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Abstract

The paper studies long time asymptotic properties of the Maxi-
mum Likelihood Estimator (MLE) of the signal drift parameter in a
partially observed controlled fractional diffusion system. The optimal
estimation input is deduced. The consistency, asymptotic normality
and convergence of the moments of the MLE are established.

1 Introduction

1.1 Historical survey

The paper is devoted to the large sample asymptotic properties of the Max-
imum Likelihood Estimator (MLE) for the signal drift parameter ϑ in a
partially observed and controlled fractional diffusion system. We discuss the
asymptotic (for large observation time) design problem of the input signal
which gives an efficient estimator of the drift parameter. This kind of op-
timization problem has been treated by many authors, see e.g. [11, 7, 6]
and references therein. Following the paper [11], we can separate the initial
problem in two subproblems, when the first is equivalent to maximization
of the first eigenvalue of a certain self-adjoint operator and the second one
is devoted to the analysis of the asymptotic properties of the MLE. In con-
trast with the previous works, we propose to use (for the both subproblems)
Laplace transform computations, in particular, the Cameron-Martin formula
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and the link between the Laplace transform and the eigenvalues of a covari-
ance operator. This method has been proposed previously in [1, 2].

1.2 The setting and the main result

We consider real-valued functions x = (xt, t ≥ 0), u = (u(t), t ≥ 0) and a
process Y = (Yt, t ≥ 0), representing the signal and the observation respec-
tively, governed by the following homogeneous linear system of ordinary and
stochastic differential equations interpreted as integral equations :

{

dxt = −ϑxtdt+ u(t)dt , x0 = 0 ,

dYt = µxtdt+ dV H
t , Y0 = 0.

(1)

Here, V H = (V H
t , t ≥ 0) is normalized fBm with Hurst parameter H ∈ [1

2
, 1)

and the coefficients ϑ and µ 6= 0 are real constants. System (1) has a uniquely
defined solution process (x, Y ) where Y is Gaussian but neither Markovian
nor a semimartingale for H 6= 1

2
.

Suppose that parameter ϑ > 0 is unknown and is to be estimated given
the observed trajectory Y T = (Yt, 0 ≤ t ≤ T ) for a control u in the proper
class.

For a fixed value of the parameter ϑ, let PT
ϑ denote the probability mea-

sure, induced by Y T on the function space C[0,T ] and let FY
t be the natural

filtration of Y , FY
t = σ (Ys, 0 ≤ s ≤ t).

Let L(ϑ, Y T ) be the likelihood, i.e. the Radon-Nikodym derivative of
PT

ϑ , restricted to FY
T with respect to some reference measure on C[0,T ]. The

explicit representation of the likelihood function can be written thanks to the
transformation of observation model (1) proposed in [4]. Therefore, Fisher
information stands for :

IT (ϑ, u) = −Eϑ

∂2

∂ϑ2
lnLT (ϑ, Y

T ) .

Let us denoted UT some functional space of controls, that will be defined
later. Let us therefore note

JT (ϑ) = sup
u∈UT

IT (ϑ, u) .

Our main goal is to find estimator ϑT of the parameter ϑ which are asymp-
totically efficient in the sense that, for any compact ❑ ⊂ ❘+,

sup
ϑ∈❑

JT (ϑ)Eϑ

(

ϑT − ϑ
)2

= 1 + o(1) , (2)
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as T → ∞.
As the optimal input does not depend on ϑ (see Proposition 1.1), a pos-

sible candidate is the Maximum Likelihood Estimator (MLE) ϑ̂T , defined as
the maximizer of the likelihood:

ϑ̂T = argmax
ϑ>0

L(ϑ, Y T ). (3)

In this paper, we claim that:

Proposition 1.1. The asymptotical optimal input in the class of controls UT

is uopt(t) =
κH√
2λ
tH− 1

2 , where the constants λ and κH are defined in Section 2.1.

As in the classical case H = 1
2
(see [11]), as T tends to infinity,

JT (ϑ) ∼
µ2

ϑ4
T .

Moreover, MLE reaches efficiency and we deduce its large samples asymp-
totic properties:

Proposition 1.2. The MLE is uniformly consistent on compacts ❑ ⊂ Θ,
uniformly on compacts asymptotically normal

√
T
(

ϑ̂T − ϑ
)

=⇒ N
(

0,
ϑ4

µ2

)

as T tends to +∞ and we have the uniform on ϑ ∈ K convergence of the
moments: for any p > 0,

lim
T→∞

Eϑ

∣

∣

∣

√
T
(

ϑ̂T − ϑ
)∣

∣

∣

p

= E

∣

∣

∣

∣

ϑ2

µ
ζ

∣

∣

∣

∣

p

(4)

where ζ ∼ N (0, 1). Finally, the MLE is efficient in the sense of (2).

2 The proof

2.1 Preliminaries

In what follows, all random variables and processes are defined on a given
stochastic basis (Ω,F , (Ft)t≥0, P) satisfying the usual conditions and pro-
cesses are (Ft)-adapted. Moreover the natural filtration of a process is un-
derstood as the P-completion of the filtration generated by this process.
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Even if fBm are not martingales, there are simple integral transformations
which change the fBm to martingales (see [8, 9]). In particular, defining for
0 < s < t,

kH(t, s) = κ−1
H s

1

2
−H (t− s)

1

2
−H

, κH = 2HΓ

(

3

2
−H

)

Γ

(

1

2
+H

)

,

λ =
HΓ(3− 2H)Γ(H + 1

2
)

2(1−H)Γ(3
2
−H)

, wH(t) =
1

2λ(2− 2H)
t2−2H

Nt =

∫ t

0

kH(t, s)dV
H
s ,

then the process N = (Nt, t ≥ 0) is a Gaussian martingale, called in [8] the
fundamental martingale whose variance function is nothing but the function
wH . Moreover, the natural filtration of the martingale N coincides with the
natural filtration of the fBm V H .

Following [4], let us introduce Z = (Zt, t ≥ 0) the fundamental semi-
martingale associated to Y , namely

Zt =

∫ t

0

kH(t, s)dYs . (5)

Note that Y can be represented as Yt =
∫ t

0
KH(t, s)dZs where KH(t, s) =

H(2H − 1)
∫ t

s
rH− 1

2 (r − s)H− 3

2dr for 0 ≤ s ≤ t and therefore that natural
filtrations of Y and Z coincide. It can be proved that the following represen-
tation holds:

dZt = µQtd〈N〉t + dNt , Z0 = 0 , (6)

where

Qt =
d

d〈N〉t

∫ t

0

kH(t, s)xsds . (7)

Moreover, the following equation holds (see e.g. [4]):

dZt = µλℓ(t)∗ζtd〈N〉t + dNt , Z0 = 0 , (8)

where ζ = (ζt, t ≥ 0) is the solution of the ordinary differential equation

dζt

d〈N〉t
= −ϑλA(t)ζt + b(t)v(t), ζ0 = 0 , (9)
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where v(t) = d
d〈N〉t

∫ t

0
kH(t, s)u(s)ds and with

ℓ(t) =

(

t2H−1

1

)

, A(t) =

(

t2H−1 1
t4H−2 t2H−1

)

and b(t) =

(

1
t2H−1

)

.

Let us note, finally, VT the class of admissible controls

VT =

{

v | 1

T

∫ T

0

|v(t)|2d〈N〉t ≤ 1

}

.

For the correspondence between controls u = (u(t), 0 ≤ t ≤ T ) and v =
(v(t), 0 ≤ t ≤ T ), see Remark 1.

2.2 Likelihood function and the Fischer information

In this section, we are interested in the explicit representation of the likeli-
hood function LT

(

ϑ, ZT
)

. Indeed the classical Girsanov theorem gives the
following equality

LT (ϑ, Z
T ) = exp

{

µλ

∫ T

0

ℓ(t)∗ζtdZt −
µ2λ2

2

∫ T

0

ζ∗t ℓ(t)ℓ(t)
∗ζtd〈N〉t

}

(10)

where ζ = (ζt, t ≥ 0) is the solution of the ordinary differential equation (9).
the Fischer information stands for

IT (ϑ, v) = −Eϑ

∂2

∂ϑ2
lnLT (ϑ, Z

T )

= Eϑ

∫ T

0

µ2λ2

(

∂

∂ϑ
ℓ(t)∗ζt

)2

d〈N〉t

=

∫ T

0

µ2λ2

(

∂

∂ϑ
ℓ(t)∗ζt

)2

d〈N〉t (ζ is deterministic) (11)

=

∫ T

0

(

∂ζt

∂ϑ

)∗
µ2λ2ℓ(t)ℓ(t)∗

∂ζt

∂ϑ
d〈N〉t .

2.3 Optimal input and Efficiency

From (9), we get

ζt = ϕ(t)

∫ t

0

ϕ−1(s)b(s)v(s)d〈N〉s (12)
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where ϕ(t) is the fundamental matrix, i.e.

dϕ(t)

d〈N〉t
= −ϑλA(t)ϕ(t) , ϕ(0) = Id ,

where Id is the 2× 2 identity matrix. Therefore

IT (ϑ, v) = µ2λ2

∫ T

0

(

∂ζt

∂ϑ

)∗
ℓ(t)ℓ(t)∗

∂ζt

∂ϑ
d〈N〉t

=

∫ T

0

∫ T

0

KT (s, σ)
s

1

2
−H

√
2λ

v(s)
σ

1

2
−H

√
2λ

v(σ)dsdσ,

where

KT (s, σ) =

∫ T

max(s,σ)

G(t, s)G(t, σ)dt , (13)

and

G(t, σ) =
∂

∂ϑ

(µ

2
t
1

2
−Hℓ(t)∗ϕ(t)ϕ−1(σ)b(σ)σ

1

2
−H
)

.

Then

JT (ϑ) = sup
v∈VT

IT (ϑ, v)

= T sup
v∈L2[0,T ]

∫ T

0

∫ T

0

KT (s, σ)v(s)v(σ)dsdσ

= T sup
v∈L2[0,T ], ||v||=1

(KTv, v) .

Because of the stability, we have

lim
T→+∞

KT (s, σ) = K∞(s, σ)

uniformly in any finite interval of s and σ. Contrary to the classical case
H = 1

2
, the limit kernel K∞(s, σ) is no more of the form

C(s− σ) =
µ2

4ϑ3
e−ϑ|σ−s| (ϑ|σ − s|+ 1)

(see [11]). But we have the following result:

6



Lemma 2.1. In this case,

lim inf
T→+∞

JT (ϑ)

T
≥ sup

w∈L2(❘)

(Cw,w) =
µ2

ϑ4
.

Proof. The proof is postponed in Section 3.

In the classical case, the reminder K∞(s, σ)−KT (s, σ) corresponds to a
positive quadratic form and

sup
v∈L2[0,T ]

(KTv, v) ≤ sup
w∈L2(❘)

(K∞w,w) = sup
w∈L2(❘)

(Cw,w) .

In the fractional case, we only have that:

sup
v∈L2[0,T ]

(KTv, v) ≤ sup
w∈L2(❘)

(K∞w,w) .

Nevertheless, we claim the following result:

Proposition 2.1.

lim
T→+∞

sup
v∈L2[0,T ], ||v||=1

(KTv, v) = sup
w∈L2(❘), ||w||=1

(Cw,w) =
µ2

ϑ4
.

Proof. Lemma 2.1 gives the lower bound. Therefore, we have to show the
upper bound:

lim
T→+∞

sup
v∈L2[0,T ], ||v||=1

(KTv, v) ≤ sup
w∈L2(❘), ||w||=1

(Cw,w) =
µ2

ϑ4
.

Let us introduce the pair process ξ = ((ξ1t , ξ
2
t ) , 0 ≤ t ≤ T ) with

ξ1t =

(∫ T

t

σ
1

2
−Hℓ(σ)∗ϕ(σ) ∗ dWσ

)

ϕ−1(t) and ξ2t =
∂

∂ϑ
ξ1t , (14)

where ∗dWσ denotes the Itô backward integral (see e.g [12]). It is worth
emphasizing that

KT (s, σ) =
µ2

4
E
(

ξ2sb(s)s
1

2
−Hξ2σb(σ)σ

1

2
−H
)

.
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This process also satisfies the following dynamic

−dξt = ξtA(t)d〈N〉t + L(t)t
1

2
−H

√
2λ

∗ dWt,

or
−dξt = ξtA(t)d〈M〉t + L(t) ∗ dMt, ξT = 0,

with Mt a martingale of the same variance function as Nt,

A(t) =

(

−ϑ 0
−1 −ϑ

)

⊗ λA(t) and L(t) =
√
2λ
(

ℓ(t)∗ 0
)

.

Obviously, we should estimate the spectral gap (the first eigenvalue ν1(T ))
of the operator associated to the kernel KT . The estimation of the spectral
gap is based on the Laplace transform computation.
Let us compute, for sufficiently small negative a < 0 the Laplace transform:

LT (a) = Eϑ exp

{

−a

∫ T

0

[

µ

2

(

∂

∂ϑ
ξ1t

)

b(t)t
1

2
−H

]2

dt

}

= Eϑ exp

{

−a
µ2λ

2

∫ T

0

ξtM(t)ξ∗t d〈N〉t
}

where

M(t) =

(

0 0
0 b(t)b(t)∗

)

.

On the one hand, for a > − 1
ν1(T )

, LT (a) can be represented as:

LT (a) =
∏

i≥1

(1 + 2aνi(T ))
− 1

2 , (15)

where νi(T ), i ≥ 1 is the sequence of positive eigenvalues of the covariance
operator. On the other hand,

LT (a) = exp

{

1

2

∫ T

0

trace(H(t)L(t)∗L(t))d〈N〉t
}

,

where H(t) is the solution of Ricatti differential equation:

dH(t)

d〈N〉t
= H(t)A(t)∗ +A(t)H(t) +H(t)L(t)∗L(t)H(t)− aµ2λM(t) , (16)
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with initial condition H(0) = 0, provided that the solution of equation (16)
exists for any 0 ≤ t ≤ T .

It is well known that if detΨ1(t) > 0, for any t ∈ [0, T ], then the solution
H(t) of equation (16) can be written as H(t) = Ψ−1

1 (t)Ψ2(t), where the pair
of 4× 4 matrices (Ψ1,Ψ2) satisfies the system of linear differential equations:

dΨ1(t)

d〈N〉t
= −Ψ1(t)A(t)−Ψ2(t)L(t)∗L(t) , Ψ1(0) = Id , (17)

dΨ2(t)

d〈N〉t
= −aµ2λΨ1(t)M(t) + Ψ2(t)A(t)∗ , Ψ2(0) = 0 , (18)

and Id is the 4× 4 identity matrix.
Moreover, under the condition detΨ1(t) > 0, for any t ∈ [0, T ], the

following equality holds:

LT (a) = exp

{

−1

2

∫ T

0

traceA(t)d〈N〉t
}

(detΨ1(T ))
− 1

2

= exp {ϑT} (detΨ1(T ))
− 1

2 , (19)

or, equivalently,
∏

i≥1

(1 + 2aνi(T )) = exp {−2ϑT} (detΨ1(T )) . (20)

Let us note here that the solution of linear system (17) exists for any t > 0 and
for any a ∈ ❈. For a = 0, detΨ1(t) = exp {2ϑt} > 0. Due to the continuity
property of the solutions of linear differential equations with respect to a
parameter, for all T > 0, there exists a(T ) < 0 such that

inf
t∈[0,T ]

detΨ1(t) > 0 .

Therefore, equality (20) holds in an open set in❈, containing 0. Compactness

of the covariance operator, namely,
∫ T

0
KT (s, s)ds < ∞, implies, due to the

Weierstrass theorem, the analytic property of
∏

i≥1

(1 + 2aνi(T )) with respect

to a. Hence, equality (20) holds for any a ∈ ❈.
Now let us show that for T sufficiently large and for − ϑ4

2µ2 < a < 0

detΨ1(T ) > 0. Indeed, linear system (17) can be rewritten as

d (Ψ1(t),Ψ2(t)⊗ J)

d〈N〉t
= (Ψ1(t),Ψ2(t)⊗ J) · (i⊗ λA(t)) (21)
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where

i =









ϑ 1 0 0
0 ϑ 0 −aµ2

−2 0 −ϑ 0
0 0 −1 −ϑ









J =

(

0 1
1 0

)

.

Clearly, system (21) has an explicit solution:

(Ψ1(t),Ψ2(t)⊗ J) = (Id, 0) · (P ⊗ Id)G
(

P−1 ⊗ Id
)

(22)

where G = diag (G1,G2,G3,G4) and

dGi(t)

d〈N〉t
= λxiGiA Gi(0) = Id , i = 1 . . . 4 , (23)

with (xi)i=1...4 the eigenvalues of matrix i and P the matrix of its eigenvec-
tors. For

− ϑ4

2µ2
< a < 0,

eigenvalues of matrix i are of the form xi = ±
√

ϑ2 ± µ
√
−2a.

It can be checked that there exists a constant C > 0 such that

detΨ1(T ) = exp ((x1 + x3)T )

(

C +O

(

1

T

))

,

where x1 =
√

ϑ2 + µ
√
−2a > x3 =

√

ϑ2 − µ
√
−2a.

Therefore, due to equality (20), we have that
∏

i≥1

(1 + 2aνi(T )) > 0 for any

a > − ϑ4

2µ2
. It means that − 1

ν1(T )
≤ −ϑ4

µ2
, or equivalently, that

ν1(T ) ≤
µ2

ϑ4
(24)

which achieves the proof.

Combining the proof of Lemma 2.1 and the upper bound (24), we obtain
that

vopt(t) =
√
2λtH− 1

2 , 0 ≤ t ≤ T
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is optimal in the class VT . As in [11],

1

T

∫ T

0

|vopt(t)|2d〈N〉t = 1

Using Remark 1, we have

uopt(t) =
d

dt

∫ t

0

KH(t, s)vopt(s)d〈N〉s =
κH√
2λ

tH− 1

2 .

2.4 MLE large sample asymptotic properties

As the optimal input does not depend on ϑ, it is possible to compute directly
the MLE on the following system:

{

dxt = −ϑxtdt+ uopt(t)dt , x0 = 0 ,

dYt = µxtdt+ dV H
t , Y0 = 0.

(25)

where uopt(t) is the optimal input found in previous Section 2.3. After trans-
formation,

dZt = µλℓ(t)∗ζtd〈N〉t + dNt , Z0 = 0 , (26)

where
dζt

d〈N〉t
= −ϑλA(t)ζt + b(t)vopt(t) .

Actually, to compute large sample asymptotic properties of the implicit
MLE, we need the explicit representation of the likelihood ratio

ZT (ϑ1, ϑ2, Z
O,T ) =

LT (ϑ2, Z
O,T )

LT (ϑ1, ZO,T )
, (27)

which is also the Radon-Nikodym derivative of PT
ϑ2

with respect to PT
ϑ1
,

restricted to FY
T , i.e.

ZT (ϑ1, ϑ2, Z
O,T ) =

LT (ϑ2, ζ
O,T )

LT (ϑ1, ζO,T )
= Eϑ

(

dPT
ϑ2

dPT
ϑ1

∣

∣FY
T

)

.

From Equation (9), this ratio can be written in the following form:

ZT (ϑ1, ϑ2, Z
O,T ) = exp

{

µλ

∫ T

0

l∗δϑ1,ϑ2
dνϑ1

t − µ2λ2

2

∫ T

0

δ∗ϑ1,ϑ2
ℓℓ∗δϑ1,ϑ2

d〈N〉t
}

11



where δϑ1,ϑ2
(t) is the difference ζϑ2

t − ζϑ1

t and
(

νϑ1

t , t ≥ 0
)

is defined by:

dνϑ1

t = dZO
t − µλℓ(t)∗ζϑ1

t d〈N〉t , νϑ1

0 = 0 .

We will denote by ZT (x, Z
O,T ) the perturbation of ZT (ϑ, ϑ2, Z

O,T ), when
ϑ2 = ϑ+ x√

T
. Namely, ZT (x, Z

O,T ) = ZT (ϑ, ϑ+ x√
T
, ZO,T ). For this case, we

will denote δϑ,x,T = δϑ,ϑ+ x
√

T

.

2.4.1 Ibragimov–Khasminskii program

It follows from [3, Theorem I.10.1] that in order to prove Theorem 1.2, it is
sufficient to check the three following conditions:

(A.1)

ZT (x, Z
O,T )

law
=⇒ exp

{

x.η − x2

2
Iopt(ϑ)

}

with η ∼ N
(

0, Iopt(ϑ)
)

,

(A.2) for some χ > 0:

Eϑ

√

ZT (x, ZO,T ) ≤ exp
(

−χx2
)

(A.3) there exists C > 0 such that

Eϑ

(

√

ZT (x1, ZO,T )−
√

ZT (x2, ZO,T )
)2

≤ C|x1 − x2|2 .

We present here the proof of Theorem 1.2 by checking the three condi-
tions.

Proof. As the deterministic quantity (see Lemma 2.1 and Proposition 2.1)

µ2λ2

2

∫ T

0

δ∗ϑ,x,T ℓℓ
∗δϑ,x,Td〈N〉t T→∞−→ x2

2
lim
T→∞

I(ϑ, vopt)
T

=
x2

2
Iopt(ϑ) ,

with Iopt(ϑ) = µ2

ϑ4 and then

µλ

∫ T

0

ℓ∗δϑ1,ϑ2
dνϑ1

t

law
=⇒ N (0, Iopt(ϑ))

12



and (A.1) is checked. The condition (A.2) holds thanks to the following chain
of inequalities:

Eϑ

√

ZT (x) = Eϑ exp

(

µλ

2

∫ T

0

ℓ∗δϑ,x,Tdν
ϑ
t − µ2λ2

4

∫ T

0

δ∗ϑ,x,T ℓℓ
∗δϑ,x,Td〈N〉t

)

= Eϑ exp

(

µλ

2

∫ T

0

ℓ∗δϑ,x,Tdν
ϑ
t − µ2λ2

8

∫ T

0

δ∗ϑ,x,T ℓℓ
∗δϑ,x,Td〈N〉t

)

× exp

(

−µ2λ2

8

∫ T

0

δ∗ϑ,x,T ℓℓ
∗δϑ,x,Td〈N〉t

)

(a)

≤ exp

(

−µ2λ2

8

∫ T

0

δ∗ϑ,x,T ℓℓ
∗δϑ,x,Td〈N〉t

)

(b)

≤ exp
(

−χx2
)

,

where (a) is Girsanov Theorem since

Eϑ exp

(

µλ

2

∫ T

0

ℓ∗δϑ,x,Tdν
ϑ
t − µ2λ2

8

∫ T

0

δ∗ϑ,x,T ℓℓ
∗δϑ,x,Td〈N〉t

)

≤ 1 ,

and (b) comes from the proof of (A.1). To prove (A.3), let us note that

Eϑ

(

√

ZT (x1)−
√

ZT (x2)
)2

= 2

(

1− EϑZT (x1)

√

ZT (x2)

ZT (x1)

)

= 2
(

1− Eϑ1

√

ZT (ϑ1, ϑ2)
)

.

The same chain of inequalities (with Reverse Hölder Inequality and Girsanov
Theorem) gives:

Eϑ

(

√

ZT (x1)−
√

ZT (x2)
)2

≤ 2
(

1− exp
(

−χ
1
(x2 − x1)

2))

≤ C|x1 − x2|2 .

Remark 1. We have denoted by

VT =

{

v | 1

T

∫ T

0

|v(t)|2d〈N〉t ≤ 1

}

13



the class of admissible transformed controls. Remark that the following rela-
tion between u(t) and transformation v(t) = d

d〈N〉t
∫ t

0
kH(t, s)u(s)ds holds:

u(t) =
d

dt

∫ t

0

KH(t, s)v(s)d〈N〉s.

At the first glance, we can set the admissible controls as:

UT = {u | v ∈ VT} .
Note that these sets are non empty.

3 Proof of Lemma 2.1

From (12), we have

ℓ(t)∗ζt = ℓ(t)∗ϕ(t)

∫ t

0

ϕ−1(s)b(s)v(s)d〈N〉s

= tH− 1

2

∫ t

0

(

t
1

2
−Hℓ(t)∗ϕ(t)ϕ−1(s)b(s)s

1

2
−H
) s

1

2
−H

2λ
vsds

= tH− 1

2

∫ t

0

g(t, s)
s

1

2
−H

2λ
vsds ,

where
g(t, s) = t

1

2
−Hℓ(t)∗ϕ(t)ϕ−1(s)b(s)s

1

2
−H .

From [5], explicit expression can be deduced, namely

ϕ(t) = e−
ϑt

2

(

f2,2(t) −f1,2(t)
−f2,1(t) f1,1(t)

)

, detϕ(t) = e−ϑt

and functions defined by

f1,1(t) =

(

ϑ

4

)H

Γ(1−H) tHI−H

(

ϑt

2

)

f1,2(t) =

(

ϑ

4

)H

Γ(1−H) t1−HI1−H

(

ϑt

2

)

f2,1(t) =

(

ϑ

4

)1−H

Γ(H) tHIH

(

ϑt

2

)

f2,2(t) =

(

ϑ

4

)1−H

Γ(H) t1−HIH−1

(

ϑt

2

)

,

14



where Iν is the modified Bessel function of the first kind and order ν. Direct
computation leads to

t
1

2
−Hℓ(t)∗ϕ(t) = e−

ϑt

2

√
t

(

CH (IH−1 − IH)

(

ϑt

2

)

, C1−H (I−H − I1−H)

(

ϑt

2

))

where CH =
(

ϑ
4

)1−H
Γ(H).

Let us remark that,

Id =
1

CHC1−H

(

C1−H 0
0 CH

)(

CH 0
0 C1−H

)

and

Id =
1

2

(

1 1
1 −1

)(

1 1
1 −1

)

.

Therefore, we can compute

(a) = t
1

2
−Hℓ(t)∗ϕ(t)

(

C1−H 0
0 CH

)(

1 1
1 −1

)

= e−
ϑt

2 (g1(t), g2(t))

with

g1(t) = CHC1−H

√
t (IH−1 − IH + I−H − I1−H)

(

ϑt

2

)

g2(t) = CHC1−H

√
t (IH−1 − IH − I−H + I1−H)

(

ϑt

2

)

.

With same computation,

(b) =
1

2CHC1−H

(

1 1
1 −1

)(

CH 0
0 C1−H

)

ϕ−1(s)b(s)s
1

2
−H

= e
ϑs

2

(

g̃1(s)
g̃2(s)

)

with

g̃1(s) =

√
s

2
(IH−1 + IH + I−H + I1−H)

(

ϑs

2

)

g̃2(s) =

√
s

2
(−IH−1 − IH + I−H + I1−H)

(

ϑs

2

)

.
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Hence

g(t, s) = (a)(b) = e−
ϑt

2 e
ϑs

2 (g1(t)g̃1(s) + g2(t)g̃2(s))

= e−ϑteϑs
(

e
ϑt

2 g1(t)e
−ϑs

2 g̃1(s)
)

+ e−
ϑt

2 g2(t)e
ϑs

2 g̃2(s).

Moreover CHC1−H = ϑ
4

π
sinπH

, (IH − I−H)
(

ϑt
2

)

≃ 2 sinπH√
ϑπt

e−
ϑt

2 that gives

e
ϑt

2 g1(t) −→
t→∞

√
πϑ .

With property (see [10])

Iν

(

ϑt

2

)

≃
t→∞

e
ϑt

2√
πϑt

(

1− 4ν2 − 1

4ϑt
+O

(

1

t2

))

,

we have that

e−
ϑs

2 g̃1(s) −→
s→∞

2√
πϑ

,

e−
ϑt

2 g2(t) ≃
t→∞

2H − 1

2t sin(πH)

√

π

ϑ
,

e
ϑs

2 g̃2(s) ≃
s→∞

(2H − 1) sin(πH)

sϑ
√
πϑ

.

From (11)

IT (ϑ, v) =

∫ T

0

µ2λ2

(

∂

∂ϑ
ℓ(t)∗ζt

)2

d〈N〉t

=

∫ T

0

µ2λ2

(

∂

∂ϑ
tH− 1

2

∫ t

0

g(t, s)
s

1

2
−H

2λ
vsds

)2
t1−2H

2λ
dt

=
Tµ2

4





1

T

∫ T

0

(

∫ t

0

∂

∂ϑ
g(t, s)

s
1

2
−Hvs√
2λ

ds

)2

dt



 .

Now if we take vopt(s) =
√
2λsH− 1

2 then

1

T

∫ T

0

(vopt(s))
2d〈N〉s =

1

T

∫ T

0

(vopt(s))
2 s

1−2H

2λ
ds = 1

16



and

IT (ϑ, vopt) =
Tµ2

4

[

1

T

∫ T

0

(∫ t

0

∂

∂ϑ
g(t, s)ds

)2

dt

]

=
Tµ2

4

[

1

T

∫ T

0

(Ψ(t))2 dt

]

.

It follows from the previous asymptotic estimates that for s ≥ 0 and M ≥ 0
we have

lim
t→+∞

∂

∂ϑ
g(t, s) = 0 =⇒

∫ M

0

∂

∂ϑ
g(t, s)1(0,t)(s)ds −→

t→∞
0 .

Moreover for s and t large enough we obtain

g(t, s) ≃ 2e−ϑ(t−s) +
(2H − 1)4

2ϑ2ts
.

The recurrence relation for the derivatives of Bessel functions I ′ν = Iν+1+
ν
x
Iν

implies that

∂

∂ϑ
g(t, s) ≃ −2(t− s)e−ϑ(t−s) − 2(2H − 1)4

2ϑ3ts
.

Therefore
∫ t

M

∂

∂ϑ
g(t, s)ds ≃ −2

∫ t

M

(t− s)e−ϑ(t−s)ds− 2(2H − 1)4

2ϑ3

ln t− lnM

t

=
−2

ϑ2

[

1− (1 + ϑ(t−M))e−ϑ(t−M)
]

− 2(2H − 1)4

2ϑ3

ln t− lnM

t
.

Finally we obtain

Ψt −→
t→∞

−2

ϑ2
=⇒ IT (ϑ, vopt) ≃

T→∞

Tµ2

ϑ4
.

To conclude recall that

JT (ϑ) = sup
v∈VT

IT (ϑ, v) ≥ IT (ϑ, vopt) .

which implies

lim inf
T→+∞

JT (ϑ)

T
≥ µ2

ϑ4
= sup

w∈L2(❘)

(Cw,w).
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