Mario Leyton 
email: mleyton@niclabs.cl
  
Ludovic Henrio 
  
José M Piquer 
email: jpiquer@dcc.uchile.cl
  
Exceptions for Algorithmic Skeletons

Keywords: Algorithmic skeletons, exceptions, semantics

Algorithmic Skeletons offer high-level abstractions for parallel programming based on recurrent parallelism patterns. Patterns can be combined and nested into more complex parallelism behaviors. Programmers fill the skeleton patterns with the functional (business) code, which transforms the generic skeleton into a specific application. However, when the functional code generate exceptions, this exposes the programmer to details of the skeleton library, breaking the high-level abstraction principle. Furthermore, related parallel activities must be stopped as the exception is raised. This paper describes how to handle exceptions in Algorithmic Skeletons without breaking the high-level abstractions of the programming model. We describe both the behavior of the framework in a formal way, and its implementation in Java: the Skandium Library.

Introduction

Algorithmic skeletons (skeletons for short) is a high-level programming model for parallel and distributed computing, introduced by Cole [START_REF] Cole | Algorithmic skeletons: structured management of parallel computation[END_REF]. Skeletons take advantage of recurrent programming patterns to hide the complexity of parallel and distributed applications. Starting from a basic set of patterns (skeletons), more complex patterns can be built by nesting the basic ones.

To write an application, programmers must compose skeleton patterns and fill them with the sequential blocks specific to the application. The skeleton pattern implicitly defines the parallelization, distribution, orchestration, and composition aspects, while the functional code provides the application's functional aspects (i.e. business code).

The functional code, provided by users, is likely to encounter errors and generate exceptions. The open question we are addressing in this paper is how the exceptions raised by a functional code interact with the surrounding skeleton pattern to alter (or not) the pattern's normal execution flow. And in the worst case, how this exceptions are reported back to user, after aborting related parallel activities.

Exceptions are the traditional way of handling programming errors which alter the normal execution flow. Many programming languages provide support for exception handling such as: Ada, C++, Eiffel, Java, Ocaml, Ruby, etc.

In this paper we present an exception mechanism for an algorithmic skeleton library which blends in with the host programming language's exception handling. Furthermore, the process of unwinding the stack does not reveal unnecessary low-level details of the skeleton library implementation, but is consistent with the high-level abstractions of the programming model.

This paper is organized as follows. Section 2 describes the related work. Section 3 provides a brief overview of the algorithmic skeleton programming model. Section 4 introduces the exception model. Section 5 shows how the exception model is implemented in the Skandium library, and Section 6 provides de conclusions.

Related Work

As a skeleton library we use Skandium [START_REF] Skandium | [END_REF][START_REF] Leyton | Skandium: Multi-core programming with algorithmic skeletons[END_REF], which is a multi-core reimplementation of Calcium [START_REF] Caromel | Fine tuning algorithmic skeletons[END_REF], a ProActive [START_REF] Caromel | ProActive: an integrated platform for programming and running applications on Grids and P2P systems[END_REF] based algorithmic skeleton library. Skandium is mainly inspired by Lithium [START_REF] Aldinucci | An advanced environment supporting structured parallel programming in Java[END_REF] and Muskel [START_REF] Danelutto | Qos in parallel programming through application managers[END_REF] frameworks, developed at University of Pisa. In all of them, skeletons are provided to the programmer as a Java API. Our previous work has provided formalisms for algorithmic skeletons such as a type system for nestable parallelism patterns [START_REF] Caromel | Type safe algorithmic skeletons[END_REF] and reduction semantics [START_REF] Leyton | Advanced Features for Algorithmic Skeleton Programming[END_REF]. This work extends both previous formalisms.

QUAFF [START_REF] Falcou | Quaff: efficient c++ design for parallel skeletons[END_REF] is a recent skeleton library written in C++ and MPI. QUAFF relies on template-based meta-programming techniques to reduce runtime overheads and perform skeleton expansions and optimizations at compilation time. Skeletons can be nested and sequential functions are stateful. QUAFF takes advantage of C++ templates to generate, at compilation time, new C/MPI code. QUAFF is based on the CSP-model, where the skeleton program is described as a process network and production rules (single, serial, par, join) [START_REF] Falcou | Formal semantics applied to the implementation of a skeleton-based parallel programming library[END_REF].

Formalisms in Skil [START_REF] Botorog | Efficient high-level parallel programming[END_REF] provide polymorphic skeletons in C. Skil was later reimplemented as the Muesli [START_REF] Kuchen | A skeleton library[END_REF] skeleton library, but instead of a subset of the C language, skeletons are offered through C++. Contrary to Skil, Muesli supports nesting of task and data parallel skeletons [START_REF] Kuchen | The integration of task and data parallel skeletons[END_REF] but is limited to P 3 L's two tier approach [START_REF] Bacci | P 3 L: A structured high level programming language and its structured support[END_REF].

Exceptions are a relevant subject on parallel programming models. For example in [START_REF] Caromel | Robust exception handling in an asynchronous environment[END_REF] exceptions for asynchronous method calls on active objects are introduced, and [START_REF] Gesbert | Semantics of an exception mechanism for bulk synchronous parallel ml[END_REF] provides formalisms for exception management in BSML, a functional parallel language for BSP. However, to the best of our knowledge, no previous work has focused on exception handling for Algorithmic Skeletons.

Regarding exception management in parallel and distributed programming, the exception handling approach proposed by Keen et al [START_REF] Keen | Exception handling during asynchronous method invocation (research note)[END_REF] for asynchronous method invocation presents similarities with our approach. In the sense that exceptions within the skeleton framework happen in an asynchronous context and we require a predefined handler to manage the exception. However, in our approach handlers are allowed to fail and we use the Future.get() as a synchronization point to deliver the result or exception.

The exception handling approach used by JCilk [START_REF] Danaher | Programming with exceptions in jcilk[END_REF] also presents a similarity with our approach. An exception raised by parallel a activity causes its siblings to abort. This yields simpler semantics, closer to what a sequential programmer would expect in Java; and also provides a mechanism to abort parallel activities in search type algorithms (such as branch and bound). However, the approach used in JCilk corresponds to a language extension while the our approach is implemented as a library extension. Furthermore, our approach provides exception which do not break the high-level principle.

Algorithmic Skeletons in a Nutshell

In Skandium [START_REF] Skandium | [END_REF], skeletons are provided as a Java library. The libraryw can nest task and data parallel skeletons in the following way:

△ ::= seq(f e , h ) | farm(△, h ) | pipe(△ 1 , △ 2 , h ) | while(f c , △, h ) | for(i, △, h ) | if(f c , △ true , △ f alse , h ) | map(f s , △, f c , h ) | fork(f s , {△ i }, f m , h ) | d&c(f c , f s , △, f m , h )
Each skeleton represents a different pattern of parallel computation. An optional argument ( ) has been introduced, for each skeleton, in this paper which corresponds to the skeleton's exception handler (h), described in detail in Section 4. In Algorithmic Skeletons all communication details are implicit for each pattern, hidden away from the programmer. The task parallel skeletons are: seq for wrapping execution functions; farm for task replication; pipe for staged computation; while/for for iteration; and if for conditional branching. The data parallel skeletons are: map for single instruction multiple data; fork which is like map but applies multiple instructions to multiple data; and d&c for divide and conquer.

Muscle (Sequential) Blocks

The nested skeleton pattern (△) relies on sequential blocks of the application. These blocks provide the business logic and transform a general skeleton pattern into a specific application. We denominate these blocks muscles, as they provide the real (non-parallel) functionality of the application.

In Skandium, muscles come in four flavors:

Execution f e : p → r Split f s : p → [r 0 , ..., r k ] Merge f m : [p 0 , ..., p k ] → r Condition f c : p → boolean
Here p ranges over parameters, i.e. values or object as represented in the host language (Java in our implementation). Additionally

r ::= p | e
where the result r can be either a new parameter p or an exception e; and [r 0 , ..., r k ] is a list of results.

For the skeleton language, muscles are black boxes invoked during the computation of the skeleton program. Multiple muscles may be executed either sequentially or in parallel with respect to each other, in accordance with the defined △. The result of a muscle is passed as a parameter to other muscle(s). When no further muscles need to be executed, the final result is delivered to the user.

Skeleton's Semantics

Out operational semantics for Algorithmic Skeletons is detailed in Appendix A and illustrated by the example in Section 4.2. It operates as follows. A skeleton program △ defined by the programmer is transformed into a lower level representation formed of instructions, with its corresponding muscle functions and exception handlers. Transforming high-level skeletons to lower-level constructs is a standard methodology in many Skeleton frameworks such as P3L, Lithium, Muesli, QUAFF, etc.

These lower-level instructions provide the actual parallelization semantics, and are grouped into stacks. When data parallelism is encountered, such as for map, fork, and d&c skeletons, a DAT A -|| rule creates new stacks with the instructions to be computed in parallel. The reduction of a skeleton consists in evaluating a set of stacks: the first instruction of each stack is evaluated until a result is obtained, then the result is passed to the next instruction of the task. When the stacks are finished, the results are merged back from the parallel activities with the CONQ-INST-REDUCE rule. Task parallelism can also be achieved (T ASK -|| rule) by computing the same instruction concurrently for different (unrelated) data.

Exceptions for Algorithmic Skeletons

Exceptions provide a useful mechanism to report errors and disrupt the normal program flow. Besides error communication, exceptions are also useful, for example, to stop computaton once a result is found in recursive algorithms such as branch & bound.

The model we propose contemplates three possible scenarios:

1. An exception is raised and caught inside a muscle. For the skeleton it is as if no exception was raised at all, and thus no action is required. 2. An exception is raised by a muscle or a sub-skeleton, and a matching handler is found and executed to produce the skeleton's result. 3. An exception is raised by a muscle or sub-skeleton, and no matching handler is found in the skeleton. The exception is raised to the parent skeleton.

Exception Semantics

The principle of the operational semantics with exceptions is that muscle functions f are reduced to a result r which can be either a new parameter p or an exception e. Conceptually, when an exception is raised by a muscle we want the surrounding skeleton to either handle the exception and produce a regular result or raise the exception to the parent skeleton.

Consider the example:

f arm(pipe(△ 1 , △ 1 , h)). If △ 1 is reduced to an excep- tion e then: f arm(pipe(e, △ 2 , h)) → f arm(h(e)) → f arm(r)
The pipe is reduced to h(e) which returns a result r: either an exception e or a value p.

The challenge is that nested skeletons are transformed into a sequence of lower-level instructions (△ ։ J). Therefore the skeleton nesting must be remembered so that the instruction reduction semantics raise the exception to the parent skeleton's handler.

Let us introduce some new concepts and helper functions:

An exception e represents an error during the computation. A concatenation τ ⊕ e extends the trace of a given exception e by the creation context τ . h is a programmer provided handler function. Given a parameter p and an exception e, this handler can be evaluated into a result:h(p, e) → r. The result r can be a new parameter p ′ or a new exception e ′ if an error took place during the handler evaluation. match is a function taking a handler h and an exception e as parameter. (h, e) returns true if a handler h can be applied to an exception e, and f alse otherwise.

An instruction J can reduce its parameter either to a result r or an exception e. For the later case, the handler h remembers the parameter p before J is reduced.

p-remember J ↑ h(τ )(p) → J(p) ↑ h(τ, p)
If the instruction finishes normally, i.e. without raising an exception, then the handler is not invoked.

finished-ok p ↑ h(τ, p ′ ) ⇒ p
On the contrary, if the instruction raises an exception then this exception can be transmitted:

e-transmit J(e) • . . . • J n ⇒ e
If the result is an exception e and the handler h matches the exception, then the handler on the exception is invoked. In the scenario of data parallelism, if one of the subcomputations raises an exception:

conq-inst-reduce-with-exception conq I (f c )(Ω 1 . . . e i . . . Ω n ) → conq I (f c )(e i )
Then the exception e i is kept and the other parallel activities are discarded. For further details see Section 5.1.

Illustrative Example

Let us illustrate the semantics presented above on a simple example showing some of the reduction rules. We consider the following skeleton

△ = pipe(if (f b , seq(f pre , h p ), seq(f id )), seq(f t ), h)
This skeleton acts in two phases, first, depending on a boolean condition on the received data (given by the muscle function f b ), a pre-treatment f pre might be realized (or nothing if the condition is not verified, f id is the identity muscle function); then, the main treatment, expressed by the function f t is performed. The instruction corresponding to the preceding skeleton is the following:

△ ։pipe I (if I (f b , seq I (f pre ) ↑ h p (τ p ), seq I (f id ) ↑ h ∅ (τ 1 )) ↑ h ∅ (τ i ), seq I (f t ) ↑ h ∅ (τ t )) ↑ h(τ )
Where we introduce h ∅ the empty handler, and τ x are the locations of the different instructions. For example, τ is the creation point of the pipe instruction, and τ i of the if instruction.

According to the semantics defined above, this instruction is evaluated as shown in Figure 1. Starting from an incoming data d 1 , we suppose that f b (d 1 ) is true. We suppose that all the functions are stateless, allowing a parallel evaluation of the different steps. Reduced terms are underlined, and usage of contexthandler and context-handler-stack rules is implicit. (inst-arrow allows reduction → to be raised to the level of reduction ⇒). The evaluation of the skeleton is shown in Figure 1, where ⇒ * is the reflexive transitive closure of ⇒. It involves an exception raised and raised up to the top level handler. Skandium is a Java based Algorithmic Skeleton library for high-level parallel programming of multi-core architectures. Skandium provides basic nestable parallelism patterns, which can be composed to program more complex applications.

pipeI (ifI (f b , seqI (fpre) ↑ hp(τp), seqI (f id ) ↑ ∅(τ1)) ↑ ∅(τi), seqI (ft) ↑ ∅(τt)) ↑ h(τ )([d1]) ⇒ * pipeI (ifI (f b , seqI (fpre) ↑ hp(τp), seqI (f id ) ↑ ∅(τ1)) ↑ ∅(τi), seqI (ft) ↑ ∅(τt))(d1) ↑ h(τ, d1)) remember ⇒ * ifI (f b , seqI (fpre) ↑ hp(τp), seqI (f id ) ↑ ∅(τ1)) ↑ ∅(τi)(d1) • pipeI (seqI (ft) ↑ ∅(τt)) ↑ h(τ, d1) pipe-reduction-n ⇒ * ifI (f b , seqI (fpre) ↑ hp(τp), seqI (f id ) ↑ ∅(τ1))(d1) ↑ ∅(τi, d1) • pipeI (seqI (ft) ↑ ∅(τt)) ↑ h(τ, d1) remember ⇒ * seqI (f b )(d1) • choiceI (d1, seqI (fpre) ↑ hp(τp), seqI (f id ) ↑ ∅(τ1)) ↑ ∅(τi, d1) • pipeI (seqI (ft) ↑ ∅(τt)) ↑ h(τ, d1)) if-inst ⇒ * true • choiceI (d1, seqI (fpre) ↑ hp(τp), seqI (f id ) ↑ ∅(τ1)) ↑ ∅(τi, d1) • pipeI (seqI (ft) ↑ ∅(τt)) ↑ h(τ, d1) seq ⇒ * seqI (fpre) ↑ hp(τp)(d1) ↑ ∅(τi, d1) • pipeI (seqI (ft) ↑ ∅(τt)) ↑ h(τ, d1) choice ⇒ * e ↑ hp(τp, d1) ↑ ∅(τi, d1) • pipeI (seqI (ft) ↑ ∅(τt)) ↑ h(τ, d1) remember+seq ⇒ * τi ⊕ τp ⊕ e • pipeI (seqI (ft) ↑ ∅(τt)) ↑ h(τ, d1)) raise+finished-ok ⇒ * τi ⊕ τp ⊕ e ↑ h(τ, d1) next+pipe ⇒ * h(d1, τi ⊕ τp ⊕ e) catch+seq-insts
From a general perspective, parallelism or distribution of an application in Skandium is a producer/consumer problem. Where the shared buffer is a task queue, and the produced/consumed data are tasks, as shown in Figure 2.

A ready-queue stores ready tasks. Root-tasks are entered into the readyqueue by users, who provide the initial parameter and the skeleton program. The skeleton program undergoes a transformation process into an internal stack of instructions which harness the parallelism behavior of each skeleton (as detailed in Figure 3 of Appendix A).

Interpreter threads consume tasks from the ready-queue and compute their skeleton instruction stack. When the interpreters cannot compute a task any further, the task is either in finished or waiting state. If the task is in the finished state its result is delivered to the user. If the task is in the waiting state, then the task has generated new sub-tasks which are inserted into the ready-queue. Sub-tasks represent data parallelism for skeletons such as map, f ork, d&c. A sub-task may in turn produce new sub-taks. A task will exit the waiting state and be reinserted into the ready-queue when all of its sub-tasks are finished.

How Exceptions Cancel Parallelism

Exceptions disrupt the normal execution flow of a program. The generation and propagation of exceptions requires the cancellation of sibling parallel activities. The semantics introduced in Section 4.1 simply discards sibling parallel activities, as specified by the CONQ-INST-REDUCE-WITH-EXCEPTION rule. Thus, implementations are free to continue the execution of sibling parallel activities, and disregard their results, or apply a best effort to cancel the sibling parallel activities. The later approach is implemented in Skanidum as it can be used to abort recursive searches, once a result is found.

In the case of the Skandium library, a task is cancelled as follows (this also applies to direct task cancellation by a user). If the tasks is in the ready-queue then it is removed. If the task is in execution, then it stopped as soon as possible: after the task's current instruction is finished, but before the next instruction begins. Finally, if the task is in waiting state, then each of its sub-tasks are aborted (recursively).

When an exception is raised, it unwinds the task's execution stack until a handler is found and the computation can continue, or until the task's stack is empty. When the stack is empty, the exception is either returned to the user (for root-tasks) or passed to the parent-task (for sub-tasks). When a parent receives an exception from a sub-task all of the sub-task's siblings are aborted, and the exception continues to unwind the parent's stack. Note that an exception propagation will not abort parallel activities from different root-tasks (task parallelism) as they do not have a common task ancestor. 

Skandium API with Exception

The code in Listing 1.1 shows how simple it is to interact with the Skandium API to input data and retrieve the result. Lines 1-7 show how a Divide and Conquer (DaC) skeleton is built using four muscle functions and an exception handler. Line 10 shows how new data is entered into the skeleton. In this case a new Range(...) contains an array and two indexes left and right which represent the minimum and maximum indexes to consider. The input yields a future which can be used to cancel the computation, query or block for results. Finally, lines 16-20 block until the result is available or an exception is raised.

Listing 1.2 shows the definition of a skandium muscle, which provides the functional (business) behavior to a skeleton. In the example, the SplitList muscle implements the Split<P,R> interface, and thus requires the implementation of the R[] split(P p) method. Additionally, the muscle may raise an ArrayIndexOutOfBoundsException when stepping outside of an array.

Exception Handler

An exception handler is a function h : e → r which transforms an exception into a regular result. All exception handlers must implement the ExceptionHandler interface shown in Listing 1.3.

The handler is in charge of transforming an exception raised by a sub-skeleton or muscle into a result. The objective is to have a chance to recover from an error and continue with the computation.

Listing 1.4 shows an example of an exception handler. If for some reason the SplitList.split(...) shown in Listing 1.2 raises an ArrayIndexOutOf BoundException, then we use the handler to catch the exception and directly sort the array Range without subdividing. 

High-level Stack Trace

If the exception is raised outside of the Skandium library, ie when invoking Future.get() as shown in Listing 1.1, then this means that no handler was capable of catching the exception and the error is reported back to the programmer.

A stack-trace would have, for example, the form shown on Listing 1.5. This is the real stack-trace which corresponds to the actual Java stack-trace. In the example, line 2 generated the exception from inside the Solve.execute(...) muscle. This muscle was executed through a SeqInst instruction which in turn was called by the interpretation methods.

The problem with the real stack-trace, is that the lower-level implementation details are exposed to programmers. In this case the SeqInst instruction, thus breaking the high-level abstraction offered by algorithmic skeletons. Furthermore, the stack-trace is flat since there is no evidence of the skeleton nesting. In regular programming, this would be equivalent to printing only the name of the function which generated the exception, without actually printing the calling function. Furthermore, the function Solve.execute() could have been nested into more than one skeleton in the application, and it is impossible to know by inspecting the stack-trace from which of the nestings the exception was generated.

Therefore, we have introduced a high-level stack-trace which hides the internal interpretation details by not exposing instruction level elements and instead traces the skeleton nesting. The high-level stack-trace for the same example is shown in Listing 1.6. Lines 4-7 of the low-level stack-trace shown in Listing 1.5 are replaced by lines 4-6 in Listing 1.6. Thus it is evident that the error was generated by a Solve muscle nested inside a DaC which in turn was nested into a Map skeleton. To produce a high-level stack-trace three steps are required in the library's implementation:

1. When a new skeleton object is created, it must remember its trace: class, method, file and line number. This corresponds to τ in Section 4.1. 2. When the skeleton object is transformed into an instruction, the trace must be copied to the instruction (Figure 3 of Appendix A). 3. When an exception is raised, an instruction unwinds the stack and adds its corresponding trace to the high-level stack-trace. This corresponds to the E-RAISE rule in Section 4.1.

Conclusions

This paper has presented an exception management model for algorithmic skeleton, in particular for the Java Skandium Library which supports nestable parallelism patterns. The whole library, including exception management, has been formally specified, and the operational semantics for dealing with exception was also presented.

In our model, exceptions can be raised and handled at each level of the skeleton nesting structure. Each skeleton can have handlers attached, specified by programmers through and API. The handlers are capable of catching errors and returning regular results, or raising the exception to be handled by the parent skeleton. Additionally, the raised exceptions are dynamically modified to reflect the nesting of skeleton patterns. Furthermore, no trace of lower-level library methods are exposed to programmers and excceptions do not break the abstraction level.

A Appendix: Operational Semantics for Algorithmic Skeletons

Notation. The semantics in this section distinguish three types of reductions.

The "⇒" arrow used for global reductions where the context of the execution (e.g. other parallel processes) is explicitly expressed; the "→" arrow used for local reductions occurring in a single process, it only focuses on local reductions of instructions that do not involve communications between processes; and the "։" arrow used for transformations between languages (i.e. compilation).

A.1 The Instruction Language

Once the skeleton program is defined, it is transformed into a lower-level internal representation, hidden from programmers, in charge of exploiting the parallelism patterns. We call these internal representation instructions:

I ::=id I (f ) | seq I (f ) |pipe I ({J}) | if I (f c , J true , J f alse ) |f or I (i, J) | while I (f c , J) | map I (f s , J, f m ) | f ork I (f s , {J}, f m ) |d&c I (f s , f c , J, f m ) | choice I (p, J true , J f alse ) |div I ({J}, f c ) | conq I (f m ) J ::= I | J ↑ h(τ )
Where J is an instruction that allows for an exception handler h(τ ). Several instructions can be concatenated into a stack S as:

S-def S ::= r • J 1 • . . . • J n | J(r) • J 1 • . . . • J n
A stack my allow for an exception handler, which is ready to catch raised exceptions:

H-def H ::= S | H ↑ h(τ, p) | H 1 • . . . • H n
Several H can exist in parallel ( ), and Ω ranges over all parallel compositions:

context-def Ω ::= H | r | Ω Ω
Parallel activities are commutative, as the order in which stacks can be computed in parallel is irrelevant:

commutativity Ω Ω ′ ≡ Ω ′ Ω
Also, parallel activities can progress:

H-progress H ⇒ H ′ H Ω ⇒ H ′ Ω context-handler H ⇒ H ′ H ↑ h(τ, p) ⇒ H ′ ↑ h(τ, p) context-handler-stack H ⇒ H ′ H • H 2 • . . . • H n ⇒ H ′ • H 2 • . . . • H n
When a parameter is delivered it is processed by the next instructoin J as follows:

next r • J 1 • . . . • J n ⇒ J 1 (r) • . . . • J n A.

Transformation Rules

Skeletons are transformed (△ ։ J) into instructions as shown in Figure 3. For example, the PIPE-TRANS says that a pipe skeleton composed of a list of skeletons [△ 1 , ..., △ k ] and an exception handler h is transformed into a pipe I instruction composed of a list of instructions [J 1 , ..., J k ] and a handler h(τ ), if each skeleton △ i can be transformed into a instructions J i .

A.3 Reduction Rules

Non-atomicity is important to allow concurrent executions. For simplicity, the reduction rules presented in Figure 4 base all concurrent executions on the nonatomicity of seq I as it is used to wrap the evaluation of muscles.

Therefore, for non-atomic execution of seq I we define the following rules:

non-atomic-seq-inst f (p) → f ′ (p ′ ) seq I (f )(p) → seq I (f ′ )(p ′ ) return-value-seq-inst f (p) → r seq I (f )(p) → r
The non-atomic-seq-inst rule states that if a function f (p) can be evaluated to an intermediate state f ′ (p ′ ), then the seq I (f )(p) instruction can also be evaluated to an intermediate state seq

I (f ′ )(p ′ ).
If a skeleton receives multiple parameters, and the instructions of a stack are stateless, then they can be parallelized as follows:

task- J[p 1 , . . . , p m ] → J(p 1 ) . . . J(p m )
This reduction is what we call task parallelism. The stack S is copied m times, and each copy is applied to one of the parameters.

On the other hand, data parallelism is expressed with the div I and conq I instructions. The div I instruction is reduced as follows: The list of parameters [p 1 , ..., p n ] is spread over the list of instructions {J} and applied as J i (p i ). Data parallelism is achieved since each instruction can be computed in parallel with the others.

seq-trans seq(f, h) ։ seqI (f ) ↑ h(τ ) farm-trans △ ։ J f arm(△, h) ։ J ↑ h(τ ) pipe-trans △i ։ Ji ∀i/0 < i ≤ k pipe([△1, ..., △ k ], h) ։ pipeI ([J1, ..., J k ] | {z } length k ) ↑ h(τ ) while-trans △ ։ J while(fc, △ , 
The progress of the parallel activities is reflected in the conq-inst-progress rule. When the evaluation of the parallel activities is concluded (r 1 . . . r n ), the results are passed as parameters to the conq I instruction and reduced by the conq-inst-reduce rule: 

  e-catch match(h, e) e ↑ h(τ, p) ⇒ h(τ, p, e)If the handler h does not match e, then we add a trace to the exception.

  e-raise ¬match(h, e) e ↑ h(τ, p) ⇒ τ ⊕ e

Fig. 1 .

 1 Fig. 1. Exception Semantics Example

Fig. 2 .

 2 Fig. 2. Thread Pool Execution

Fig. 3 .

 3 Fig. 3. Transformation Rules

Fig. 4 .

 4 Fig. 4. Reduction Rules

1

  Caused by: java.lang.Exception: Solve Test Exception at examples.nqueens.Solve.execute(Solve.java:26)

	3 at examples.nqueens.Solve.execute(Solve.java:1)
	at skeletons.Seq.<init>(DaC.java:68)
	5 at skeletons.DaC.<init>(NQueens.java:53)
	at skeletons.Map.<init>(NQueens.java:60)
	Listing 1.6. High-level Stack Trace