respectively, multiply A

and B as pk-adic numbers, and finally convert A B back into a p-adic number. The
transformations between p-adic and pk-adic numbers can be easily implemented:

class To_Blockspk Q Padic_reppk

a: Padicp

constructor (ã: Padicp)
a6 ã

method next ()
return binary (ank	 (n+1)k)

class From_Blocksp Q Padic_repp

a: Padicpk

b: p-expansion of size k
constructor (ã: Padicpk)

a6 ã
method next ()

if nmod k=0 then b = p_expansion (an/k, p)
return bnmod k

If to_blocks and from_blocks represent the top level functions then the product c of
a and b can be simply obtained as c = from_blocks (to_blocks (a) to_blocks (b)). We call
this way of computing products the monoblock strategy .

Notice that choosing k very large is similar to zealous computations. This monoblock
strategy can thus be seen as a mix of the zealous and the relaxed approaches. However,
it is only relaxed for pk-expansions, not for p-expansions. Indeed, let A and B still
denote the respective pk-adic representations of a and b, so that c = from_blocks (C), for
C = A B. Then the computation of c0 requires the knowledge of C0 = A0 B0, whence it
depends on the coefficients ak−1 and bk−1.

4.3. Relaxed blockwise product

We are now to present a relaxed p-adic blockwise product. This product depends on two
integer parameters m and k. The latter still stands for the size of the blocks to be used,
while the former is a threshold: below precision m one calls a given product on p-expan-
sions, while in large precision an other product is used on pk-expansions.

16 Relaxed p-adic numbers

If a and b are the two numbers in Rp that we want to multiply as a p-expansions,
then we first rewrite them a= a0	m + pm ā and b= b0	m + pm b̄, where

ā = a/pm =
∑

i=0

∞

am+i p
i and b̄ = b/pm =

∑

i=0

∞

bm+i p
i.

Now multiplying a and b gives

c= a0	m b0	m + pm
(

a0	m b̄ + ā b0	m

)

+ p2m ā b̄ ,

where the product ā b̄ can be computed in base pk, as it is detailed in the following
implementation:

class Blocks_Mul_Padic_repp Q Padic_repp

a, b, c, ā, b̄: Padicp

Ā, B̄ : Padicpk

constructor (ã: Padicp, b̃ : Padicp)

a6 ã, b6 b̃
ā6 a/pm, b̄6 b/pm

Ā6 to_blocks (ā), B̄6 to_blocks (b̄)
c̄6 from_blocks (Ā B̄)

c6 a0	m b0	m + pm
(

a0	m b̄ + ā b0	m

)

+ p2m c̄
method next ()

return cn

In Figure 2 below, we illustrate the contribution of each ai bj to the product ci+j

computed with the present blockwise version. In both bases p and pk the naive product
is used, and the numbers inside the squares indicate the degrees at which the corres-
ponding product is actually computed.

0
1

1 2
2

2
3
4
5
6
7
8
9
10 11

10
9
8
7
6
5
4
3

3
4
5
6
7
8
9
10
11
12

3 4 5 6 7 8 9 10
4 5 6 7 8 9 10 11
5 6 7 8 9 10 11 12

6 10

10 14

Figure 2. Blockwise product for m= 3 and k = 4.

Proposition 8. If m > k − 1, then Blocks_Mul_Padic_repp is relaxed for base p.

Proof. It is sufficient to show that the computation of c̄n−2m only involves terms in a

and b of degree at most n. In fact c̄n−2m requires the knowledge of the coefficients of Ā

and B̄ to degree at most l = ⌊(n − 2 m)/k⌋, hence the knowledge of the coefficients of a

and b to degree k (l + 1)− 1 + m 6 n − 2 m + k − 1 + m = n + k − 1−m, which concludes
the proof thanks to the assumption on m. Notice that the latter inequality is an
equality whenever n − 2 m is a multiple of k. Therefore m > k − 1 is necessary to ensure
the product to be relaxed. �

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 17

4.4. Timings

In the following table, we use blocks of size k = 32, and compare the blockwise versions
of the naive product of Section 2.6 to the relaxed one of Section 3.2. The first line con-
cerns the monoblock strategy: below precision 32 we directly use the naive p-adic pro-
duct; for larger precisions we use the naive pk-adic product. The second line is the same
as the first one except that we use a relaxed pk-adic product. In the third line the
relaxed blockwise version is used with m = 32: we use the naive product for both p- and
pk-adic expansions. The fourth line is similar except that the fast relaxed product is
used beyond precision 32.

n 8 16 32 64 128 256 512 1024 2048 4096
mono Naive_Mul_Padicp 3.5 5.5 11 53 95 190 380 870 2200 6500
mono Binary_Mul_Padicp 3.4 5.5 11 57 110 220 500 1200 3000 7800
blocks Naive_Mul_Padicp 8.0 11 17 46 140 320 700 1600 3700 9400
blocks Binary_Mul_Padicp 8.0 11 17 46 140 330 750 1700 3900 9100

Table 5. Blockwise products to precision n, for p= 536870923 and k = 32, in microseconds.

When compared to Table 4, we can see that most of the time within the monoblock
strategy is actually spent on base conversions. In fact, the strategy does not bring a sig-
nificant speed-up for a single product, but for more complex computations, the base con-
versions can often be factored.

For instance, assume that a and b are two d × d matrices with entries in Zp. Then
the multiplication c = a b involves only O(d2) base conversions and O(d3) pk-adic
products. For large d, the conversions thus become inexpensive. In Section 7, we will
encounter a similar application to multiple root extraction.

5. Application to recursive p-adic numbers

A major motivation behind the relaxed computational model is the efficient expansion of
p-adic numbers that are solutions to recursive equations. This section is an extension
of [Hoe02, Section 4.5] to p-adic numbers.

Let us slightly generalize the notion of a recursive equation, which was first defined
in the introduction, so as to accommodate for initial conditions. Consider a functional
equation

Y = Φ(Y), (2)

where Y is a vector of d unknowns in Rp. Assume that there exist a k ∈ N∗ and initial
conditions c0, 	 , ck−1 ∈ Md, such that for all n > k and y, ỹ ∈ Rp

d with y0 = c0, 	 ,

yk−1 = ck−1, we have

ỹ − y ∈ pn Rp
d � Φ(ỹ)−Φ(y)∈ pn+1 Rp

d. (3)

Stated otherwise, this condition means that each coefficient bn = Φ(b)n with n > k only
depends on previous coefficients b0, 	 , bn−1. Therefore, setting c = c0 + c1 p +
 +

ck−1 pk−1, the sequence c, Φ(c), Φ(Φ(c)) converges to a unique solution b∈Rp
d of (2) with

b0 = c0, 	 , bk−1 = ck−1. We will call (2) a recursive equation and the entries of the solu-
tion b recursive p-adic numbers.

18 Relaxed p-adic numbers

5.1. Implementation

Since p induces an element p = (p,	 , p) in Rd and an isomorphism Rp
d D (Rd)p, we may

reinterpret a solution b = Φ(b) as a p-adic number over Rd. Using this trick, we may
assume without loss of generality that d = 1. In our implementation, recursive numbers
are instances of the following class that stores the initial conditions b0, 	 , bk−1 and the
equation Φ:

class Recursive_Padic_repp Q Padic_repp

Φ: function from Rp to Rp

b0,	 , bk−1: initial conditions in M

constructor (Φ̃: function, b̃0,	 , b̃k−1: M)

Φ6 Φ̃, b06 b̃0,	 , bk−16 b̃k−1

method next ()
If n < k then return bn

return Φ(this)n

In the last line, the expression Φ(this) means the evaluation of Φ at the concrete
instance of the p-adic b =Φ(b) being currently defined.

Example 9. Consider Φ(b) = p b + 1, with one initial condition b0 = 1. It is clear that b

is recursive, since the n first terms of p b can be computed from the only n − 1 first
terms of b. We have b1 = b2 =
 =1. In fact, b= 1/(1− p).

5.2. Complexity analysis

If Φ is an expression built from L constants, sums, differences, and products (all of arity
two), then the computation of b simply consists in performing these L operations in the
relaxed model. For instance, when using the relaxed product of Proposition 6, this
amounts to O(L Ip(n) logn) operations to obtain the n first terms of b.

This complexity bound is to be compared to the classical approach via the Newton
operator. In fact, one can compute b with fixed-point p-adic arithmetic by evaluating
the following operator NΦ(z) = z − (z −Φ(z))/(1−Φ′(z)). There are several cases where
the relaxed approach is faster than the Newton operator:

1. The constant hidden behind the “O” of the Newton iteration is higher than the
one with the relaxed approach. For instance, if b is really a vector in Rp

d, then the
Newton operator involves the inversion of a d × d matrix at precision n/2, which
gives rise to a factor O(d3) in the complexity (assuming the naive matrix product
is used). The total cost of the Newton operator to precision n in Zp is thus in
O((d L + d3) Ip(n)). Here O(d L) bounds the number of operations needed to eval-
uate the Jacobian matrix. In this situation, if L ≪ d2, and unless n is very large,
the relaxed approach is faster. This will be actually illustrated in the next sub-
section.

2. Even in the case d = 1, the “O” hides a non trivial constant factor due to a certain
amount of “recomputations”. For moderate sizes, when polynomial multiplication
uses Karatsuba’s algorithm, or the Toom-Cook method, the cost of relaxed multi-
plication also drops to a constant times the cost of zealous multiplication [Hoe02,
Hoe07b]. In such cases, the relaxed method often becomes more efficient. This
will be illustrated in Section 6 for the division.

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 19

3. When using the blockwise method from Section 4 or [Hoe07b] for power series,
the overhead of relaxed multiplication can often be further reduced. In practice,
we could observe that this makes it possible to outperform Newton’s method even
for very large sizes.

For more general functional equations, where Φ involves non-algebraic operations, it
should also be noticed that suitable Newton operators Φ are not necessarily available.
For instance, if the mere definition of Φ involves p-expansions, then the Newton operator
may be not defined anymore, or one needs to explicitly compute with p-expansions. This
occurs for instance for R = Z, when Φ involves the “symbolic derivation” b �
∑

n>1 n bn pn−1.

5.3. Timings

In order to illustrate the performance of the relaxed model with respect to Newton itera-
tion, we consider the following family of systems of p-adic integers:

Φd,i(x1,	 , xd) = 1 + p
∑

k=1

d

(k + i) xk
(k+i)mod 3

, for i∈ {1,	 , d}.

The number of p-adic products grows linearly with d. Yet, the total number of opera-
tions grows with d2.

In Table 6, we compute the 256 first terms of the solution b = Φ(b) with the initial
condition b = (1, 	 , 1) + O(p). We use the naive product of Section 2.6 and compare to
the Newton iteration directly implemented on the top of the routines of Gmp. In fact
the time we provide in the line “Matrix multiplication” does not corresponds to a com-
plete implementation of the iteration but only to two products of two d × d matrices
with integers modulo p64. These two operations necessarily occurs for inverting the Jac-
obian matrix to precision p128 when using the classical algorithm as described in [GG03,
Algorithm 9.2]. This can be seen as a lower bound for any implementation of the
Newton method. However the line “Newton implementation” corresponds to our imple-
mentation of this method, hence this is an upper bound.

d 1 2 4 8 16 32 64 128
Matrix multiplication 0.002 0.014 0.12 0.9 7.2 56 460 3600
Newton implementation 0.13 0.31 2.3 13 95 700 5500 43000
Naive_Mul_Padicp 0.34 0.42 1.4 3.3 8.7 26 94 420

Table 6. 256 first terms of b =Φd(b), for p= 536870923, in milliseconds.

Although Newton iteration is faster for tiny dimensions d 6 2, its cost growths as d3

for larger d, whereas the relaxed approach only grows as d2. For d = 1, we notice that
the number b is computed with essentially one relaxed product. In the next table we
report of the same computations but with the relaxed product of Section 3.2 at preci-
sion 1024; the conclusions are essentially the same:

d 1 2 4 8 16 32 64 128
Matrix multiplication 0.014 0.12 0.98 7.9 62 490 4000 31000
Newton implementation 0.58 1.2 13 90 640 4900 38000 300000
Binary_Mul_Padicp 2.4 2.6 9.4 21 52 150 480 2300

Table 7. 1024 first terms of b = Φd(b), for p = 536870923, in milliseconds.

20 Relaxed p-adic numbers

6. Relaxed division

We are now to present relaxed algorithms to compute the quotient of two p-adic num-
bers. The technique is similar to power series, as treated in [Hoe02], but with subtleties.

6.1. Division by a “scalar”

The division of a power series in K[[x]] by an element of K is immediate, but it does not
extend to p-adic numbers, because of the propagation of the carries. We shall introduce
two new operations. Let β ∈ M play the role of a “scalar”. The first new operation,
written mul_rem (a: Padicp, β: M), returns the p-adic number c with coefficients cn =
rem(β an, p). The second operation, written mul_quo (a: Padicp, β: R), returns the cor-
responding carry, so that

β a = mul_rem (a, β)+ p mul_quo (a, β)

=
∑

n=0

∞

rem(β an, p) pn +
∑

n=0

∞

quo(β an, p) pn+1.

These operations are easy to implement, as follows:

class Mul_Rem_Padic_repp Q Padic_repp

a: Padicp

β: M
constructor (ã: Padicp, β̃ : M)

a6 ã, β6 β̃
method next ()

return rem (β an, p)

class Mul_Quo_Padic_repp Q Padic_repp

a: Padicp

β: M
constructor (ã: Padicp, β̃ : M)

a6 ã, β6 β̃
method next ()

return quo (β an, p)

Proposition 10. Let a be a relaxed p-adic number and let β ∈ M. If β is invertible
modulo p, with given inverse γ = β−1 mod p, then the quotient c=a/β is recursive and
c satisfies the equation

c =mul_rem (a− pmul_quo (c, β), γ), c0 = γ a0mod p.

If R =Z, then a/β can be computed up till precision n using O(n I(log p)) bit-operations.

Proof. It is clear from the definitions that the proposed formula actually defines
a recursive number. Then, from β c =mul_rem (c, β) + p mul_quo (c, β), we deduce that
β c− pmul_quo (c, β) =mul_rem (c, β), hence

c=mul_rem (β c− pmul_quo (c, β), γ)=mul_rem (a− pmul_quo (c, β), γ).

The functions mul_rem and mul_quo both take O(n I(log p)) bit-operations if R =Z,
which concludes the proof. �

6.2. Quotient of two p-adic numbers

Once the division by a “scalar” is available, we can apply a similar formula as for the
division of power series of [Hoe02].

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 21

Proposition 11. Let a and b be two relaxed p-adic numbers such that b0 is invertible of
given inverse γ = b0

−1 mod p. The quotient c=a/b is recursive and satisfies the following
equation:

c =
a− (b− b0) c

b0
, c0 = γ a0mod p.

If R =Z, then a/b can be computed up till precision n using O(I(n log p) log n) bit-opera-
tions.

Proof. The last assertion on the cost follows from Proposition 7. �

Remark 12. Notice that p is not assumed to be prime, so that we can replace p by pk,
and thus benefit of the monoblock strategy of Section 4.2. This does not involve a large
amount of work: it suffices to write from_blocks (to_blocks (a)/to_blocks (b)). Notice
that this involves inverting b0	 pk modulo pk.

6.3. Timings

In following Table 8 we display the computation time for our division algorithm. We
compare several methods:

• The first line “Newton” corresponds to the classical Newton iteration [GG03,
Algorithm 9.2] used in the zealous model.

• The second line corresponds to one call of Gmp’s extended g.c.d. function.

• The next two lines Naive_Mul_Padicp and Binary_Mul_Padicp correspond to the
naive product of Section 2.6, and the relaxed one of Section 3.2.

• Then the next lines “mono Naive_Mul_Padicp” and “mono Naive_Mul_Padicp”
correspond to the monoblock strategy from Section 4.2 with blocks of size 32.

• Similarly the lines “blocks Naive_Mul_Padicp” and “blocks Naive_Mul_Padicp”
correspond to the relaxed block strategy from Section 4.3 with blocks of size 32.

• Finally the last line corresponds to direct computations in base p32 (with no con-
versions from/to base p).

When compared to Tables 1 and 2, we observe that the cost of one division algorithm is
merely that of one multiplication whenever the size becomes sufficiently large, as
expected. We also observe that our “monoblock division” is faster than the zealous one
for large sizes; this is even more true if we directly compute in base p32.

n 8 16 32 64 128 256 512 1024 2048
Newton 3 4 7 18 49 140 430 1300 3700
Gmp’s extended g.c.d. 3 6 14 35 92 250 730 2200 5600
Naive_Mul_Padicp 4 7 15 35 95 300 1000 3700 14000
Binary_Mul_Padicp 9 21 44 93 200 420 920 2000 4800
mono Naive_Mul_Padicp 6 10 20 95 160 280 540 1200 2800
mono Binary_Mul_Padicp 6 10 20 110 170 320 660 1500 3600
blocks Naive_Mul_Padicp 10 16 27 70 190 430 900 1900 4500
blocks Binary_Mul_Padicp 10 16 27 65 180 410 900 2000 4500
Naive_Mul_Padicp32 6 22 42 88 200 500 1500

Table 8. Divisions, for p = 536870923, in microseconds.

22 Relaxed p-adic numbers

7. Higher order roots

For power series in characteristic 0, the r-th root g of f is recursive, with equation g =
∫

f ′/(r gr−1) and initial condition g0 = f0
1/r (see [Hoe02, Section 3.2.5] for details). This

expression neither holds in small positive characteristic, nor for p-adic integers. In this
section we propose new formulas for these two cases, which are compatible with the
monoblock strategy of Section 4.2.

7.1. Regular case

In this subsection we treat the case when r is invertible modulo p.

Proposition 13. Assume that r is invertible modulo p, and let a be a relaxed invertible
p-adic number in Rp such that a0 is an r-th power modulo p. Then any r-th root b0 of a0

modulo p can be uniquely lifted into an r-th root b of a. Moreover, b is a recursive
number for the equation

b=
a− br + r b0

r−1 b

r b0
r−1

. (4)

The n first terms of b can be computed using

• O(log r M(n) logn) operations in K, if R =K[[x]] and p=x, or

• O(log r I(n log p) logn) bit-operations, if R =Z.

Proof. Since r is invertible modulo p, the polynomial xr − a is separable modulo p.
Any of its roots modulo p can be uniquely lifted into a root in Rp by means of the clas-
sical Newton operator [Lan02, Proposition 7.2].

Since a0 is invertible, so is b0. It is therefore clear that Equation (4) uniquely
defines b, but it is not immediately clear how to evaluate it so that it defines a recursive
number. For this purpose we rewrite b into b0 + c, with c of valuation at least 1:

b=
a− (b0 + c)r + r b0

r−1 (b0 + c)

r b0
r−1

=
a−∑

k=2
r (

r

k

)

b0
r−k ck + (r− 1) b0

r

r b0
r−1

.

Since r is invertible modulo p, we now see that it does suffice to know the terms to
degree n− 1 of b in order to deduce bn.

The latter expanded formula is suitable for an implementation but unfortunately the
number of products to be performed grows linearly with r. Instead we modify the clas-
sical binary powering algorithm to compute the expression needed with O(log r)

products only, as follows. In fact we aim at computing βr = (b0 + c)r − r b0
r−1 c − b0

r in
a way to preserve the recursiveness. We proceed by induction on r.

If r = 1, then βr = 0. If r = 2 then β2 = c2. Assume that r = 2 h, and that βh is avail-
able by induction. From

βh
2 = (b0 + c)r +

(

h b0
h−1 c + b0

h
)2

− 2
(

h b0
h−1 c + b0

h
)(

βh +h b0
h−1 c + b0

h
)

= (b0 + c)r −
(

h b0
h−1 c + b0

h
)2

− 2
(

h b0
h−1 c + b0

h
)

βh,

we deduce that

βr = βh
2 +
(

h b0
h−1 c + b0

h
)2

+ 2
(

h b0
h−1 c + b0

h
)

βh− r b0
r−1 c− b0

r

= βh

(

βh +2
(

h b0
h−1 c+ b0

h
))

+
(

h b0
h−1 c

)2
.

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 23

Since βh and c have positive valuation, the recursiveness is well preserved through this
intermediate expression.

On the other hand, if r is odd then we can write r = h + 1, with h even, and assume
that βh is available by induction. Then we have that:

βr = (b0 + c) βh +(b0 + c) (h b0
h−1 c+ b0

h)− (h +1) b0
h c− b0

h+1

= (b0 + c) βh +h b0
h−1 c2.

Again the recursiveness is well preserved through this intermediate expression. The
equation of b can finally be evaluated using O(log r) products and one division.
By [Hoe02, Theorem 4.1], this concludes the proof for power series. By Propositions 7
and 11, we also obtain the desired result for p-adic integers. �

For the computation of the r-th root in Z/p Z, we have implemented the algorithms
of [GG03, Theorems 14.4 and 14.9]: each extraction can be done with Õ(r log p) bit-
operations in average, with a randomized algorithm. This is not the bottleneck for our
purpose, so we will not discuss this aspect longer in this paper.

Remark 14. Notice that (p) is not assumed to be prime in Proposition 13. Therefore,
if we actually have an r-th root b of a modulo pk, then b can be seen as a pk-recursive
number, still using Equation (4). Hence, one can directly apply the monoblock strategy
of Section 4.2 to perform internal computations modulo pk.

7.2. p-th roots

If K is a field of characteristic p, then f ∈ K[[x]] is a p-th power if, and only if, f ∈
Kp[[xp]]. If it exists, the p-th root of a power series is unique. Here, Kp represents the
sub-field of the p-th powers of K. By the way, let us mention that, for a general effective
field K, Fröhlich and Shepherdson have shown that testing if an element is a p-th power
is not decidable [FS56, Section 7] (see also the example in [Gat84, Remark 5.10]).

In general, for p-adic numbers, an r-th root extraction can be almost as complicated
as the factorization of a general polynomial in Rp[x]. For instance, with R = Z[2

√
] and

p = 2
√

we have that r = 2 = p2 has valuation 2 in Rp. We will not cover such a general
situation. We will only consider the case of the p-adic integers, that is for when R = Z

and p is prime.
From now on, let a denote a p-adic integer in Zp from which we want to extract the

p-th root (if it exists). If the valuation of a is not a multiple of p, then a is not a p-th
power. If it is a multiple of p, then we can factor out pval a and assume that a has valu-
ation 0. The following lemma is based on classical techniques, we briefly recall its proof
for completeness:

Lemma 15. Assume that p is prime, and let a∈Zp be invertible.

• If p > 3, then a is a p-th power if, and only if, a0 + p a1 = a0
p modulo p2. In this

case there exists only one p-th root.

• If p = 2, then a is a p-th power if, and only if, a1 = a2 = 0. In this case there exist
exactly two square roots.

Proof. If a = bp in Zp then b0 = a0. After the translation x = a0 + y in xp − a = 0, we
focus on the equation (b0 + y)p− a= 0, which expands to

h(y)= yp +
∑

i=1

p−1
(

p

i

)

b0
p−i

yi − (a− b0
p)= 0. (5)

24 Relaxed p-adic numbers

For any i ∈ {1, 	 , p − 1}, the coefficient
(

p

i

)

has valuation at least one because p is

prime. Reducing the latter equation modulo p2, it is thus necessary that a0 + p a1 = b0
p

modulo p2.
Assume now that a0 + p a1 = b0

p holds modulo p2. After the change of variables y by
p z and division by p2, we obtain

h̃(z)= pp−2 zp +
∑

i=2

p−1
(

p

i

)

b0
p−i

pi−2 zi + b0
p−1

z − a− b0
p

p2
=0. (6)

We distinguish two cases: p> 3 and p=2.

If p > 3, then any root of h̃ must be congruent to
(

a− b0
p)/(b0

p−1
p2) modulo p. Since

h̃
′
(

(

a − b0
p)/(b0

p−1
p2)
)

= b0
p−1 has valuation 0, the Newton operator again ensures that

h̃ has exactly one root [Lan02, Proposition 7.2].

If p = 2, then h̃(z) rewrites into z2 + b0 z − a− b0
2

p2
= z2 + z − a− 1

4
. Since h ′̃(z) =

b0 mod p = 1 mod 2, any root of h̃ modulo 2 can be lifted into a unique root of h̃ in Z2.
The possible roots being 0 and 1, this gives the extra condition a2 =0. �

7.3. Square roots in base 2

In the following proposition we show that the square root of a 2-adic integer can be
expressed into a recursive number that can be computed with essentially one relaxed
product.

Proposition 16. Let a be a relaxed 2-adic integer in Z2 with a0 = 1 and a1 = a2 = 0.
Let b be a square root of a, with b0 = 1 and b1 being 0 or 1, and let c = (b − b0 − 2 b1)/4,
and ã = (a − (b0 + 2 b1)

2)/8. Then c is a recursive number with initial condition c0 = ã0

and equation

c =
ã − 2 c2

b0 +2 b1
. (7)

The n first terms of b can be computed using O(I(n log p) logn) bit-operations.

Proof. Equation (7) simply follows from

(b0 +2 b1 + 4 c)2− a= (b0 + 2 b1)
2 +8 (b0 + 2 b1) c + 16 c2− a =0.

The cost is a consequence of Propositions 7 and 11. �

Remark 17. As in the preceding regular case, we can see c as a pk-recursive number as
soon as c is known modulo pk. In fact letting C = C0 + C̃ , with C0 = C mod pk, Equa-
tion (7) rewrites into

(b0 +2 b1) C = ã − 2 (C0 +(C −C0))
2

= ã − 2 C0
2− 4 C0 (C −C0)− 2 (C −C0)

2,

which gives

(b0 + 2 b1 + 4 C0)C = ã + 2C0
2− 2 (C −C0)

2.

The latter equation implies that C is pk-recursive, so that we can naturally benefit of
the monoblock strategy from Section 4.2.

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 25

7.4. p-th roots in base p

In this subsection we assume that p is an odd prime integer. We will show that the p-th
root is recursive and can be computed using similar but slightly more complicated for-
mulas than in the regular case.

Proposition 18. Let a be an invertible relaxed p-adic integer in Zp such that a =
a0

p mod p2. Let b denote the p-th root of a, with b0 = a0, let ã = (a − (b0 + p b1)
p)/p2, and

let c = (b − b0)/p. Then c is a recursive number with initial condition c0 = b1 and equa-
tion

c = c0 +
ã − γp

(b0 + p c0)
p−1

, (8)

where

γr =
(b0 + p c)

r − r p (b0 + p c0)r−1 (c− c0)− (b0 + p c0)r

p2 , for all r > 0.

The n first terms of b can be computed with O(log p I(n log p) logn) bit-operations.

Proof. As a shorthand we let β = b0 + p c0 and d = c − c0. Equation (8) simply follows
from

bp − a = (β + p d)
p − a

= p2 γp + p2 βp−1 d + βp − a

= p2 γp + p2 βp−1 d− p2 ã =0.

Since

γp =
∑

i=2

p
(

p

i

)

βp−i pi−2 di,

and since d has positive valuation, Equation (8) actually defines c as a recursive number.
As in the regular case, we need to provide an efficient way to compute γr. We pro-

ceed by induction on r. If r = 1, then γr = 0. If r = 2, then γr = d2, which preserves the
recursiveness. Assume now that r =2 h and that γh is available by induction. From

(p2 γh)
2 = (β + p d)r +

(

h pβh−1 d + βh
)2

− 2
(

h pβh−1 d + βh
)(

p2 γh +h p βh−1 d + βh
)

= (β + p d)r −
(

h pβh−1 d + βh
)2− 2

(

h pβh−1 d + βh
)

p2 γh,

we deduce that

p2 γr = (p2 γh)
2 +
(

h pβh−1 d+ βh
)2

+2
(

hp βh−1 d + βh
)

p2 γh − r p βr−1 d− βr

= p2 γh

(

p2 γh + 2
(

h pβh−1 d + βh
))

+
(

h pβh−1 d
)2

,

whence

γr = γh

(

p2 γh + 2
(

h pβh−1 d+ βh
))

+
(

h βh−1 d
)2

.

Since γh and d have positive valuation, the recursiveness is well preserved through this
intermediate expression.

On the other hand, if r is odd, then we can write r = h + 1, with h even, and assume
that γh is available by induction. Then we have that:

p2 γr = p2 (β + p d) γh +(β + p d) (h pβh−1 d + βh)− (h +1) p βh d− βh+1

= p2 (β + p d) γh +h p2 βh−1 d2,

26 Relaxed p-adic numbers

whence

γr = (β + p d) γh + hβh−1 d2,

which again preserves the recursiveness. Finally the equation of d can be evaluated with
O(log r) products and one division, which concludes the proof by Propositions 7
and 11. �

Remark 19. As in the regular case, we can see c as a pk-recursive number as soon as c

is known modulo pk. In fact, letting C = C0 + D, with C0 = C mod pk, Equation (8)
rewrites into

C =C0 +
Ã −Γp

(b0 + p C0)
p−1 ,

where Ã =(a− (b0 + p C0)
p)/p2, and

Γr =
(b0 + p C)

r − r p (b0 + p C0)r−1 (C −C0)− (b0 + pC0)r

p2
, for all r > 0.

Notice that division by p2 in base pk, with k > 2, is equivalent to multiplication by pk−2

and division by pk, which corresponds to a simple shift. Then Γp can be computed by
recurrence with the same formula as γp, mutatis mutandis . In this way C is pk-recursive,
so that we can naturally benefit of the monoblock strategy of Section 4.2.

7.5. Timings

In the following table, we give the computation time of the square root using our fast
relaxed product of Section 4.3 that has been reported in Table 5. Since, in terms of per-
formances, the situation is very similar to the division, we only compare to the zealous
implementation in Pari/Gp version 2.3.5.

n 8 16 32 64 128 256 512 1024 2048
blocks Binary_Mul_Padicp 14 22 39 91 230 520 1100 2400 5400
Pari/Gp 5 11 28 74 210 670 2300 8100 30000

Table 9. Square root, for p= 536870923, in microseconds.

8. Conclusion

From more than a decade a major stream in complexity theory for computer algebra has
spread the idea that high level algorithms must be parameterized in terms of a small
number of elementary operations (essentially integer, polynomial and matrix multiplica-
tion), so that the main goal in algorithm design consists in reducing as fast as possible
to these operations. Although many asymptotically efficient algorithms have been
developed along these lines, an overly doctrinaire application of this philosophy tends to
be counterproductive.

For example, when it comes to computations in completions, we have seen that there
are two general approaches: Newton’s method and the relaxed (or lazy) approach. It is
often believed that Newton’s method is simply the best, because it asymptotically leads
to the same complexity as integer or polynomial multiplication. However, this “reduc-
tion” does not take into account possible sparsity in the data, non asymptotic input
sizes, more involved types of equations (such as partial differential equations), etc. In
the literature, these difficulties are often evacuated by picking problems, not according
to their practical relevance, but rather to their aptitude to fit in an idealized world
where standard complexity arguments can be applied.

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 27

In this paper, we have demonstrated that, in the area of computations with p-adic
numbers, the relaxed approach is often more efficient than methods based on Newton
iteration. The gains are sometimes spectacular: in Tables 6 and 7, we have shown that
Hensel lifting in high dimensions can become more than 100 times faster, when using the
relaxed approach. At other moments, we were ourselves surprised: in Table 8, we see
that, even for the division of p-adic numbers, a naive implementation of the relaxed pro-
duct yields better performances than a straightforward use of Gmp, whenever p is suffi-
ciently large.

Of course, the detailed analysis of the mutual benefits of both approaches remains an
interesting subject. On the one hand, Newton iteration can be improved using blockwise
techniques [Ber00, Hoe10]. On the other hand, the relaxed implementation can be
improved for small sizes by ensuring a better transition between hardware and long
integers, and massive inlining. At huge precisions, the recursive blockwise technique
from [Hoe07a] should also become useful. Finally, “FFT-caching” could still be used in
a more systematic way, and in particular for the computation of squares.

To conclude our comparison between Newton iteration and the relaxed approach, we
would like to stress that, under most favourable circumstances, Newton iteration can
only be hoped to be a small constant times faster than the relaxed approach, since the
overhead O(log n) of relaxed multiplication should really be read as (1/2) log (n/128) or
less. In other extreme cases, Newton iteration is several hundreds times slower, or even
does not apply at all (e.g. for the resolution of partial differential equations).

Let us finally mention that the relaxed resolution of recursive systems of equations
has been extended to more general systems of implicit equations [Hoe09]. The computa-
tion of such local solutions is the central task of the polynomial system solver called
Kronecker (see [DL08] for an introduction). We are confident that the results
of [Hoe09], which were presented in the power series context, extend to more general
completions, and that the relaxed model will lead to an important speed-up.

Bibliography

[Ber00] D. Bernstein. Removing redundancy in high precision Newton iteration. Available from
http://cr.yp.to/fastnewton.html, 2000.

[BK78] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series.
Journal of the ACM , 25:581–595, 1978.

[Bre76] R. P. Brent. The complexity of multiprecision arithmetic. In R. S. Anderssen and R. P.
Brent, editors, Complexity of computational problem solving , pages 126–165, Brisbane, 1976. Uni-
versity of Queensland Press.

[CC90] D. V. Chudnovsky and G. V. Chudnovsky. Computer algebra in the service of mathemat-
ical physics and number theory (computers in mathematics, stanford, ca, 1986). In Lect. Notes in
Pure and Applied Math., volume 125, pages 109–232, New-York, 1990. Dekker.

[CK91] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica , 28:693–701, 1991.

[DL08] C. Durvye and G. Lecerf. A concise proof of the Kronecker polynomial system solver from
scratch. Expositiones Mathematicae , 26(2):101 – 139, 2008.

[DS04] S. De Smedt. p-adic arithmetic. The Mathematica Journal , 9(2):349–357, 2004.

[FS56] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philos. Trans.

Roy. Soc. London. Ser. A., 248:407–432, 1956.

[Für07] M. Fürer. Faster integer multiplication. In Proceedings of the Thirty-Ninth ACM Sym-

posium on Theory of Computing (STOC 2007), pages 57–66, San Diego, California, 2007.

[G+91] T. Granlund et al. GMP, the GNU multiple precision arithmetic library. Available from
http://www.swox.com/gmp, 1991.

28 Relaxed p-adic numbers

[Gat84] J. von zur Gathen. Hensel and Newton methods in valuation rings. Math. Comp.,
42(166):637–661, 1984.

[GG03] J. von zur Gathen and J. Gerhard. Modern computer algebra . Cambridge University Press,
Cambridge, second edition, 2003.

[H+02] J. van der Hoeven et al. Mathemagix. Available from http://www.mathemagix.org, 2002.

[HH09] W. B. Hart and D. Harvey. FLINT 1.5.1: Fast library for number theory. Available from
http://www.flintlib.org, 2009.

[Hoe97] J. van der Hoeven. Lazy multiplication of formal power series. In W. W. Küchlin, editor,
Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation
(ISSAC 1997), pages 17–20, Maui, Hawaii, July 1997.

[Hoe99] J. van der Hoeven. Fast evaluation of holonomic functions. Theoretical Computer Science ,
210:199–215, 1999.

[Hoe01] J. van der Hoeven. Fast evaluation of holonomic functions near and in singularities. J.

Symbolic Comput., 31:717–743, 2001.

[Hoe02] J. van der Hoeven. Relax, but don’t be too lazy. J. Symbolic Comput., 34(6):479–542,
2002.

[Hoe07a] J. van der Hoeven. New algorithms for relaxed multiplication. J. Symbolic Comput.,
42(8):792–802, 2007.

[Hoe07b] Joris van der Hoeven. Efficient accelero-summation of holonomic functions. J. Symbolic

Comput., 42(4):389–428, 2007.

[Hoe09] J. van der Hoeven. Relaxed resolution of implicit equations. Technical report, HAL, 2009.
http://hal.archives-ouvertes.fr/hal-00441977/fr/.

[Hoe10] J. van der Hoeven. Newton’s method and FFT trading. J. Symbolic Comput., 45(8):857–
878, 2010.

[Kat07] S. Katok. p-adic analysis compared with real , volume 37 of Student Mathematical Library .
American Mathematical Society, Providence, RI, 2007.

[Kob84] N. Koblitz. p-adic numbers, p-adic analysis, and zeta-functions , volume 58 of Graduate

Texts in Mathematics . Springer-Verlag, New York, second edition, 1984.

[Lan02] S. Lang. Algebra , volume 211 of Graduate Texts in Mathematics . Springer-Verlag, third
edition, 2002.

[PAR08] The PARI Group, Bordeaux. PARI/GP, version 2.3.5 , 2008. Available from
http://pari.math.u-bordeaux.fr/.

[S+09] W. A. Stein et al. Sage Mathematics Software (Version 4.2.1). The Sage Development
Team, 2009. Available from http://www.sagemath.org.

[SS71] A. Schönhage and V. Strassen. Schnelle Multiplikation grosser Zahlen. Computing , 7:281–
292, 1971.

[Wan84] P. S. Wang. Implementation of a p-adic package for polynomial factorization and other
related operations. In EUROSAM 84 (Cambridge, 1984), volume 174 of Lecture Notes in

Comput. Sci., pages 86–99. Springer, Berlin, 1984.

Jérémy Berthomieu, Joris van der Hoeven, Grégoire Lecerf 29

