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COEXISTENCE OF THREE PREDATORS COMPETING FOR A

SINGLE BIOTIC RESOURCE

CLAUDE LOBRY, TEWFIK SARI, AND KARIM YADI

Abstract. We construct a model of competition of three consumers for one
single biotic resource ; simulations show that the three species coexist. Using
singular perturbations theory we sketch a mathematical proof for this coexis-
tence. The main mathematical tool used is an extension of the Pontryagin-
Rodygin theorem on the “slow” motion of a “slow-fast” differential system
when the “fast” motion possesses a stable limit cycle. The mathematical anal-
ysis is done within the framework of Non Standard Analysis.

1. Introduction

The question of coexistence of competing species for a single resource has a very
long history that we shall not attempt to recall here. We just recall the two decisive
papers by Armstrong and Mac Gehee [1, 6] where they pointed that coexistence
is not synonymous of coexistence at equilibrium. These papers were the starting
point of numerous papers showing complex behaviors of systems of competitors
and evidence of coexistence on the basis of numerical simulations. Following this
tradition we propose a model of coexistence of three species competing for one
resource.

The present paper has two parts. In the first part we construct our model and
explain what is the rationale behind our construction ; each step is illustrated by
simulations. In the second part we consider our model as a member of a more
general “consumer-resource” model for which we explain how coexistence of species
can be proved using singular perturbation analysis ; as an essential tool we use an
extension of a theorem of Pontryagin and Rodygin.

Considered from the ecological point of view our model shows that oscillations
in a “consumer-resource” relationship can open the door to coexistence with other
species provided that the new introduced species do not perturb too much the
oscillations. We do not know any example of an interaction between four species of
the type of the model presented here but its existence is plausible. We shall explain
it during the construction of a model. But we must acknowledge here that what
we do is a kind of “virtual ecology” showing what is “theoretically possible” in a
world of species respecting basic facts well established in concrete ecology. It is not
a description of the real world !

From the mathematical point of view our paper can be considered as an appli-
cation of singular perturbation methods to the mathematical proof of persistence
for some specific system. Our contribution consists mainly in the analysis of the
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theorem of Pontryagin and Rodygin and its extension to a theorem which is more
effective in some circumstances. Detailed proofs can be consulted at [14] and will
be published elsewhere. The mathematical analysis is done within the framework
of Non Standard Analysis, using the axiomatic of Nelson [7] and respecting the
spirit of G. Reeb [9].

2. Construction of a model.

2.1. The basic oscillating pair. We consider the system :

(1)











ds

dt
= 3s(1 − s) − s2

0.01+s2x1

dx1

dt
= 0.1[ s2

0.01+s2 − 0.65]x1

Due to the presence of the factor 0.1, it can be considered as a “slow-fast” system
of two differential equations of the following type :











ds

dt
= 1

ε1
[f(s) − g1(s)x1]

dx1

dt
= (g1(s) − d1)x1

where ε1 is a “small” parameter. The real s represents the density of some biotic
resource (prey) for a consumer which density is represented by x1. This is a rather
classical prey-predator model and it is well known that this kind of generalization of
the Lotka-Volterra model can have sustained oscillations. The existence of oscilla-
tions in prey-predator interaction is clearly demonstrated in laboratory experiments
(see [4]), if not in the real world. The choice of the function :

g1(s) =
s2

0.01 + s2

in place of the more classical Monod’s function with s in place of s2 was made in
order that the nullcline [f(s) − g1(s)x1] = 0 has the “S-shape” shown on Fig. 1
which prevents the resource from extinction. This kind of assumption is sometimes
called the “Allee” effect in ecological literature.

2.2. Addition of a new consumer “x2”. We want to add a new consumer and
at the same time keep the oscillations of (s, x1). It can be done by introducing a
new species with a very slow dynamics compare to that of (s, x1) like in the model
:



























ds

dt
= 1

ε1
[f(s) − g1(s)x1 − g2(s)x2]

dx1

dt
= (g1(s) − d1)x1

dx2

dt
= ε2 (g2(s) − d2)x2

where ε2 is small.
The existence of two consumers (which densities are represented by x1 and x2) of

the same resource and having very different characteristic time seems to be common
in nature. For instance small mammals and big mammals eating the same grass
have a lifespan which may differ of an order of magnitude.
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Figure 1. On this picture one observes a simulation of few trajec-
tories of the system (1). The black “S-shaped”curve is the nullcline
[f(s) − g1(s)x1] = 0. The direction of the motion along trajecto-
ries is indicated by the black arrows and the limit cycle by the red
arrow. By the way s(t) oscillates between two values.

Denote by x2 some constant x2 ; since x2(t) is quasi constant, for a while, the
evolution of (s, x1) is governed by :















ds

dt
= 1

ε1
[f(s) − g1(s)x1 − g2(s)x2]

dx1

dt
= (g1(s) − d1)x1

In that system we see that when x2 is small the nullcline

(2) f(s) − g1(s)x1 − g2(s)x2 = 0

is very close to the nullcline

(3) f(s) − g1(s)x1 = 0

and, thus, oscillations are preserved. The range of oscillations of s is slightly short-
ened as x2 increases. Now, if we look at the process from the point of view of x2

during an oscillation of period T the growth is given by :

∫ t+T

t

(g2(s(τ)) − d2)x2(τ)dτ

which varies monotonically according to the variation of amplitude of s. Thus the
growth can be positive for small values of x2 and negative for large ones ; in the
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Figure 2. Simulation of the system (4). The picture shows the
two projections of the trajectories, in green on the plane (s, x1)
and in red on the plane (s, x2). While the initial conditions where
kept constant for s and x1 they where changed for x2. One sees
that, starting from a small x2 = a then x2(t) is increasing and,
conversely, starting from a big x2 = c then x2(t) is decreasing.

middle there must be an equilibrium. This is the case for the model :

(4)



























ds

dt
= 3s(1 − s) − s2

0.01+s2x1 − g2(s)x2

dx1

dt
= 0.1[ s2

0.01+s2 − 0.65]x1

dx2

dt
= 0.01[g2(s) − 0.025]x2

with
{

s < 0.5 ⇒ g2(s) = 0

s ≥ 0.5 ⇒ g2(s) = 0.1(s−0.5)
0.01+(s−0.5)

We choose g2 = 0 on [0, 0.5] in order to be sure that the nullcline (2) is exactly
the same than the nullcline (3) and remains “S-shaped” ; thus oscillations are
preserved. This artificial choice is convenient for simplicity but a model with g2
being smoother would also work. Evidence of coexistence of x1 and x2 is given
on Fig. 2. On this simulation three initial conditions where taken, keeping s(0)
and x1(0) constant and changing x2(0). On the picture we have superimposed the
projections on the (s, x1) plane (in green) and the (s, x2) plane in red. The first
initial condition for x3 is a which is shown by the black arrow ; since the variation
of x2 is very slow the red projection looks like a point moving right to left and left
to right very fast while moving up very slowly ; the thick red line corresponds to a
dozen of oscillations. Starting from c we see that the point is slowly moving down.
Starting from b we see that x2 remains constant.

2.3. Addition of a new consumer “x3”. The idea is to have a new consumer
with a g3 growth rate such that the two graphs of g2 and g3 cross like on Fig. 3
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Figure 3. The graphs of g2 and g3.

in order that during an oscillation of (s, x1) the species 2 and 3 take the advantage
alternatively. This leads to the system :

(5)



























ds

dt
= 3s(1 − s) − s2

0.01+s2x1 − g3(s)x3

dx1

dt
= 0.1[ s2

0.01+s2 − 0.65]x1

dx3

dt
= 0.01[g3(s) − 0.025]x3

with
{

s < 0.58 ⇒ g3(s) = 0

s ≥ 0.58 ⇒ g3(s) = 2(s−0.58)
0.01+(s−0.58)

On Fig.4 one sees that the behavior of the system (s, x1, x3) is similar to the be-
havior we observed for (s, x1, x2) ; the projection (in blue) on the (s, x3) plane is
similar to the projection (in red) observed for (s, x2) in Fig.2.

2.4. Coexistence of all the three consumers. Now we consider the complete
system :

(6)



























ds
dt

= 3s(1 − s) − s2

0.01+s2x1 − g2(s)x2 − g3(s)x3

dx1

dt
= 0.1[ s2

0.01+s2 − 0.65]x1

dx2

dt
= 0.01[g2(s) − 0.025]x2

dx3

dt
= 0.01[g3(s) − 0.025]x3

Species x2 and x3 have a “slow motion” which can be approximated by computing
suitable integrals along the basic cycle ; this determines a flow on (x2, x3) plane
; this flow is studied and proved to have a stable equilibrium which proves the
persistence of both x2 and x3. On Fig.5 one sees the projection on the (x2, x3)
plane of the full system (6) with the three competitors. The simulations from
various initial conditions shows convergence to a point which actually corresponds
to a periodic orbit in the full space (s, x1, x2, x3). More details are given in the
next section.

2.5. Species 2 and 3 alone. Consider the system with s, x2 and x3 alone in the
absence of the species represented by x1. One easily check that in this case, from
the choice of g2 and g3, there is no oscillation and the stable equilibrium is the one
for which species x2 wins the competition.
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Figure 4. Simulation of the system (5). The picture shows the
two projections of the trajectories, in green on the plane (s, x1) and
in blue on the plane (s, x3). The projection (in blue) on the (s, x3)
plane is similar to the projection (in red) observed for (s, x2) in
Fig.2. Starting from a small x3 = a then x3(t) is increasing and,
conversely, starting from a big x3 = c then x3(t) is decreasing.
Between a and c there is some initial condition (not represented)
for which x3 do not increase nor decrease.

Figure 5. On this picture we have represented the projection of
simulations of the the complete system (6) on the plane (x2, x3).
The variables (s1, x1) (not represented) present rapid oscillations
while (x2, x3) evolves slowly. One sees that all the trajectories seem
to converge to an equilibrium. Compare to the “theoretical”picture
on Fig 8.
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3. Proof of the persistence of the three competitors in a model
with three time scales

In this section, we give the successive steps of a proof of the persistence in a
model of the form

(7)















ds
dt

= 1
ε1ε2

(f(s) − g1(s)x1 − g2(s)x2 − g3(s)x3)
dx1

dt
= 1

ε1
(g1(s) − d1)x1

dx2

dt
= (g2(s) − d2)x2

dx3

dt
= (g3(s) − d3)x3

where the occurring functions are differentiable, at least piecewise, ε1 and ε2 are
infinitesimal1. The function f vanishes at 0 ; it is increasing then decreasing and
vanishes at a value m. The functions gi are zero at 0, increasing and bounded.

3.1. Oscillations of s and x1. Let us consider the system

(8)

{

ds
dt

= 1
ε1

(f(s) − g1(s)x1)

dx1

dt
= (g1(s) − d1)x1

• Suppose that the nullcline ds/dt = 0 is a curve ϕ that, when s increases
from 0, decreases from +∞ to a minimum value reached for s = s− then
increases to a maximum value for s = s+ to finally decrease and vanishes
for s = m.

• Suppose that the value s∗ such that g1(s
∗) = d1 is between s− and s+.

Proposition 3.1. For ε1 infinitesimal, the system (8) has a limit cycle close to
the curve ABCD in Fig. 6.

3.2. The Pontryagin-Rodygin’s Theorem. Due to the lack of space, we shall
try in these sections to avoid excessive mathematical formalism of the results and we
refer to [12, 14, 13] for more details. To simplify, we suppose that all the occurring
differential equations have the property of uniqueness of solutions. Let us consider
the slow and fast system

(9)











[

ds
dt

dx1

dt

]

= 1
ε

[

F (s, x1, x)

G(s, x1, x)

]

dx
dt

= H(s, x1, x)

where the scalars s and x1 are the fast components, and the vector x the slow one.
The real number ε is positive and infinitesimal. The functions F , G and H are
continuous. The following system, where x is considered as a parameter, is called
the fast equation

(10)

[

ds
dt

dx1

dt

]

= 1
ε

[

F (s, x1, x)

G(s, x1, x)

]

Hence, the (s, x1)-component of a solution of (9) varies very quickly according to
(10) where x has been frozen at its initial value. When the fast equation (10)
has stable limit cycles Γx for each x in a compact domain, Pontryagin-Rodygin’s

1We use N.S.A. terminology. Following the spirit of ([5]) when a word (like “infinitesimal”) is
written in bold character its meaning is the one used in the formal language of Nelson I.S.T. but
the reader not familiar with this framework can use the intuitive meaning.
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A 

B 

M D 

Q 
P 

C 

Figure 6. Starting from the point P the solution is quasi hori-

zontal and goes fast to the nullcline ds/dt = 0 ; then the solution
stays near the nullcline and goes up until it reaches the maximum
at B; then the solution is quasi horizontal and goes fast to the
nullcline ds/dt = 0 at point C ; then the solution stays near the
nullcline and goes down until it reaches the minimum at D ; then
the solution goes fast to the right to the nullcline ds/dt = 0 and
reaches it at A.

Theorem [8] gives the limiting behavior of the singularly perturbed problem (9) :
Under suitable conditions, after a fast transition near the cycles described by the fast
equation (10), the trajectories of (9) quickly roll up around the manifold generated
by the cycles, with a slow evolution of the x-component according to the averaged
system

(11)
dx

dt
=

1

P (x)

∫ P (x)

0

H(s∗(τ, x), x∗1(τ, x), x) dτ

where (s∗(τ, x), x∗1(τ, x)) is a P (x)−periodic solution of the fast equation corre-
sponding to the cycle Γx. This result was originally obtained for at least C2 vector
fields, under the assumption that the cycles Γx are asymptotically stable in the
linear approximation. However, the result obtained in [12] shows that Pontryagin-
Rodygin description of solutions holds for C0 vector fields under additional assump-
tions.

3.3. Extension of Pontryagin-Rodygin’s Theorem. Note that System (7) has
the form

(12)











[

ds
dt

dx1

dt

]

= 1
ε2

[

1
ε1
F (s, x1, x)

G(s, x1, x)

]

dx
dt

= H(s, x1, x)

where x = (x2, x3) ∈ R
2. The fast equation

(13)

[

ds
dt

dx1

dt

]

=
1

ε2

[

1
ε1
F (s, x1, x)

G(s, x1, x)

]
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 F=0

 

s=!1(x1,x) s=!2(x1,x) 

 

"1 (x) 

"2 (x) 
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x'1>0 

 

s' >0 

x'1<0 

 

s' <0 

x'1>0 

 

s' <0 

x'1<0 

s 

x1 

Figure 7. Notations in equations (14)

admits a stable limit cycle for any value of x for infinitesimal values of ε1. It
is tempting to apply Pontryagin-Rodygin’s Theorem to (12) but the main reason
that makes this impossible is the fact that the fast equation is a nonstandard

equation. It is itself a singularly perturbed equation. We can not avoid to take
into account the three dynamics of the problem. In [14] Pontryagin-Rodygin’s
Theorem is extended to this kind of system the fast equation of which admits a
slow and fast limit cycle. This new result has also the advantage to overcome a
serious limitation of Pontryagin-Rodygin’s Theorem : unlike the latter, it makes
possible the localization of the cycles, the approximation of their periods and the
calculation of the average along these cycles. The functions F,G and H being
continuous and the positive real numbers ε1 and ε2 infinitesimal, suppose that
there exists a compact domain K of R

2 such that, for all x ∈ K the nullclines
F = 0 and G = 0 of (13) have the shape given in Figure 7. The (s, x1)-plane is
divided in four regions where the field has the indicated signs in the figure. The
limit cycle of (13) is infinitesimally close to the closed curve (ABCD) in Fig.
6 formed by two “slow arcs” (AB) and (CD) and two “fast segments” (DA) and
(BC). The two decreasing branches of the nullcline F = 0 are denoted s = ψ1(x1, x)
and s = ψ2(x1, x). Let us define in the interior of K the slow equation

(14)
dx

dt
= M(x),

where

(15)

M(x) = 1
P (x)

2
∑

i=1

ξi+1(x)
∫

ξi(x)

g(ψi(x1,x),x1,x)
f2(ψi(x1,x),x1,x)

dx1,

P (x) =
2
∑

i=1

ξi+1(x)
∫

ξi(x)

dx1

f2(ψi(x1,x),x1,x)
,with ξ3(x) = ξ1(x).

Let γ(t) be the trajectory of a solution of (12). Theorem 5.2.1 page 75 in [14]
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x2 

x3 

x3* 

x2* a2 

a3 

O 

A B 

C 

E 

D 

Figure 8. Portrait of (x2, x3) obtained from the averaged system
(16). Compare to the simulations presented on Fig.5

explains how γ(t) behave in the same manner than in the classical Pontryagin-
Rodygin theorem, the averaging on the cycles being now well approximated by the
explicit formulas (15).

3.4. Application to the model. Reconsider System (7).

• Assume that the functions g2 and g3 are zero until the respective thresholds
s2 and s3 are reached such that min(s2, s3) ≥ s+ and that g2 and g3 are
increasing beyond.

This assumption allows us to assert that the subsystem

[

ds
dt
dx1

dt

]

=
1

ε2

[

1
ε1

(f(s) − g1(s)x1 − g2(s)x2 − g3(s)x3)

(g1(s) − d1)x1

]

still admits, for every (x2, x3) and ε1 small enough, a limit cycle Γx2,x3
that differs

from that of (8) for values of s ≥ min(s2, s3). The more x1 and x2 are large,
the more these cycles are distorted inwards in their right side. The minimum and
maximum of the cycles remain unchanged. Here, the averaged equation (14,15)
takes the form (see [14] for explicit formulas)

(16)

{

dx2/dt = x2M2(x2, x3)/P (x2, x3),
dx3/dt = x3M3(x2, x3)/P (x2, x3).

A detailed study of equation (16) leads to the following conditions of persistence :

Theorem 3.2. [14] Suppose that s3 > s2 = s+, ϕ(s3) > ϕ(s−) and that d2 is below
a certain constant well determined by the problem. Then, for s3 − s2 and d3 small
enough, there is persistence of the species x2 and x3 of (16).

This result is reflected in Fig. 8 representing a positively invariant box OABC
of (16) in which arrive all trajectories with positive initial conditions. The axes
are invariant, the origin O is an unstable node and C and E are saddle points. A
lemma due to Butler-McGehee [2] shows that the union of limit sets of positive
half-trajectories is a compact subset Ω which does not meet the axes.

Theorem 3.3. Under the assumptions of the preceding Theorem, there is persis-
tence of the whole species of the model (7) for all positive initial conditions.
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This final result is obtained by using a nonstandard permanence lemma [10]
which extends the approximation of the component (x2(t), x3(t)) of the solution of
(7) by the solution of (16) to an infinitely large time interval [0, ω]. We than
prove2 that (x2(t), x3(t)) remains infinitely close to Ω for all infinitely large

values of t and all infinitesimal values of ε1 and ε2.
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