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Abstract

The vector space dimension of a linear behavior operator, such as the elasticity tensor, depends on the symmetry

group of the material it is defined on. This note aims at introducing an easy and analytical way to calculate this

dimension knowing the material symmetry group. These general results will be illustrated in case of classical and

strain-gradient elasticity. To cite this article: A. Name1, A. Name2, C. R. Mécanique 333 (2005).

Résumé

Formules analytiques pour la détermination de la dimension d’un tenseur anisotrope. La dimension

de l’espace vectoriel d’un opérateur linéaire de comportement, comme le tenseur d’élasticité, dépend des symétries

du milieu matériel. L’objectif de cette note est de présenter une méthode simple et analytique pour de déterminer

ces dimensions connaissant le groupe de symétrie matérielle. Ces résultats généraux seront illustrés dans les cas

de l’élasticité classique et du second gradient. Pour citer cet article : A. Name1, A. Name2, C. R. Mécanique 333
(2005).
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1. Introduction

The case of a general linear behavior will be considered here. This behavior is supposed to be modelled
by a tensor, and attention will be focused on the link between the symmetry of the material domain and
the number of coefficient needed to correctly define the tensor. In section 2 some basic definitions about
symmetries will be summed up. Some notes about classical tensor decompositions will then be recapped
in section 3. The fundamental notion of G-invariant harmonic tensor space will be introduced in section
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4. Our main result will be stated in section 5. And finally some illustrations will be proposed in section
6.

2. Physical and material symmetries

Hereafter E3 will be the 3-dimensional euclidean physical space. Let G be a subgroup of the orthogonal
group in 3-dimension O(3), O(3) is the group of isometries of E3. Let’s define a material M as a 3-
dimensional subset of E3. M is said G-invariant if the action of G’s elements transforms M into itself.
This set of operation, called the material symmetry group, will be noted GM:

GM = {Q ∈ O(3), Q ⋆ M = M} (1)

where ⋆ stands for the Q action upon M. Now consider a physical property P defined on M, the set of
operation letting the behavior invariant is the physical symmetry group, noted GP :

GP = {Q ∈ O(3), Q ⋆ P = P} (2)

P will be described, in the following, by an nth-order tensor noted Tn. T
n will stand for its related vector

space. If the property is modeled by an even order tensor, the former definition could be reduced to the
study of SO(3), the group of orthogonal transformations whose determinant equal +1. This hypothesis
will be made in this paper 1 . The material symmetry group and the physical one are related by the mean
of Neumann’s principle [8]:

GM ⊆ GP (3)

Meaning that each operation letting the material invariant lets the physical property invariant. Never-
theless, as shown for tensorial properties using Hermann’s theorems [2], physical properties can be more
symmetrical than the material.

In E3 GP is conjugate with a closed subgroup of SO(3) [8]. The collection of those subgroups is [4]:

Σ := {I, Zp, Dp,SO(2),O(2), T ,O, I,SO(3)} (4)

with I the identity group; Zp the p-order cyclic group, i.e. the symmetry group of a p-fold-invariant
chiral figure; Dp the 2p-order dihedral group, i.e. the symmetry group of a regular p-gone 2 ; SO(2) the
continuous group of rotations and O(2) the continuous group of orthogonal transformations in 2-D. T
will stand for the tetrahedron symmetry group, O for the octahedron one and I for the icosahedron one.

To study tensor symmetry classes an elementary parts decomposition is needed. Such a decomposition
is, in literature, known as harmonic [3,4] or irreducible [5,9].

3. Tensor decomposition

3.1. Harmonic decomposition

The orthogonal irreducible decomposition of a tensor is known as harmonic decomposition. In E3, it is
an O(3)-invariant decomposition well known in group representation theory. It allows us to decompose

1 This hypothesis is made here just for sake of conciseness. The introduced method can be directly extended to odd order
tensors.
2

Dp contains Zp and mirror symmetry.
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any finite order tensor as a sum of irreducible ones [9,5]. This decomposition can be written:

Tn =
∑

k,τ

D(n)k,τ (5)

where tensors D(n)k,τ are components of the irreducible decomposition, k denotes the order of the har-
monic tensor embedded in D(n) and τ separates same order terms. This decomposition establishes an
isomorphism between T

n and a direct sum of harmonic tensor vector spaces H
k [3]. It is written

T
n ∼=

⊕

k,τ

H
k,τ (6)

but as explained in [4] this decomposition is not unique. On the other side, the O(3)-isotypic decomposition
[7] (equation 7) grouping same order terms is unique:

T
n ∼=

n
⊕

k=0

αkH
k (7)

with αk being the H
k multiplicity in the decomposition. Harmonic tensors are totally symmetric and

traceless. In R
3 the associated vector space dimension is:

dim H
k = 2k + 1 (8)

For simplicity sake, when there is no risk of misunderstanding, spaces αkH
k will be noted Kαk : i.e. the

harmonic space order (K) power its multiplicity (αk). Family {αk} is function of tensor space order and
index symmetries. Several methods exist to compute this family [5,9,1]. A classical example is the space
of elasticity tensors. In 3-D, it is isomorphic to 02 ⊕ 22 ⊕ 4 which is a 21-dimensional vector space [3].
This decomposition is O(3)-invariant, but can further be decomposed considering O(2) group action.

3.2. Cartan decomposition

So O(2)-action will be considered here. Under this action the harmonic space H
k can be decomposed

as [4]:

H
k ∼=

k
⊕

j=0

K
k
j with dim K

k
j =

{

1 if j = 0

2 if j 6= 0
(9)

It is referred as Cartan decomposition of an harmonic tensor space. The relation (9) implies a decompo-
sition containing subspaces for each j within [0; k]. If H

⋆j stands for the harmonic tensor space of order
j in 2-D space, it could be shown that for each k K

k
j is isomorphic to H

⋆j . Therefore, H
k is isomorphic

to the following space:

H
k ∼=

k
⊕

j=0

H
∗j (10)

The relation (7) may be thus rewritten:

T
n ∼=

n
⊕

k=0

αk(

k
⊕

j=0

H
∗j) ∼=

n
⊕

k=0

n
∑

j=k

αjH
∗k ∼=

n
⊕

k=0

βkH
∗k (11)

This O(2)-invariant decomposition grouping same order terms is the O(2)-isotypic decomposition of a
3-D tensor space.
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Coming back to the elasticity example, one reminds that, in 3-D, its vector space is isomorphic to
02 ⊕ 22 ⊕ 4. According to formula (11), its O(2)-isotypic decomposition will be 0∗5 ⊕ 1∗3 ⊕ 2∗3 ⊕ 3∗ ⊕ 4∗.

4. Invariance condition

Knowing harmonic decomposition of the tensor vector space, dimension of any G-invariant subspace
can easily be computed. In order to achieve such a goal, Zp-invariance condition should be detailed for
harmonic tensor.

4.1. Zp-invariant harmonic tensor

Let GHk be the group of transformations that let Hk unchanged, i.e.:

Q ∈ GHk ⇒ Q ⋆ Hk = Hk (12)

H
k is isomorphic with

⊕n

j=0 H
∗j . So, any Hk ∈ H

k is defined by a family of tensors: {H∗j}. The family

order is obviously j +1. Thus the invariance condition on Hk can be expressed by j +1 conditions on the
elements of the O(2)-invariant decomposition. These conditions are of j + 1 different types according to
the 2-D harmonic tensor order, i.e.

Q ⋆j H∗j = H∗j (13)

where ⋆j is SO(2)-action of on H
∗j . This action shall easily be expressed in the sequel.

Let H∗j = (sj , tj) be a H
∗j vector. Consider a plane rotation, Qrot ∈ SO(2) belonging to Zp. As shown

in [4] Qrot acts on H
∗j as a Z p

j
generator i.e. the rotation order p divided by the Cartan subspace indice.

Qrot =







cos
2π

p
− sin

2π

p

sin
2π

p
cos

2π

p






; Qrot ⋆ H∗j =







cos
2jπ

p
− sin

2jπ

p

sin
2jπ

p
cos

2jπ

p











sj

tj



 (14)

So, if Qrot belongs to GHk then each H∗j must be Qrot-invariant. The matrix of the Qrot action on H∗j

will be noted Q
(j)
rot. The invariance condition of H∗j is the solution of (Q

(j)
rot − Id)H∗j = 0. In other words,

ker(Q
(j)
rot − Id) has to be studied. A direct calculation shows that the H∗j invariance condition under

Zp-action is:
j = tp, t ∈ N (15)

And so, if j 6= tp then H∗j is equal to 0. Therefore ZpH
k, the Zp-invariant H

k planar decomposition, will
be:

ZpH
k =

⊕

0≤m≤⌊ k
p⌋

H
∗mp (16)

where ⌊.⌋ is the floor function.
Let’s consider FixHk(Zp) the linear subspace of H

k that contains elements fixed under Zp-action, its
dimension is :

dim FixHk(Zp) = 2

⌊

k

p

⌋

+ 1 (17)

This relation allows us to determine the dimension of any tensor space left fixed under any SO(3)
subgroup action. A group decomposition will be introduced to highlight this fact.
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4.2. Disjoint union decomposition

Any SO(3) subgroups could be decomposed into disjoint unions of cyclic groups. We got the following
result [4] :

Dp =
.
∪

p
Z2

.
∪ Zp ; T =

.
∪

4
Z3

.
∪

3
Z2 ; O =

.
∪

3
Z4

.
∪

4
Z3

.
∪

6
Z2 ; I =

.
∪

6
Z5

.
∪

10
Z3

.
∪

15
Z2 (18)

where
.
∪

n
stand for n repetition of

.
∪ (disjoint union) which definition is :

Definition 4.1 Let H1, . . . ,Hn be subgroups of a group Σ. We say that Σ is the disjoint union of

H1, . . . ,Hn if :

Σ = H1 ∪ . . . ∪ Hn (19)

Hi ∩ Hj = e, for all i 6= j (20)

So the notation
.
∪ is used to note disjoint union and e stands for the identity of Σ.

We further have, in the same reference, the following theorem :
Theorem 4.2 Let Γ be a compact Lie group acting on V and let Σ ⊂ Γ be a Lie subgroup. If Σ admits

a disjoint union decomposition, i.e. Σ = H1

.
∪ . . .

.
∪ Hk then :

dim(Fix(Σ)) =
1

|Σ|

[

k
∑

i=1

|Hi|dim(Fix(Hi)) − (k − 1) dim(V )

]

(21)

where |G| stands for the order of G. Application of theorem 4.2 to subgroup of SO(3) acting on H
k allows

us to obtain the dimension of G-invariant harmonic space.

Using such a result allows us to compute the dimension of any G-invariant harmonic subspace (G in
the set of SO(3) closed sub-groups).

4.3. Dimension of G-invariant harmonic space

So a straightforward application of those results leads to the following set of relations:

dim FixHk(Dp) =















⌊

k

p

⌋

+ 1 k = 2n
⌊

k

p

⌋

k = 2n + 1
; dim FixHk(T ) = 2

⌊

k

3

⌋

+

⌊

k

2

⌋

− k + 1 (22)

dim FixHk(O) =

⌊

k

4

⌋

+

⌊

k

3

⌋

+

⌊

k

2

⌋

− k + 1 ; dim FixHk(I) =

⌊

k

5

⌋

+

⌊

k

3

⌋

+

⌊

k

2

⌋

− k + 1 (23)

The two former relations could be rewritten in order to make the tetrahedral symmetry appears :

dim FixHk(O) =

⌊

k

4

⌋

−

⌊

k

3

⌋

+ dim FixHk(T ) ; dim FixHk(I) =

⌊

k

5

⌋

−

⌊

k

3

⌋

+ dim FixHk(T ) (24)

An now, the knowledge of the harmonic decomposition of a tensor will allow us to construct, according
to formula (7), the dimension of G-invariant tensor subspaces. Some new and analytical relations could
be derived according to those formulas.
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5. G-invariant tensor subspaces

Combining results previously obtained with the tensor space harmonic decomposition, the following
formulas are obtained:

5.1. Zp-invariance

dim FixT(Zp) = 2

n
∑

k=0

αk

⌊

k

p

⌋

+

n
∑

k=0

αk (25)

When p > k we obtain
⌊

k
p

⌋

= 0 and so βht =

n
∑

k=0

αk is the number of transverse hemitropic coefficients.

βht is the dimension of a SO(2)-invariant tensor.

5.2. Dp-invariance

dim FixT(Dp) =

n
∑

k=0

αk

⌊

k

p

⌋

+

⌊n
2 ⌋

∑

k=0

α2k (26)

When p > k we obtain
⌊

k
p

⌋

= 0 and so βht =

n
∑

k=0

αk is the number of transverse isotropic coefficients. βit

is the dimension of an O(2)-invariant tensor.

5.3. T ,O and I-invariance

dim FixT(T ) =

n
∑

k=0

αk(2

⌊

k

3

⌋

+

⌊

k

2

⌋

− k + 1) (27)

dim FixT(O) =

n
∑

k=0

αk(

⌊

k

4

⌋

+

⌊

k

3

⌋

+

⌊

k

2

⌋

− k + 1) (28)

dim FixT(I) =

n
∑

k=0

αk(

⌊

k

5

⌋

+

⌊

k

3

⌋

+

⌊

k

2

⌋

− k + 1) (29)

The two former expressions could be recasted

dim FixT(O) = dim FixT(D4) − dim FixT(D3) + dim FixT(T ) (30)

and
dim FixT(I) = dim FixT(D5) − dim FixT(D3) + dim FixT(T ) (31)

or :
dim FixT(I) = dim FixT(D5) − dim FixT(D4) + dim FixT(O) (32)
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6. Examples

Two examples will be considered : the classical fourth-order tensor of elasticity and the sixth-order
tensor of Mindlin strain gradient elasticity.

6.1. Classical elasticity

Let’s consider ElaC the vector space of classical elasticity tensor. It is the vector space of fourth-order
tensor possessing the classical minor and major index symmetries, i.e. :

C(ij) (kl) (33)

where (.) stands for the minor symmetry and . for the major one. It has been shown [3] that this vector
space decomposed as follows :

ElaC
∼= 2H

0 ⊕ 2H
2 ⊕ H

4 (34)

and so ElaC is defined by th following {αk} family : {2, 0, 2, 0, 1}. The following relations are thus obtained:

dim FixElaC
(Zp) = 2(2

⌊

2

p

⌋

+

⌊

4

p

⌋

) + 5 ; dim FixElaC
(Dp) = (2

⌊

2

p

⌋

+

⌊

4

p

⌋

) + 5 (35)

dim FixElaC
(O) = dim FixElaC

(T ) = 3 ; dim FixElaC
(SO(3)) = dim FixElaC

(O) = 2 (36)

Using these relations the following array could be constructed:

GM I Z2 D2 Z3 D3 Z4 D4 Zn>4, Dn>4 T ,O I,SO(3)

GElaC
I Z2 D2 Z3 D3 Z4 D4 O(2) O SO(3)

dim 21 13 9 7 6 7 6 5 3 2

(37)

which gives the number of coefficients for each physical symmetry classes.

6.2. Mindlin strain gradient elasticity

Let’s consider ElaA the vector space of Mindlin strain gradient elasticity tensor. It is the vector space
of sixth-order tensor possessing minor and major index symmetries [6], i.e. :

A(ij)k (lm)n (38)

It has been shown [2] that this vector space decomposed as follows :

ElaA
∼= 5H

0 ⊕ 4H
1 ⊕ 10H

2 ⊕ 5H
3 ⊕ 5H

4 ⊕ H
5 ⊕ H

6 (39)

and so ElaA is defined by th following {αk} family : {5, 4, 10, 5, 5, 1, 1}. The following relations are thus
obtained:

dim FixElaA
(Zp) = 2(4

⌊

1

p

⌋

+ 10

⌊

2

p

⌋

+ 5

⌊

3

p

⌋

+ 5

⌊

4

p

⌋

+

⌊

5

p

⌋

+

⌊

6

p

⌋

) + 31 (40)

dim FixElaA
(Dp) = 4

⌊

1

p

⌋

+ 10

⌊

2

p

⌋

+ 5

⌊

3

p

⌋

+ 5

⌊

4

p

⌋

+

⌊

5

p

⌋

+

⌊

6

p

⌋

) + 21 (41)

dim FixElaA
(T ) = 17 ; dim FixElaA

(O) = 11 (42)

dim FixElaC
(O) = 6 ; dim FixElaC

(SO(3)) = 5 (43)
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Using these relations the following array could be constructed:

GM I Z2 D2 Z3 D3 Z4 D4 Z5 D5 Z6 D6 Zn>6 Dn>6 T O I SO(3)

GElaA
I Z2 D2 Z3 D3 Z4 D4 Z5 D5 Z6 D6 SO(2) O(2) T O I SO(3)

dim 171 91 51 57 34 45 28 35 23 33 22 31 21 17 11 6 5

(44)

According to this procedure, it is shown that 17 different systems of symmetry exist for the sixth-order
tensor of Mindlin strain gradient elasticity.

7. Conclusion

In this note, analytical formulas giving the dimension of a subspace left fixed under SO(3)-subgroups
action have been presented. For our knowledge most of those relations were currently unknown. To
be applied to other linear behaviors the only thing to know is the harmonic decomposition of the tensor
vector space. An easy method for computing this decomposition was proposed in [2]. Following the former
approach extension to O(3)-subgroups is straight forward.
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